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Frustrated systems are characterized by a large degeneracy of their ground state, which manifests
as an extensive residual entropy at zero temperature. Such degeneracy arises due to the inability
to simultaneously minimize the energy due to competing interactions present within the system. In
the context of frustrated magnetic systems, magnetic moments tend to remain disordered and the
system fails to obtain long-range order down to low temperatures. For the purpose of this report, we
will limit the discussion of frustrated magnetism to a certain class of materials known as “rare-earth
pyrochlores”, which exhibits many interesting behaviours that have been subject to study for the
past few decades. Other classes of frustrated magnets, such as Kitaev magnets, also exist, but will
not be explored for this discussion. We will also briefly discuss the quantum spin liquid phase and
how certain rare-earth pyrochlores serve as potential candidates for being quantum spin liquids.

I. INTRODUCTION

Before embarking on a discussion of frustrated mag-
netic systems, it may be illustrative to show an example
of frustration through a simple model. Consider three
Ising spins lying on the vertices of an equilateral triangle.
If one considers only the nearest-neighbour Ising interac-
tion between all three spins, the system can be described
by the Hamiltonian

H = −J
∑
〈ij〉

σz
i σ

z
j

where σz
i = ±1 describes the Ising spin and J can be

ferromagnetic (J > 0) or anti-ferromagnetic (J < 0).

(a) (b)

FIG. 1: Ising spins with (a) ferromagnetic interactions and
(b) anti-ferromagnetic interactions

When J > 0, the interaction between two spins is
minimized when both spins are aligned and the total
energy becomes minimized when all spins align. When
J < 0, the interaction between two spins is minimized
when both spins are anti-aligned. On a triangular
plaquette (see Fig. 1), two spins may anti-align to
minimize their interaction but the third spin will fail
to simultaneously anti-align with the other two spins,
leading to a frustrated system. If one extends the system
of Ising spins on a triangular plaquette into a system
of spins on a triangular lattice, the degeneracy of the
ground state exponentially increases with the number
of Ising spins N . In this way, frustration leads to an
extensive residual entropy. This idea may then be
generalized to more complicated systems.

II. THEORY

Lattice

For this report, we will focus on a class of frustrated
magnets known as “rare-earth pyrochlores”. Rare-earth
pyrochlores follow the general chemical formula R2M2O7,
where R describes a trivalent rare-earth metal and M de-
scribes a tetravalent transition metal, with either element
serving as the magnetic ion1. Both R and M separately
form corner-sharing networks of tetrahedra (known as the
pyrochlore lattice) that interpenetrate with each other.
The remaining oxygen atoms serve as a crystal field that
surrounds each ion1.

(a) (b)

FIG. 2: (a) Corner-sharing tetrahedra network2 (b) Sur-
rounding oxygen atoms for the R3+ ion2

Hamiltonian

Consider the magnetic ions on the pyrochlore lattice.
For rare-earth pyrochlores, their energy is largely deter-
mined by Coulomb interaction and spin-orbit coupling.
Taking the total angular momentum, J = L + S to be
a good quantum number, following Hund’s rule gives a
2J + 1-degenerate ground-state manifold for each ion1.
This degeneracy is lifted by the crystal field potential due
to the surrounding ions3, which is given by the Hamilto-
nian

Hcf = B20O20(J) +B40O40(J) +B43O43(J)

+B60O60(J) +B63O63(J) +B66O66(J)
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where BKQ are constants found experimentally and
OKQ(J) are Stevens operator equivalents of the total an-
gular momentum operator J (see Appendix A)4. Note
that J is defined with respect to the local axes of each
ion and not to the global axes of the system (see Ap-
pendix B). For most rare-earth pyrochlores, the lifting of
the 2J + 1-degeneracy leads to a ground state doublet,
which will be denoted as |+〉 and |−〉2.

The next important interaction arises as a pair-wise
interaction between the ions. In general, this interaction
arises as a multipolar exchange given by5

Hex =
∑
ij

∑
KQ

∑
K′Q′

MKQ;K′Q′

ij OKQ(Ji)OK′Q′(Jj)

where MKQ;K′Q′

ij are constants and OKQ(J) are mul-
tipole operators of the total angular momentum opera-
tor J. Note that J is now defined with respect to some
global axes. Given the difference in energy scale between
Hex and Hcf, one can find an effective Hamiltonian using
Brillouin-Wigner perturbation theory

Heff = H0 + P0V P0 + P0V
1− P0

E0 −H0
V P0 + . . .

where the unperturbed HamiltonianH0 is taken to be the
crystal-field Hamiltonian Hcf and the perturbation V is
the exchange Hamiltonian Hex. P0 is the projector into
the ground-state manifold spanned by the local ground-
state doublet |±〉 of each magnetic ion.

For most rare-earth pyrochlores (with the exception of
Tb2Ti2O7 and related material6), the lowest-lying dou-
blet is well-separated from higher energy levels. Thus,
the effective model can be taken only to first-order in per-
turbation theory. If one only includes nearest-neighbour
interactions, the effective Hamiltonian becomes

Heff =
∑
〈ij〉

[
JzzS

z
i S

z
j − J±(S+

i S
−
j + h.c.)

+J±±(γijS
+
i S

+
j + h.c.)

+Jz±(ζij [S
z
i S

+
j + S+

i S
z
j ] + h.c.)

]
where Si are pseudo-spin operators defined by

Sz ≡ |+〉〈+| − |−〉〈−|
2

S± ≡ |±〉〈∓|

and γij and ζij are bond-dependent constants. From
this effective model, the models used for different
rare-earth pyrochlores can be obtained by appropriately
setting the coupling constants Jzz, J±, J±±, and Jz±
to experimental data. In general, these interactions
amongst nearest-neighbour pairs will compete and lead
to a frustrated system. Note that these terms are
generated due to first-order perturbation theory. In the
event that the ground-state doublet is not well-separated
from the excited states (as is the case in material such
as Tb2Ti2O7), perturbation theory must be taken to
higher order and further terms may be generated.

III. CLASSICAL SPIN ICE

Let us consider the effective model for Ho2Ti2O7,
which historically was the first example of a rare-
earth pyrochlore to be found7. Along with Dy2Ti2O7,
Ho2Ti2O7 is considered to be a typical example of a clas-
sical spin ice. The local crystal field environment causes
the magnetic Ho3+ (or Dy3+ in the case of Dy2Ti2O7)
ions to strongly align along its local z-axis and allows the
effective Hamiltonian to be approximated by only the Jzz
term7. This alignment causes the magnetic moment of
each ion to point either into or out of the tetrahedra that
they lie on.

FIG. 3: Magnetic moments pointing into or out of corner-
sharing tetrahedra8

Classical spin ice can be mapped directly onto an anti-
ferromagnetic Ising model on a pyrochlore lattice, simi-
lar to one proposed by Anderson in 19569. This model
obtains a residual entropy similar to that of water ice
predicted by Pauling10. Additionally, the ground states
of classical spin ice are found when the magnetic mo-
ments are arranged such that every tetrahedron contains
two moments pointing “in” and two moments pointing
“out” of every tetrahedron7. This condition maps onto
the Bernal-Fowler ice rules that are used to describe pro-
ton disorder in the ground state of water ice11. These
similarities to water ice serve as the etymological basis
behind the name spin ice.

FIG. 4: Quantitative agreement of (a) specific heat and (b)
entropy between experimental data and Monte Carlo simula-
tions of dipolar spin ice for Dy2Ti2O7

12
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Magnetic Monopole-Like Excitations

Consider an excitation of the system out of its ground
state manifold. Such an excitation arises as a flip in
magnetic moments, such that two adjacent tetrahedra no
longer satisfy the “two-in, two-out” constraint required
to obtain the ground state.

FIG. 5: Excitation with a source (blue) and sink (red) of
magnetization M8

These tetrahedra can be viewed as being a “source”
or “sink” of magnetization M, which allows a “mag-
netic charge” ±Q to be assigned to either tetrahedra13.
These charges may diffuse apart by successively flipping
magnetic moments such that the tetrahedra violating the
two-in, two-out constraint become spatially separated14.

FIG. 6: Separation of magnetic charges8

One can calculate an effective interaction
−µ0Q

2/(4πr) that resembles a magnetic Coulomb
interaction between the pair of charges separated by
a distance r15. Given this similarity to the magnetic
monopoles introduced by Dirac in his modification of
Maxwell’s equations16, these magnetic charges have
been termed monopoles. Note that these monopoles are
not true magnetic monopoles given that these charges
act as sources and sinks for M. The Maxwell equation
∇ ·B = 0 is still satisfied within the material.

IV. QUANTUM SPIN ICE

In general, rare-earth pyrochlores need not be strictly
Ising-like and may include non-negligible contributions
from all four terms in the effective Hamiltonian. The
ground state of the effective model can achieve a variety
of phases as one explores the parameter space.

FIG. 7: Phase diagram for the effective model with Jzz > 0
given different coupling constant values. Note the spin ice
(SI) phase, which entails the ground state of classical spin ice
described in the previous section2. Other phases listed include
the Palmer-Chalker (PC) phase and the splayed ferromagnet
(SFM) phase.

In the interest of brevity for this report, we will avoid
discussing many of the possible examples of rare-earth
pyrochlores that can fall into the different phase classifi-
cations. Instead, we will concentrate on a select number
of rare-earth pyrochlores which serve as candidates for
obtaining a quantum spin liquid phase.

Quantum Spin Liquid Phase

A proper derivation of the quantum spin liquid phase
will lie beyond the scope of this report. As such, only the
general ideas and properties of the quantum spin liquid
phase will be described here.

In 1973, Anderson proposed an alternative ground
state to the anti-ferromagnetic Néel state for the anti-
ferromagnetic Heisenberg model on the triangular lattice
for spin-1

2 particles. This alternative ground state was
the resonating valence bond (RVB) state and is the first
example of a quantum spin liquid. Such a state is com-
posed of superpositions of singlet states that span the
entire lattice17. The idea of quantum spin liquids later
gathered much scientific interest when Anderson hypoth-
esized that the high-temperature superconducting prop-
erties of La2Cu2O4 may be attributable to it being in an
RVB state18. In the context of rare-earth pyrochlores,
much scientific research is going into experimentally re-
alizing such a phase in a pyrochlore material.

The quantum spin liquid phase is described by a col-
lective paramagnetic state that avoids all spontaneous
symmetry-breaking down to zero temperature, in con-
trast to other ordered states that can be characterized
with a local order parameter19. Note the quantum spin
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liquid phase differs from the typical spin liquid phase ob-
tained in classical spin ice. In classical spin ice, classical
fluctuations freeze out once the energy kBT becomes suf-
ficiently small. In a quantum spin liquid phase, spins are
still free to fluctuate due to the zero-point motion asso-
ciated with quantum fluctuations20. In terms of prop-
erties, quantum spin liquids obtain fractionalized excita-
tions that have photon-like dispersion and the spin de-
grees of freedom encounter significant correlations and
long-range quantum entanglement21.

Candidates

Identifying a quantum spin liquid phase becomes
difficult experimentally due to the lack of a tell-tale
marker typical to ordered states. This is tantamount
to confirming no magnetic ordering occurs down to zero
temperature22 . Operationally, one can confirm this
through thermodynamic measurements and probing with
nuclear magnetic resonance or muon-spin resonance20.
This lack of magnetic ordering has led to many rare-
earth pyrochlores being proposed as a candidate for the
quantum spin liquid phase.

Tb2Ti2O7

Tb2Ti2O7 is found to remain paramagnetic down to
70 mK23 and obtains significant spin correlations down
to low temperatures24, which is signature of a quantum
spin liquid phase. Thus, Tb2Ti2O7 was one of the first
proposed candidates of a rare-earth pyrochlore to host
a quantum spin liquid phase. However, attempts to
understand its ground state using the effective Hamil-
tonian have been unsuccessful. One issue arises due
to the low-lying first excited doublet after the 2J + 1-
degenerate ground-state manifold has been lifted by the
crystal field6. As previously mentioned, the effective
Hamiltonian was taken only to first order in perturba-
tion theory due to the clear separation in energy between
the ground state and higher excited states. In the case
where the ground state and higher excited states are of
comparable magnitude in energy, higher order terms in
the perturbation theory can no longer be ignored. These
higher order terms generate effective three-body pseu-
dospin terms that can affect the description of the ground
state in Tb2Ti2O7

25.

Pr2Zr2O7

Pr2Zr2O7 is another candidate for a quantum spin liq-
uid, with no indication of long-range ordering down to 20
mK26. Likewise, thermal conductivity is found to sud-
denly increase going below 200 mK, which is interpreted
to be sign of a quantum spin liquid ground state27. How-
ever, inelastic neutron scattering reveals a broad mag-

netic Bragg peak at [200], indicating a slight structural
disorder to the pyrochlore lattice in the material28. This
structural disorder acts as a random transverse field on
the magnetic ions and requires a modification of the effec-
tive Hamiltonian that is used to describe other rare-earth
pyrochlores28.

V. CONCLUSION

Rare-earth pyrochlores are a class of frustrated mag-
nets that have been studied for the past couple of
decades. Most rare-earth pyrochlores are successfully
described by an effective model that can be tuned to
match experimental data. This model itself has a rich
phase diagram that can exhibit many interesting prop-
erties, such as order by disorder in Er2Ti2O7

29 or multi-
phase competition in Yb2Ti2O7

30. One such phase is the
quantum spin liquid phase, with active areas of research
trying to experimentally realize this phase in rare-earth
pyrochlores.

Appendix A: Stevens Operator Equivalents

The Stevens operator equivalents Olm(J) in the crystal
field Hamiltonian Hcf are given by31

O20(J) = 3J2
z −X

O40(J) = 35J4
z − (30X − 25)J2

z + 3X2 − 6X

O43(J) =
1

4
[(J3

+ + J3
−)Jz + Jz(J3

+ + J3
−)]

O60(J) = 231J6
z − (315X − 735)J4

z + (105X2 − 525X + 294)J2
z

− 5X3 + 40X2 − 60X

O63(J) =
1

4
[(J3

+ + J3
−)(11J3

z − (3X + 59)Jz)

+ (11J3
z − (3X + 59)Jz)(J3

+ + J3
−)]

O66(J) =
1

2
(J6

+ + J6
−)

where J± = Jx±iJy andX = J(J+1) are the eigenvalues
of J2. In general, the Stevens operators are related to the
tesseral harmonics through the replacement of its posi-
tion variables by the symmetrized operator equivalent in
total angular momentum operators. More technical de-
tails in obtaining the operator equivalents are contained
in the original paper by Stevens4.

In the case of rare-earth pyrochlores, the atoms crys-
tallize in a Fd3̄m space group. In order to respect the
D3d point symmetry of the magnetic ion, the crystal
field Hamiltonian must be composed of Stevens opera-
tor equivalents that respect the same symmetry. The
Stevens operator equivalents listed above are the only
ones allowed by symmetry1.
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Appendix B: Local Axes

Consider the orientation of oxygen atoms around the
magnetic ions (see Fig. 2b). Relative to the line connect-
ing the magnetic ion to the centre of the tetrahedron, the
surrounding oxygen atoms will be oriented in the same
manner for all magnetic ions. However, this line does
not uniformly point along some global axis for each ion.
Therefore, a crystal field Hamiltonian written in terms
of global total angular momentum operators J̃ will vary
depending on the ion being described.

One can instead define a crystal field Hamiltonian
in terms of local total angular momentum operators J,
where the momentum operators are defined relative to
the line connecting the centre of the tetrahedron to each
corresponding magnetic ion. Such a Hamiltonian will
now be the same for all magnetic ions on the pyrochlore
lattice. Thus, it becomes convenient to define a set of
local axes for each ion.

Given that there are only four possible directions for
this line (corresponding with the centre of the tetrahe-
dron point to any one of the four corners of the tetra-
hedron), only four set of local axes need to be de-
fined. Many possible conventions exist in the literature32,
though for the purpose of this report, we will use the con-
ventions defined by Ross et al33. For atoms located at

the four corners given by position vectors

r1 =
a

8
(1, 1, 1)

r2 =
a

8
(1,−1,−1)

r3 =
a

8
(−1, 1,−1)

r4 =
a

8
(−1,−1, 1)

where a is some lattice constant, the corresponding local
axes are

ẑ1 =
1√
3

(1, 1, 1), x̂1 =
1√
6

(−2, 1, 1)

ẑ2 =
1√
3

(1,−1,−1), x̂1 =
1√
6

(−2,−1,−1)

ẑ3 =
1√
3

(−1, 1,−1), x̂1 =
1√
6

(2, 1,−1)

ẑ4 =
1√
3

(−1,−1, 1), x̂1 =
1√
6

(2,−1, 1)

with ŷi = ẑi× x̂i. Note that the ground state doublet |±〉
will be written in the basis of the projection of J on the
local ẑ-axis of each ion, rather than some global ẑ-axis.

Appendix C: Example Calculation

In order to highlight some of the more technical details in obtaining an effective Hamiltonian, an example calculation
will be performed in this section. Let us consider an interaction, where after being rewritten in terms of the local
bases given in Appendix B, yields a Heisenberg-like exchange between two atoms, labeled with site index 1 and 2.

Hex = J1 · J2

=
1

2
(J+,1J−,2 + J−,1J+,2) + Jz,1Jz,2

The ground-state manifold of both atoms is spanned by the states

|ψ0,1〉 = |+〉1 ⊗ |+〉2
|ψ0,2〉 = |+〉1 ⊗ |−〉2
|ψ0,3〉 = |−〉1 ⊗ |+〉2
|ψ0,4〉 = |−〉1 ⊗ |−〉2

Thus, the projector into the ground-state manifold of both atoms is given by

P0 = |ψ0,1〉〈ψ0,1|+ |ψ0,2〉〈ψ0,2|+ |ψ0,3〉〈ψ0,3|+ |ψ0,4〉〈ψ0,4|

The first-order term P0HexP0 in the perturbation theory will lead to the generation of many different terms. Let us
consider the calculation of one such term.
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P0HexP0 = . . .+ |ψ0,2〉〈ψ0,2|
1

2
J+,1J−,2 |ψ0,3〉〈ψ0,3|+ . . .

= . . .+

(
1

2
|+〉1 1 〈+|J+,1 |−〉1 1 〈−|

)
⊗
(

1

2
|−〉2 2 〈−|J−,2 |+〉2 2 〈+|

)
+ . . .

= . . .+

(
1

4
〈+|J+,1|−〉1 1 〈−|J−,2|+〉2 2

)
|+〉1 〈−|1︸ ︷︷ ︸

S+
1

⊗ |−〉2 〈+|2︸ ︷︷ ︸
S−2

+ . . .

= . . .+

(
1

4
〈+|J+,1|−〉1 1 〈−|J−,2|+〉2 2

)
S+

1 S
−
2 + . . .

The matrix elements present before the pseudospin terms will generate a numerical prefactor that depends on the
details of the ground-state doublet |±〉 and the local total angular momentum operator J. After performing a similar
calculation for all of the generated terms due to the first-order term and collecting similar pseudospin terms, one will
find that the first-order term will obtain the form given earlier for the effective Hamiltonian

P0HexP0 = JzzS
z
1S

z
2 − J±(S+

1 S
−
2 + h.c.) + J±±(γ12S

+
1 S

+
2 + h.c.) + Jz±(ζ12[Sz

1S
+
2 + S+

1 S
z
2 ] + h.c.)

Note that the calculation above was performed for a single interaction between one pair of atoms. In the context of
rare-earth pyrochlores, the above procedure must be performed for all possible nearest-neighbour interactions.
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