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Jaynes-Cummings Model 

Adan Azem

Abstract- This paper presents Jaynes-Cummings model, 
the simplest model that describes light-matter 
interaction. Light-matter interaction is an overlap 
between condensed matter physics and quantum optics. 
Thus, this model consists of atomic, electromagnetic 
field and interaction Hamiltonians. Besides, it describes 
briefly the experimental realization of light-matter 
interaction in the strong coupling regime.  

 

I. Introduction 

Jaynes-Cummings model was developed in 1963 by 

Edwin Jaynes and Fred Cummings, to describe the 

quantum mechanical behavior of an atom interacting 

with a single mode radiation of a quantized 

electromagnetic field. The two systems exchange a 

quanta; the atom absorbs a photon and moves to the 

excited state or emits a photon and moves down to the 

ground state. The uniqueness of this model is that it relies 

on the quantum treatment of the electromagnetic field, 

therefore the electromagnetic field must be quantized in 

a defined volume 
1,2

. 

Here, we introduce the atomic, electromagnetic field and 

interaction Hamiltonian and discuss a few special cases. 

As well as its experimental realization and the strong 

coupling concept. 

II. Atom Hamiltonian 

In this model, the atom is approximated as a two-level 

system. It is described by a two-dimensional state space 

spanned by the two energy eigenstates: ground state |𝑔⟩ 
and excited state |𝑒⟩, with energy eigenvalues 𝐸𝑔 and 𝐸𝑒 

respectively as shown in figure 1. 

 

Figure 1: two-level atom 

The Hamiltonian of the two-level atom in the energy 

representation is: 

𝐻𝑎𝑡𝑜𝑚 = 𝐸𝑔|𝑔⟩⟨𝑔| + 𝐸𝑒|𝑒⟩⟨𝑒| = (𝐸𝑔 + 𝐸𝑒)𝐼 

=
1

2
(𝐸𝑔 + 𝐸𝑔)𝐼 +

1

2
(𝐸𝑔 − 𝐸𝑔)𝜎𝑧 

(1) 

Where 𝐼 is the unitary matrix and 𝜎𝑧 = |𝑒⟩⟨𝑒| − |𝑔⟩⟨𝑔| 
denotes the Hermitian Pauli operator. 

The transition frequency of the atom is determined by 

the atom internal structure and is fixed for a given 

material; it is given as: 

𝜔01 =
𝛺

ħ
 

(2) 

Where 𝛺 = 𝐸𝑒 − 𝐸𝑔 denotes the energy gap. By shifting 

the zero energy to 𝐸𝑒 + 𝐸𝑔, the atomic Hamiltonian can 

be written as: 

�̂�𝑎𝑡𝑜𝑚 =
𝛺

2
𝜎𝑧 

(3) 

II. Electromagnetic Field Hamiltonian
2

 

Classically, solving Maxwell equations with Coulomb 

Gauge (∇ ∙ 𝐴 = 0) would give the wave equation that can 

be solved as plane waves given by the following vector 

potential: 

𝑨𝑘,𝛼 = 𝜖𝑘,𝛼𝐴𝑘,𝛼𝑒𝑖(𝑘𝑟−𝜔𝑘𝑡) (4) 

Where 𝜖𝑘,𝛼 denotes the polarization vector of the 

radiation field with wavevector 𝑘 and polarization 𝛼, 𝐴𝑘,𝛼 

complex amplitude and 𝜔𝑘 frequency of the radiation 

field. 

The total energy of radiation field inside a box with 

periodic boundary conditions and volume 𝑉 = 𝐿3 is: 

𝐻 = ∑ 𝜀0𝑉𝜔𝑘
2[𝐴𝑘,𝛼𝐴𝑘,𝛼

∗ + 𝐴𝑘,𝛼
∗𝐴𝑘,𝛼]

𝑘,𝛼

 
(5) 

It can be simplified as a sum of energies in each 

individual radiation mode described by (𝑘, 𝛼): 

𝐻 = ∑ 𝐸𝑘,𝛼

𝑘,𝛼

 
(6) 

Where: 

𝐸𝑘,𝛼 = 𝜀0𝑉𝜔𝑘
2[𝐴𝑘,𝛼𝐴𝑘,𝛼

∗ + 𝐴𝑘,𝛼
∗𝐴𝑘,𝛼] (7) 

This classical electromagnetic field can be quantized by 

associating a quantum harmonic oscillator to each 

radiation mode (𝑘, 𝛼). Under these terms, the photon is 

defined as one elementary excitation of the quantum 

harmonic oscillator associated with a specific radiation 

mode. Therefore, photons can be created and 

annihilated through the ladder operators: 

�̂�𝑘|𝑛𝑘⟩ = √𝑛𝑘|𝑛𝑘 − 1⟩ (8) 
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�̂�𝑘
†|𝑛𝑘⟩ = √𝑛𝑘 + 1|𝑛𝑘 + 1⟩ (9) 

The number states |𝑛𝑘⟩ are known also as Fock states 

with precisely defined photon numbers. Figure 2 shows 

a quantum harmonic oscillator with Fock states. 

 

Figure 2: quantum harmonic oscillator 

Consequently, the total energy of a quantified radiation 

field is the sum of all the quantum harmonic oscillators 

associated with radiation modes 𝑘:  

�̂�𝑓𝑖𝑒𝑙𝑑 = ∑ �̂�𝑘

𝑘

 
(10) 

Where: 

�̂�𝑘 =
1

2
ħ𝜔𝑘(�̂�𝑘�̂�†

𝑘 + �̂�†
𝑘�̂�𝑘) 

(11) 

For simplicity, the polarization component 𝛼 is taken as 

constant. 

Comparing the classical and quantum total energy of the 

radiation field gives an analogy between the classical 

complex amplitude and its conjugate to the creation and 

anhelation operators: 

𝐴𝑘 → √
ħ

2𝜀0𝑉𝜔𝑘
�̂�𝑘 

(12) 

𝐴𝑘
∗ → √

ħ

2𝜀0𝑉𝜔𝑘
�̂�†

𝑘 

(13) 

Using the commutation relation of [�̂�𝑘, �̂�†
𝑘] = 1, we can 

rewrite the general electromagnetic field Hamiltonian:  

�̂�𝑓𝑖𝑒𝑙𝑑 = ∑ ħ𝜔𝑘

𝑘

(�̂�†
𝑘�̂�𝑘 +

1

2
) 

(14) 

III. Interaction Hamiltonian 

The light-matter interaction occurs between the 

quantized electric field operator of a single mode 

radiation and the dipole moment of a single atom and is 

given as: 

�̂�𝑖𝑛𝑡 = −�̂� ∙ �̂�(𝑡) (15) 

Where �̂�(𝑡) is the electric field operator and �̂� is the 

dipole moment operator. 

The dipole moment can be expressed in terms of the 

atomic ladder operators: 

�̂� = 𝐼�̂�𝐼 = ∑|𝑖⟩⟨𝑖|

𝑖,𝑗

�̂�|𝑗⟩⟨𝑗| = 𝑑10(𝜎+ + 𝜎−) 
(16) 

Where 𝜎+ and 𝜎− denotes the atomic ladder operators: 

𝜎+ = |𝑒⟩⟨𝑔| (17) 

𝜎− = |𝑒⟩⟨𝑔| (18) 

Using the previous description of the quantized 

electromagnetic field, the electric field operator (in 

Schrodinger picture) can be written as: 

�̂�(𝑟) = ∑ 𝜖𝑘√
ħ𝜔𝑘

2𝜀0𝑉
(𝑎†

𝑘𝑒𝑖𝑘𝑟 + 𝑎𝑘𝑒−𝑖𝑘𝑟)

𝑘

 

(19) 

Therefore, the interaction Hamiltonian becomes: 

�̂�𝑖𝑛𝑡 = ∑ 𝑔𝑘ħ(𝑎†
𝑘𝑒𝑖𝑘𝑟 + 𝑎𝑘𝑒−𝑖𝑘𝑟)(𝜎+ + 𝜎−)

𝑘

 (20) 

Where 𝑔𝑘 denotes the atom-light coupling constant, it 

depends on the mode frequency, modal volume and 

dipole moment: 

𝑔𝑘 = √
𝜔𝑘

2𝜀0𝑉
𝑑10𝜖𝑘 

(21) 

A simplified presentation of the interaction Hamiltonian 

at 𝑟 = 0: 

�̂�𝑖𝑛𝑡 = ∑ 𝑔𝑘ħ(𝑎†
𝑘 + 𝑎𝑘)(𝜎+ + 𝜎−)

𝑘

 
(22) 

Due to energy conservation inside the cavity, the only 

terms that survive are the combination of creation and 

annihilation operators: 

�̂�𝑖𝑛𝑡 = ∑ 𝑔𝑘ħ(𝑎𝑘𝜎+ + 𝑎†
𝑘𝜎−)

𝑘

 
(23) 

The first term describes the annihilation of a photon 

(absorption) and creation of an atomic excitation while 

the second term describes the creation of a photon 

(emission) and annihilation of an atomic excitation.  

Consequently, the electromagnetic field in mode 𝑘 and 

the atom cam be described by joined states: 

|𝑛𝑘 , 𝑖⟩ = |𝑛𝑘⟩⨂|𝑖⟩, 𝑖 = 0,1 (24) 

The transition rates of creation and annihilation of a 

photon (which equivalent to annihilation and creation of 

an atomic excitation) can be expressed in terms of an 

absorption matrix element: 

⟨𝑛𝑘 − 1,0|�̂�𝑖𝑛𝑡|𝑛𝑘, 1⟩ = 𝑔𝑘ħ√𝑛𝑘 (25) 
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And an emission matrix element: 

⟨𝑛𝑘 + 1,1|�̂�𝑖𝑛𝑡|𝑛𝑘, 0⟩ = 𝑔𝑘ħ√𝑛𝑘 + 1 (26) 

It should be noted that the transition rates are stronger if 

there are already photons in the same mode 𝑘, i.e. 𝑛𝑘 >
1. This is known as Bosonic enhancement of the 

absorption and emission transition rates. 

However, thanks to the quantum treatment of the 

electrometric field, even if there are no photons in mode 

𝑘, i.e. 𝑛𝑘 = 0 the mode is in the vacuum state, there is 

still light-matter interaction!  

The factor 1 in the emission matrix element (presented 

in red) represents the spontaneous emission of the atom 

that is triggered by the vacuum fluctuations of the 

radiation field. While 𝑛𝑘 in the same term represents the 

normal stimulated emission. 

IV. Jaynes-Cummings Hamiltonian 

The Jaynes-Cummings Hamiltonian of a single mode 

radiation that interacts with a single atom is given as: 

�̂�𝑖𝑛𝑡 = ħ𝜔𝑎†𝑎 +
𝛺

2
𝜎𝑧 + 𝑔ħ(𝑎𝜎+ + 𝑎†𝜎−) 

(27) 

Let us switch to interaction picture to solve for time 

evolution: 

|𝛹𝑖𝑛(𝑡)⟩ = 𝑒
𝑖
ħ

�̂�0𝑡|𝛹(𝑡)⟩ 
(28) 

Where �̂�0 is the free Hamiltonian (�̂�𝑖𝑛𝑡 without the 

interaction term). The interaction Hamiltonian becomes: 

�̂�𝑖𝑛𝑡
𝑖𝑛 (𝑡) = 𝑒

𝑖
ħ

�̂�0𝑡�̂�𝑖𝑛𝑡𝑒−
𝑖
ħ

�̂�0𝑡 

=  𝑔ħ(𝑎†𝜎−𝑒𝑖∆𝑡 + 𝑎𝜎+𝑒−𝑖∆𝑡) 

(29) 

Where ∆= 𝜔 − 𝜔01 known as detuning.  

The time evolution is given by Schrodinger equation:  

𝑖ħ
𝜕

𝜕𝑡
|𝛹𝑖𝑛(𝑡)⟩ = �̂�𝑖𝑛𝑡

𝑖𝑛 (𝑡)|𝛹𝑖𝑛(𝑡)⟩ 
(30) 

For an arbitrary state of this system: 

|𝛹𝑖𝑛(𝑡)⟩ = ∑(𝑐1,𝑛(𝑡)|𝑛, 1⟩ + 𝑐0,𝑛(𝑡)|𝑛, 0⟩

𝑛

) 
(31) 

We need to solve for 𝑐1,𝑛(𝑡) and 𝑐0,𝑛(𝑡), given initialize 

condition of the light-atom system. 

The states |𝑛𝑘 + 1,1⟩ and |𝑛𝑘, 0⟩ are coupled, figure 3 

shows the relation between these coupled states. Their 

coupling can be written in terms of differential equation: 

�̇�1,𝑛+1(𝑡) = −𝑖𝑔√𝑛 + 1𝑒𝑖𝛥𝑡𝑐0,𝑛(𝑡) (32) 

�̇�0,𝑛(𝑡) = −𝑖𝑔√𝑛 + 1𝑒−𝑖𝛥𝑡𝑐1,𝑛+1(𝑡) (33) 

 

Figure 3: coupled states in an atom-light system 

Special cases: 

1. Initial conditions: n+1 photons, atom in ground state 

with resonant interaction 𝛥 = 0: 

𝑐1,𝑛+1(0) = 1 (34) 

The solution is: 

𝑐1,𝑛+1(𝑡) = cos(𝑔√𝑛 + 1𝑡) (35) 

𝑐0,𝑛(𝑡) = −𝑖 sin(𝑔√𝑛 + 1𝑡) (36) 

Therefore, the probability for n+1 photons and atom in 

ground state is given as: 

𝑃1,𝑛+1(𝑡) = |𝑐1,𝑛+1(𝑡)|2 =
1

2
(1 + cos(𝛺𝑛𝑡)) 

(37) 

Where 𝛺𝑛 = 2𝑔√𝑛 + 1 called Rabi oscillation 

frequency; the atom oscillates between the ground and 

excited state. It is quantized. 

If the detuning was not zero (𝛥 ≠ 0), the Rabi oscillation 

frequency becomes: 

𝛺𝑛
𝛥 = √𝛥2 + 𝛺𝑛

2 = √𝛥2 + 4𝑔2(𝑛 + 1) 
(38) 

2.  Initial conditions: 0 photons, atom in excited state with 

resonant interaction 𝛥 = 0: 

𝑐0,0(0) = 1 (39) 

Therefore, the probability for 0 photon (vacuum state of 

the radiation field) and atom in excited state is given as: 

𝑃0,0(𝑡) = |𝑐1,𝑛+1(𝑡)|2 =
1

2
(1 + cos(𝛺0𝑡)) 

(40) 

Where 𝛺0 = 2𝑔 called vacuum Rabi oscillation; the 

atom oscillates between the ground and excited state 

continuously in vacuum. 

Figure 4 shows the probability 𝑃0,0(𝑡) f an ideal atom, 

the atom oscillates between the ground and excited states 

every 
2𝜋

𝛺0
. 
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Figure 4: vacuum Rabi oscillations of an ideal two-level 

system 

V. Experimental Realization 

A single mode radiation can be achieved experimentally 

through an optical cavity that can be described as two 

reflecting mirrors. The atom can be trapped inside the 

cavity to achieve light-matter interaction. Figure 5 shows 

schematically a two-level atom trapped inside a cavity 

with modal volume 𝑉0. The cavity can be described by 

three parameters: 𝑔, 𝜅 and 𝛾 that are atom-cavity 

coupling, photon decay rate from the cavity and non-

resonant decay rate 
3

. 

 

Figure 5: atom-light interaction inside an optical cavity 

When the atomic transition frequency coincides with the 

one of the resonant modes of the cavity, the interaction 

between the atom and the radiation field will be strong. 

The resonance condition is achieved by tuning the cavity 

such that the frequency of the cavity mode matches with 

that of the atomic transition. 

The interaction is said to be in the strong coupling regime 

if: 

𝑔 ≫ (𝜅, 𝛾) (41) 

where (𝜅, 𝛾) represents the larger of 𝜅 and 𝛾. The strong 

coupling regime is known as cavity quantum 

electrodynamics (cQED). 

The interaction is said to be in weak coupling regime if: 

𝑔 ≪ (𝜅, 𝛾) (42) 

The cavity photon decay rate 𝜅 is governed by the 

properties of the cavity that determine its quality factor 

𝑄:  

𝜅 = 𝜔/𝑄 (43) 

Thus, high 𝑄 values mean relatively small photon decay 

rate. 

The non-resonant decay rate 𝛾 is determined by several 

factors. The atom could emit a photon of the resonant 

frequency in a direction that does not coincide with cavity 

mode or it could decay to other levels, emitting a photon 

of a different frequency that is not in resonance with the 

cavity or the electron could decay without emission of a 

photon. Both parameters 𝛾 and 𝜅 determines the cavity 

losses. These losses result in measuring damped vacuum 

Rabi oscillations in experiments, unlike figure 4 which 

represents an ideal two-level system. 

In the strong coupling regime, the atom-photon 

interaction is faster than the irreversible process due to 

loss of photons out of the cavity mode, making the 

emission of the photon a reversible process in which the 

photon is re-absorbed by the atom before it is lost from 

the cavity. 

The cavity can be characterized as well by the 

cooperativity parameter; the ratio of coherent coupling o 

incoherent coupling (losses): 

𝐶 =
𝑔2

𝜅𝛾
 

(44) 

 For a strong coupling, 𝐶 should be as large as possible. 

That would allow us to observe, experimentally, decaying 

Rabi oscillations with a decay constant that depends on 

the cavity losses. 

Experimentally, the strong coupling can be achieved by 

designing a cavity with a small modal volume and low 

losses, i.e. cavity with small 𝑉 and high 𝑄 . This was 

demonstrated experimentally in different setups: 

superconducting mirrors for microwaves photons
4

, 

optical Fabry-Perot cavities with cold atoms
5

, on-chip 

microwave resonators with superconducting qubits that 

act as an artificial atom
6

 and quantum dot in a photonic 

crystal cavity 
7

. 

cQED field enabled studying the basic physics pf light-

matter interaction and paved the way to realization of 

qubits (two-level systems) in different physical setups for 

quantum computing applications. In 2012, Serge 

Haroche and David Wineland won Nobel prize for 

physics for their work on controlling quantum system. 

cQED is a thriving field and best is yet to come. 
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