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Topological materials have garnered much attention for their gapless surface states, which are

robust against perturbations like disorder, thermal fluctuations and crystal defects. These properties

make them attractive for future quantum devices, especially those that require storing information

with high fidelity or carrying current with minimal loss. We can think of these surface states as

mediating the transition between the nontrivial topology of the crystal interior, and the trivial

topology of the surrounding vacuum. It turns out that some crystal defects also provide an interface

on which these “topologically protected” gapless states can form. A particularly interesting example

is dislocations, a 1D defect characterized by an abrupt change in crystal structure across a straight

line. This report will explore the phenomenon of dislocations in topological insulators, with special

focus on how gapless states bound to dislocation lines can be used to determine the material’s

topological phase. These ideas open the door to characterizing topological materials by probing

properties of the bulk, rather than the boundary.

I. PRELIMINARIES

A. Topological insulators and their surface states

A universal feature of topological materials is the

bulk-boundary correspondence, whereby the nontriv-

ial topology of the bulk gives rise to electronic surface

states localized to the edges of the material [1, 2]. A

common mechanism of generating a band structure with

nontrivial topology is called band inversion, which is il-

lustrated in Figure 1. In a strong topological insulator

(TI), the bulk band-structure is gapped, but the bands

have an odd number of inversions relative to a trivial in-

sulating state. The signature of this topological phase

is electronic surface states which reside within the band

gap, and which connect the filled valence band to the

empty conduction band. These d − 1 dimensional sur-

face states are therefore conducting, even though the d

dimensional interior is insulating.

An intersecting pair of surface states is is called a

Dirac cone, since the bands disperse linearly in the vicin-

ity of the crossing point and therefore can be described

by a relativistic Dirac Hamiltonian (see e.g. [3]).

HD =

3∑
a=1

kaγa +mγ4 (1)

Where k is the momentum very close to the crossing

point, and the γa are the 4-by-4 gamma matrices, which

typically act in a Hilbert space of 2 orbitals and 2 spins,

and m is the mass of the relevant quasiparticle.

The topological phase of a 3D TI is described by four

Z2 invariants (ν0; ν1, ν2, ν3) which take a value of either

0 or 1 [4].

Strong TIs (ν0 = 1) have very robust surface states

protected by time reversal symmetry (TRS) and the

FIG. 1. Schematic of the evolving topology of a band struc-

ture through a series of band inversions. Each panel repre-

sents a distinct topological phase which cannot be smoothly

deformed into the other two.

bulk band gap. This protection means that we can vary

the Hamiltonian parameters, and even add new terms,

but the surface states will remain gapless and present

at the same k-point as long as TRS is not broken, and

the gap between valence and conduction bands never

closes in the process. On the other hand, if we vary the

parameters in a way that closes and reopens the bulk

gap while respecting TRS, then we may enter a distinct

topological phase.

The set of topological phases in 3D TIs is spanned

by the three “weak invariants” ν1, ν2, ν3. We can use

these to construct a 3D vector which will be useful in

characterizing dislocations:

Mν ≡
1

2
(ν1G1 + ν2G2 + ν3G3) (2)

where the Gi are reciprocal lattice vectors in momentum

space. Weak TIs (ν0 = 0 but Mν 6= 0) will only exhibit

boundary states on surfaces that are not orthogonal to

Mν [5]. For details on calculation of the Z2 invariants,

we refer the reader to early papers by Fu and Kane [4, 6],
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FIG. 2. Schematic of a square 3D lattice with edge (left) and

screw (right) dislocation. The grey loop ABCD can be used

to determine the Burgers vector as follows: On the defect-

free lattice, draw the directed loop such that it encloses the

dislocation and defines a plane perpendicular to L. Then,

distort the lattice by displacing all atoms in one quadrant

(in this case, the upper right) by one lattice vector a with

either a ⊥ L (edge) or a ‖ L (screw). The Burger’s vector is

exactly the extra portion of the loop which was not present

before the distortion.

or to relevant textbooks and reviews [1, 2].

B. Dislocations

Dislocations are line defects which often form during

crystal growth. The two main varieties are edge and

screw dislocations. The former occur when a plane of

atoms terminates in the middle of the crystal, such that

the layers on either side must grow around it; the latter

will be discussed in Section II A. We define dislocations

mathematically by two vectors:

1. Tangent vector L, which points along the disloca-

tion line.

2. Burgers vector b, which describes the distortion

of the lattice around the dislocation. It must be a

lattice vector.

We can determine the Burgers vector using the con-

struction illustrated in Figure 2. The crystal ordering

is only disrupted very close to the dislocation line, and

the regular lattice is restored at large radial distances.

Does this mean that dislocations only affect electron

behaviour locally?

To answer this, consider the directed loop ABCD

drawn in Figure 2. Whether we make the loop smaller

or extend it to infinity, we will always find the same

Burgers vector. The fact that the Burgers vector, which

defines the dislocation, is invariant with respect to de-

formations of the loop is what makes dislocations “topo-

logical defects” [7].

In contrast, other types of crystal defects such as va-

cancies or replacements are purely local. They distort

the lattice only in a small range and cannot be detected

from far away. We don’t expect local defects to impact

the long-range behaviour of electrons. However, the fact

that a dislocation can be detected nonlocally suggests

that they may have an impact on global electron be-

haviour.

II. DISLOCATIONS AS A PROBE OF

TOPOLOGY

Ran et al. showed in reference [8] that there is a deep,

yet simple, connection between the weak Z2 topological

invariants and the existence of gapless states on crystal

dislocations. Namely if the dot product b ·Mν is an

odd multiple of π, i.e.

b ·Mν = π(mod 2π) (3)

then the dislocation hosts 1D gapless edge modes pro-

tected by TRS and the bulk band gap. Because the sys-

tem obeys TRS, these dislocation modes must appear

as pairs with opposite spins propagating in opposite di-

rections, and thus resemble the chiral edge states of a

2D Quantum Spin Hall (QSH) insulator [9, 10].

We can see immediately how the dislocation could

help us to distinguish different phases. First of all, if

ν1 = ν2 = ν3 = 0 then we will not find dislocation

modes for any b. However, if any of the weak indices

are non-zero, then we may be able to satisfy the con-

dition for some magnitude and direction of b, but not

for others. Experimentally, we could detect dislocation

modes by measuring the density of states (DOS) at the

surface of the material (e.g. using scanning tunnelling

microscopy). The signature of the modes is a peak in

the DOS at the point where the dislocation line reaches

the surface. A simulated measurement of this character

is shown in Figure 5 c.

To better understand the physical origins of Equation

3, we will analyze an example of a tight-binding model

with a screw dislocation in Section II A. In Section II B,

we review other approaches to dislocations in TIs to

elucidate the rich range of related phenomena.

A. Screw dislocation in a distorted

diamond-lattice

This section follows the derivation of Ran et al. [8] to

demonstrate that a screw dislocation in a tight-binding

(TB) model of a TI indeed has edge modes that prop-

agate along the dislocation line, but only if Equation 3

is satisfied.

2
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FIG. 3. Diagram of the diamond lattice with cubic unit cell

of size 2a. ai are the three lattice vectors when the unit cell

is defined with a two atom basis (yellow and grey spheres).

a3 is the direction of the dislocation in Section II A.

We begin with a TB model of a diamond lattice with

nearest-neighbour (n.n.) hopping and spin-orbit cou-

pling (SOC).

H = t
∑
〈ij〉

c†iσcjσ + i
λSO
(2a)2

∑
〈〈ij〉〉

c†iσ
(
d1
ij × d2

ij

)
· σσσ′cjσ′

(4)

where ciσ is the annihilation operator for an electron

with spin σ at site i, t is the hopping amplitude, λSO is

the SOC amplitude, d1
ij ,d

2
ij are vectors tracing the two

n.n. bonds between i and the next-to-nearest neighbour

site j, σ is a vector containing the three Pauli matri-

ces (with σσσ′ denoting a particular component), and

finally 2a is the cubic unit cell size.

This model as written is a trivial insulator, but if we

distort the lattice so that t→ t+ δt along the a
2 (1, 1, 1)

direction, then the system becomes a strong TI for δt >

0, and a weak TI for δt < 0 with Mν = π
2a (1, 1, 1) [4].

We now insert a screw dislocation along the a3 =

a(1, 1, 0) direction (See Figure 3). To do so, we cut all

bonds intersecting the “slip plane” P , pictured in Figure

4, which is orthogonal to (1,−1,−1) and terminates at

the dislocation. We then shift all atoms above P by the

length of the Burgers vector b = a3. We can model the

“slip” across the dislocation by adding a phase to the

hopping parameter t→ teik k̂·b for all bonds intersecting

P .

If momentarily we set the hopping across this plane

to zero, then we have two decoupled surfaces denoted

S+ and S−. Since the 3D material is a TI, we know that

each surface hosts an odd number of Dirac cones. For

this model on the (1,-1,-1) surface, there is a single Dirac

cone at surface momentum mD = π
2a (1, 1, 0). This al-

lows us to write an effective Hamiltonian ±H0 similar

to Equation 1 for the surfaces S±, since the Dirac cones

will dominate the low-energy physics:

H0(p) = ν1p1n̂1 · σ + ν2p2n̂2 · σ (5)

where the pi are surface momenta measured from the

Dirac point mD. n̂1 and n̂2 are orthogonal unit vectors

FIG. 4. Diamond lattice with slip plane P terminating at

the dislocation. Bonds intersecting P are cut, then shifted

along the dislocation by Burgers vector b to form a screw

dislocation. The x2 axis is orthogonal to the dislocation line,

which is located at x2 = 0. Figure adapted from [8].

defining P , where p1n̂1 is the momentum along the dis-

location line. The ν1, ν2 are the usual weak topological

invariants.

Now let’s add an effective coupling m between the two

surfaces. We introduce the Pauli matrices τi which act

in the Hilbert space of the S± surface states, and take

tensor products with H0(p). The effective Hamiltonian

becomes:

Heff = H0(p)⊗ τz +m(12×2 ⊗ τx) (6)

where the coupling m opens a gap, making it topologi-

cally equivalent to the bulk insulator. The Dirac quasi-

particles on S± pick up a phase difference as they hop

across the slip plane, such that m → eiφm. Since the

Dirac node is at mD, the phase is:

φ = mD · b = π (7)

Using the coordinates defined in Figure 4, we write

the effective Hamiltonian with dislocation as (with ten-

sor product symbols dropped for brevity):

Hdis = H0(−i~∇)τz +

{
mτx x2 < 0

−mτx x2 > 0
(8)

Where we have set p → −i~∇ due to the disruption of

translational invariance in the p2 direction. p1 is still a

good quantum number since it is along the dislocation.

It is crucial that b · mD is not an integer multiple

of 2π, which would result in a trivial phase. Instead,

the phase causes a change in the effective Hamiltonian

when we cross from the “unslipped” region (x2 < 0) to

the “slipped” region (x2 > 0) after the dislocation.

The final step is to show that this Hamiltonian ad-

mits gapless states, and that they are localized to the

3
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dislocation line at x2 = 0. This is simplest to solve by

setting p1 = 0, such that:

Hdis(p1 = 0) = ν2n̂2 · στz(−i~∂x2) +m2(x2)τx (9)

As shown by Jackiw and Rossi, this type of Hamiltonian

has a pair of zero-energy solutions given by:

ψ(x2) = e
1

~ν2

∫ x2
0 dx2m(x2)ψ0 (10)

where ψ0 is an eigenstate of τyn̂2 · σ [11].

Thanks to the nontrivial phase difference eimD·b =

−1, the solution is a decaying exponential on both sides

of x2 = 0. From this we can conclude that the state is

localized to the dislocation line.

The numerical results in Figure 5 confirm that the dis-

location modes have a linear dispersion about the Dirac

point in k-space, and that they connect the gapped va-

lence and conduction bands. Therefore they satisfy the

qualities we expect for the surface states of a 2D TI

arising due to the bulk-boundary correspondence.

As a closing remark for this section, we connect the

results back to the general existence condition in Equa-

tion 3. Recall that Mν = π
2a (1, 1, 1). Since the Burgers

vector had no z-component, it is clear that:

b ·Mν = b ·mD = π (11)

which shows that our our effective Hamiltonian ap-

proach was consistent with the general condition’s pre-

diction.

B. Other approaches to dislocations in TIs

Equation 3 provides an elegant and fully general ex-

istence condition for dislocation modes in TIs, but it

does not teach us much about the physics of these dis-

locations. Here we review a few different approaches

to modelling dislocations which provide alternative per-

spectives on why these dislocation modes arise.

1. Stress tensor approach to the lattice distortion

So far we have described TIs whose robust surface

states are protected by TRS alone. However, there exist

other classes of TIs whose surface states are protected

instead by crystal symmetries, i.e. they are protected

by the geometry of the lattice itself. When a topologi-

cal phase requires the combination of TRS and crystal

symmetries to protect the surface states, the Dirac cones

appear at edges of the Brillouin zone (BZ) and the phase

is called “translationally-active” [12].

Slager et al. show that dislocations distinguish the

translationally active phase from the stronger “Γ phase”

FIG. 5. Numerical simulation of a screw dislocation in

the diamond-lattice strong topological insulator. The Burg-

ers vector b is parallel to the lattice direction a3 and

points along the dislocation line. Panel a shows the en-

ergy spectrum with two pairs of counterpropagating gapless

1D modes, one for each disloaction, which disperse linearly

around the crossing and connect the valence bands to the

conduction bands. k is the momentum along the disloca-

tion. Panel c shows the simulated density of states at the

surface, with two clear peaks corresponding to the (x, y) po-

sition of each dislocation.

(protected only by TRS) in 2D, as dislocation modes ap-

pear only in the former phase [13]. They approach the

problem using “elastic continuum theory” to describe

the lattice distortions generated by the dislocation. This

strategy relies on the fact that local crystal order is only

disrupted very close to the dislocation. We can thus ap-

proximate the microscopic region around the dislocation

line as a continuum, and use tensors to describe the dis-

tortion field of the crystal in this region.

Like the previous section, we can assume that the low

energy physics is dominated by the surface Dirac cones,

and consider only momenta in a small radius around the

Dirac point Kinv
1. The momentum is modified by the

presence of the dislocation as follows:

ki = (ei + εi) · (Kinv − q) (12)

where ei are the Cartesian coordinate unit vectors and

εi is the distortion field of the dislocation. We can thus

1 We label it with the subscript inv for inversion, because a band

inversion occurs at the Dirac point.

4
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FIG. 6. Vector field representing the effective gauge field

in Equation 13. The red point represents the dislocation

centre.

treat the dislocation as inducing a gauge field Ai = εi,

such that q → q + A. For an edge dislocation in 2D,

the gauge field is:

A2D =
−yex + xey

2r2
(13)

which circulates counter-clockwise around the disloca-

tion at r = 0, and decays quickly away from it (See

Figure 6). This gauge field is analogous to the vector

potential of an infinite solenoid localized at the disloca-

tion center. Thus we can think of the dislocation as cre-

ating a magnetic defect called a π-flux within the lattice.

The existence of this π-flux has two main implications:

1) electrons travelling in a circle around the dislocation

will acquire a phase, just like to the Aharonov-Bohm

effect and 2) that the dislocation can host zero-energy

bound states [14].

In 3D the effective gauge field of the dislocation (both

edge and screw) is similar, but modified by a flux Φ =

Kinv · b

A3D =
−yex + xey

2πr2
Φ (14)

where Kinv must be in the plane perpendicular to the

dislocation direction L, i.e. a Dirac cone exists in this

plane. The dislocation can only host bound states pro-

vided that Φ = Kinv · b = π(mod2π) [15]. So we have

once again arrived at Equation 3, but by a very different

route!

2. Topological invariants for defects

Another approach to characterizing dislocation

modes is inspired by the 10-fold way, an exhaustive clas-

sification scheme for topological insulators and super-

conductors [16, 17]. The 10-fold way tells us what kind

of topological invariant (Z2, Z or the strictly trivial 0)

can be used for a Hamiltonian of a certain symmetry

class, depending on the presence or absence of TR and

particle-hole symmetry, as well as their combination:

chiral-symmetry.

Teo and Kane develop a similar classification scheme

for topological line and point defects [18]. They define

a parameter δ = d − D, where d is the dimension of

the system and D is the dimension of a surface enclos-

ing the defect. Based only on the symmetry class and

δ, they can define a single topological invariant which

will predict whether or not the topological defect will

host gapless modes. They can also predict what kind

of boundary mode will be present (e.g. Chiral Dirac

fermion, chiral Majorana fermion, etc.). For line dislo-

cations in a TI, they compute the Z2 topological defect

invariant, and find that is only non-trivial when Equa-

tion 3 is also satisfied.

III. DISCUSSION

Our survey of approaches to dislocations in TIs shows

above all that the existence condition derived by Ran

et al. is incredibly general. No matter the physical

starting point, one can always re-derive Equation 3.

While studying this condition, we have seen that dis-

locations in TIs may be useful in experimental settings

for diagnosing the topological phase of a material. Prob-

ing the bulk topological phase using dislocations is espe-

cially practical for weak TIs and topological crystalline

insulators, where the surface states can be sensitive to

disorder or to the direction that the surface is cleaved

in [19]; and for higher order topological insulators (HO-

TIs), where the low dimensionality of the boundary

states makes them difficult to detect [20].

More excitingly, dislocation modes may be good can-

didates for engineering quantum wires. The counter-

propagating modes experience minimal backscattering

due to their topological properties, leading to very effi-

cient electrical transport.

A great obstacle to studying dislocation modes is the

difficulty of controlling the density and direction of dis-

locations in a real crystal. This challenge stalled exper-

imental realizations of Ran et al.’s theoretical proposal,

but a recent paper suggests that the problems may be

solvable. Using a rather crude method called plastic

deformation to generate dislocations, Hamasaki et al.

found that Bi-Sb crystals exhibited excess conductiv-

ity consistent with conduction through 1D dislocation

modes [21]. If precise control on dislocation formation

can be achieved, these structures could become a key-

stepping stone towards novel quantum devices, includ-

ing those necessary for topological quantum computing

[22].
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