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Abstract

We give an outline of how a gravitational dual of a superconductor can be obtained using holographic
constructions. We show that a gravitational system with an AdS black hole can shed light on the theoretical
understanding of the high Tc superconductivity experimentally observed in many condensed matter systems.
We also introduce the AdS/CFT correspondence as a useful computational tool to study condensed matter
systems with strong couplings.

1 Introduction

The AdS/CFT duality states that certain quantum
field theories known as conformal field theories (CFT)
without gravity in d spacetime dimensions are related
to gravitational systems in d+ 1 spacetime dimensions.
It is also a strong-weak duality – meaning strongly
coupled systems can be described by weakly coupled
“dual” systems using the correspondence. That means
one can perform computations on one side of the
duality that are hard or impossible to do on the other
side. This is great – because in many condensed
matter systems, the coupling constants characterizing
the strengths of various interactions are not small. As
a result, the usual methods of perturbation theory
break down. If such a strongly-coupled system has
a gravitational dual, it is often possible to perform
various calculations on the gravity side. Then knowing
how different quantities are related to each other by the
duality, the behavior of the system under consideration
can be understood. This is precisely the reason why
the AdS/CFT correspondence, even though originally
introduced in the context of string theory [1], has found
numerous applications in condensed matter systems
such as quantum phase transitions, non-fermi liquids,
strange metals, hydrodynamics etc. [2, 3].

One particular application of the AdS/CFT cor-
respondence in condensed matter systems is to
understand the behavior of high TC superconductors.
In this note, we shall construct a gravitational dual of
a superconductor and the high Tc behaviors will follow
naturally from the model. The subject of holographic
superconductors is a vast one and have been studied
extensively over the last decade [4, 5, 6]. We shall make

no attempt to cover the vast details of the subject.
Rather, we shall give a brief overview motivated from
a condensed matter perspective. In particular, we shall
not give the details of the holographic computations, for
which, we refer the reader to the excellent reviews [7, 8].

The organization of this note is as follows. In section
2, we give a lightening review of superconductivity. In
section 3, we introduce the AdS/CFT duality as a com-
putational tool for condensed matter theorists. Finally,
in section 4, we construct the holographic dual of su-
perconductors and explain various features.

2 Superconductivity

In 1911, Onnes found that the resistivity of Mercury
drops to zero when cooled down to 4.2K, marking the
discovery of superconductivity. It was later discovered
that the electrical conductivity of most metals suddenly
drops to zero when their temperature T goes below a
critical value Tc. In 1950, Landau and Ginzburg gave a
second order phase transition description of supercon-
ductivity [9]. The key ingredient of such phase tran-
sition is the presence of an order parameter φ which
takes a non-zero value |φ| 6= 0 when T < Tc and |φ| = 0
when T > Tc marking the superconducting and ordi-
nary phases respectively. The density of superconduct-
ing electrons is given by ns = |φ|2. The free energy in
terms of φ takes the form

F = α(T − Tc)|φ|2 +
β

2
|φ|4 + ... (1)

where α, β are positive constants. When T > Tc, the
minimum value of F is at |φ| = 0 and there is no su-
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perconductivity. However, when T < Tc, the quadratic
term is negative and F is minimized at

|φ|2 =

√
−2α(T − Tc)

β
. (2)

This is the superconducting state.

A more complete theory of superconductivity is
given by the BCS theory [10] where the basic idea
is that electron-phonon interaction can cause two
electrons with opposite spin to bind and form a
composite charged boson known as a Cooper pair.
When T < Tc, a second order phase transition occurs
and the boson condensates creating a superconducting
phase. One characteristic feature of the BCS theory
is the existence of a gap Eg = ωg = 2∆ required to
break a Cooper pair into two free electrons 1. This
gap is related to the critical temperature by ωg ≈ 3.5Tc.

The highest Tc for a BCS superconductor was be-
lieved to be ≈ 30K. However, there exists supercon-
ductors such as cuprates [11] with much higher Tc than
those of BCS superconductors. This high Tc signals
strong electron-phonon coupling hinting towards the ex-
pectation that the high-Tc superconductivity can be de-
scribed by some strongly coupled quantum field theory.
In condensed matter theory, there are not many the-
oretical tools to study strongly coupled theories. As
mentioned before, the AdS/CFT correspondence allow
us to study strongly coupled field theories. In the subse-
quent sections, we shall see that we can construct simple
a gravitational system within the AdS/CFT framework
that can reproduce basic properties of superconductors.

3 AdS/CFT correspondence: a
computational toolkit

Conformal Field theories (CFTs) are a subset of quan-
tum field theories invariant under a set of mathemati-
cal operations known as the conformal transformations.
In particular, it is invariant under scale transformation
meaning that the physics looks the same at all length
scales. CFTs describe second order phase transitions in
statistical mechanics. This is precisely the reason we
are relying on CFTs to describe superconductivity on
the field theory side. On the other hand, Anti - de Sitter
(AdS) spacetime is a spacetime with constant negative
curvature.2 The duality relates different states in the
CFT (referred as “boundary” theory), defined on a d di-
mensional spacetime, to different geometry of the dual
d + 1 dimensional AdS spacetime (referred as “bulk”
theory) as shown schematically in figure [1].

1We work in the natural unit c = ~ = kB = 1
2In contrast to a space with positive curvature e.g. a sphere.

Figure 1: Different states in CFT corresponds to differ-
ent AdS geometry taken from [12]

Since our intention is to describe a superconducting
system where the temperature T 6= 0, the dual grav-
itational system we need to consider must include a
black hole as evident from the right panel in figure 1.
This is not very surprising – as shown by Hawking,
black holes can be considered as thermodynamic
objects with a temperature, T known as the Hawking
temperature, given by T = κ

2π , where κ is the surface
gravity. The CFT temperature is dual to this Hawking
temperature of the black hole. Other quantities in
the bulk and boundary theory related by the duality
that will relevant for our discussion of holographic
superconductors are [13]:

Boundary (CFT) Bulk (AdS)
Scalar operator Ob Scalar field φ

Fermionic operator Of Dirac field ψ
Global current Jµ Maxwell field Aa

As mentioned before, as condensed matter theo-
rists, we shall mostly be interested in using the duality
as a computational tool. In particular, it can be used
to compute various transport coefficients. To make
this point clear, let’s consider the response of a system
where we have an external field A0(x) coupled to an
operator O(x) through the interaction Hamiltonian

Hint = −
∫
dx O(x, t)A0(x, t) (3)

Using the linear response theory one can prove that the
change in expectation value of O(x) due to this coupling
with the external field is given by

δ〈O〉 =

∫
dx′GR(x, x′)A0(x′) (4)

whereGR(x, x′) = −iθ(t−t′)〈[O(x), O(x′)]〉. The trans-
port coefficient χ is defined as:

χ(ω) = − lim
k→0

1

ω
GR(k, ω) (5)

where GR(k, ω) is the fourier transform of GR(x, x′).
When the coupling field is a gauge field Aµ and the
operator O is electric current density J , we identify
the transport coefficient χ to be the dc conductivity σ.
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For strongly-coupled quantum field theories, it is often
very difficult to compute GR directly. However, one
can compute this quantity easily in the weakly-coupled
dual AdS theory using the AdS/CFT correspondence.
See [14] for a review.

4 Holographic Superconductor

In this section we shall construct a gravity theory
that can describe superconductivity in the dual CFT.
To be more precise, we wish to describe a second
order phase transition in AdS spacetime – equivalent
to the Landau-Ginzberg phase transition described
in section 2. Most of the cuprate compounds that
exhibit high-Tc superconductivity are two dimensional
planar materials. Hence, we take our CFT to be 2 + 1
dimensional 3. As a result, the holographic theory is
four dimensional.

As mentioned in the previous section, in order to de-
scribe a thermal system, we must include a black hole
in the gravitational theory. We would like to measure
conductivity using some current density Jµ. So, in the
dual theory we require Maxwell field Aa as shown in
the table. They key ingredient we need to describe a
phase transition is an order parameter in the bulk that
will condense like the Cooper pair below the critical
temperature Tc and will vanish when T > Tc. The sim-
plest kind of holographic superconductor that can be
constructed using the above mentioned ingredients, use
a charged scalar field φ, the dual of which will play the
role of the order parameter in the CFT. The Lagrangian
that includes such an Einstein-Maxwell-Complex scalar
system is given by:

L = R+
6

L2
− 1

4
FµvF

µv − |∇φ− iqAφ|2−m2
∣∣φ2∣∣ (6)

Here R is the Ricci scalar of the curved AdS space, L
is the AdS radius, Fµν = ∂µAν − ∂νAµ is the Maxwell
field strength tensor, Aµ is the gauge field and φ
is a scalar field with charge q. This φ is related to
the order parameter 〈Ob〉 of the CFT characterizing
superconducting phase transition.

The system given by eqn (6) can be solved either
numerically or by making various simplifying assump-
tions such as the “probe limit” [8] . The details of the
calculations can be found in [8]. A numerical result
of the order parameter 〈O1〉 ≡ 〈Ob〉 of the CFT as
a function of T/Tc is given in figure 2. It is clear
when T < Tc, the order parameter is non-zero and we
have the superconducting state. When T = Tc the
order parameter vanishes describing the normal state.
Hence, our holographic model includes the features
of Landau-Ginsburg like second order phase transitions.

3Two spatial dimensions plus time

Figure 2: Numerical result of the CFT order parameter
〈Ob〉 with m2 = −2

L2 taken from [15]

Finally, we plot the low temperature optical

Figure 3: Low temperature limit of optical conductivity
σ(ω) as a function of frequency. The solid lines denotes
the real part <[σ(ω)] and the dashed line denotes the
imaginary part =[σ(ω)]. For the real part, there is a
delta function at ω = 0. The figure is taken from [6]

conductivity σ(ω) calculated using the duality in figure
3. Again, the details of the calculations are omitted
in this note. Note that these is a delta function when
ω = 0 making infinite dc conductivity – as one would
expect for a superconductor. The appearance of this
delta function can be explained using the Drude model
of conductivity. The charge carriers with mass m,
density n and charge e in a normal conductor satisfy

m
dv

dt
= eE − mv

τ
(7)

where τ is the relaxation time due to scattering. Us-
ing J = env and E = E0e

iωt we obtain the following
expression for conductivity:

σ(ω) =
(ne2/m)τ

1− iτω
(8)

Thus,

<[σ(ω)] =
(ne2/m)τ

1 + ω2τ2
, =[σ(ω)] =

(ne2/m)ωτ2

1 + ω2τ2
(9)

For superconductor, the relaxation time τ → ω. This
implies <[σ(ω)] = δ(ω) and =[σ(ω)] = 1/ω as seen in
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the figure.

The AC conductivity <[σ(ω)] vanishes for ω < ωg,
indicating the existence of an energy gap ωg. When the
system is excited with ω > ωg, it can create pairs of
electrons leading to finite conductivity. From figure 3,
we have

ωg
Tc
≈ 8 (10)

Comparing this with the BCS conductor energy-gap
value 3.5, we can see that we are describing high-Tc
superconductors and this value is roughly close to the
experimental measurement [16].This is not a surprise
because the results are derived using a holographic
model. This means that, the strong interactions in the
field theory side are automatically taken into account
as promised by the AdS/CFT duality.

5 Conclusion

In this note, we gave a very introductory exposure to
holographic superconductors. The discussion is far from
being complete and we did not give any details of the
computations. The basic goal was to make the reader
excited about the fact that some computations that are
hard to perform in the condensed matter side can be
done in a gravitational system. Holographic supercon-
ductors are one of the many interesting applications
of the AdS/CFT duality in condensed matter physics.
Few additional features of the model we described can
also be explored (e.g. adding a magnetic field). Even
though we followed the same line of reasoning as the
Landau-Ginzburg phase transition in our discussion,
there are key differences between this and the holo-
graphic phase transitions. To get the details oh those
and also to know about the various open problems in
this field, interested reader should consult the review
papers mentioned in this note.
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