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In this paper, we introduce anyons, particles that pick up a non-trivial phase under exchange.
We start by considering the topological conditions that allow anyons to be created and construct
the braid group, which defines anyonic exchange statistics. We proceed to discuss abelian and non-
abelian exchange representations and review cyons, fibonacci anyons, and Ising anyons as illustrative
examples. Finally, we briefly examine solved condensed matter models in which anyons are produced
and review the exchange statistics of these systems.

I. ANYON EXCHANGE STATISTICS

A. Two Particle Exchange

Consider a system of two, indistinguishable particles
with hard-core repulsion at the positions r1, r2 ∈ Rn in
the center of mass frame. Suppose that the system is
described by the wave function ψ(r1, r2). The relative
configurations of these particles in space can be catego-
rized by the vector v = r1 − r2, where v 6= 0 due to the
hard-core repulsion. In addition, because the particles are
indistinguishable, the configurations defined by v and −v
are the same. Thus, we make the identification v ∼ −v,
which is equivalent to taking the quotient of the space
by Z2. Then, we see that the configuration space is
(Rn \ {0}) /Z2 =

(
Sn−1 × R

)
/Z2 = Pn−1 × R+ [1]

Now, suppose that we exchange the two particles – that
is we arbitrarily adiabatically transport each particle to
the position of the other particle. The configuration
vector v continuously transforms into the associated vec-
tor −v, and, in the process, traces out a closed loop γ
in configuration space. The trajectories taken by the
particles are arbitrary continuous paths, so the exchange
defined by γ is equivalent to any exchange defined by a
loop that can be continuously deformed into γ. Thus,
particle exchange has the same structure as the homotopy
classes of loops in X, which is the fundamental group
π1(Pn−1 × R+) = π1(Pn−1)× π1(R+) = π1(Pn−1) [1].

In three spatial dimensions, the configuration space is P2 ×
R+, which has the fundamental group Z2. Then, because
γ2 = 1 for each γ ∈ Z2, we see that exchanging the two
particles twice leaves the system invariant. Then, the phase
θ accumulated by the wave-function under exchange must
satisfy [2]:

ψ(r1, r2)e
2iθ = ψ(r1, r2) (1)

This imposes the condition that θ = 0, π, which are the
bosonic and and fermionic exchange statistics respectively.

In two spatial dimensions, however, the configuration space
is P1 × R+, which has the fundamental group Z. Then, we
see that exchanging the particles twice in succession does
not necessarily restore the system to its original state, and
there is no constraint on the phase θ accumulated by the
wave-function upon particle exchange. We say that particles
that accumulate a factor of θ obey this exchange rule
follow θ-statistics. Bosons obey 0-statistics, fermions obey
π-statistics, and we refer to particles obeying θ-statistics for
θ 6= 0, π as anyons [2].

One important consequence is that it is not generally true
that eiθ = e−iθ. We must then distinguish between “coun-
terclockwise” exchanges and “clockwise” exchanges, which
correspond to the accumulated phases θ and −θ respectively.

B. The Braid Group

Consider a system of n particles that follow θ-statistics
with the positions r1, ..., rn ∈ R2 in the center of mass
frame, described by the wave function ψ(r1, ..., rn). Suppose
now that we perform some arbitrary exchange of these
particles such that the particles have the final positions
rP (1), ..., rP (n), where P is some permutation of n particles.
We can perform this exchange through the composition
of exchanges of numerically adjacent particles, each of
which may be a clockwise exchange or a counterclockwise
exchange. In light of this, we define σi and σ−1

i for
1 ≤ i ≤ n − 1 to be the counterclockwise and clockwise
exchanges respectively of the ith and (i + 1)th particle.
Notice that a clockwise exchange of two particles undoes
the effect of a counterclockwise exchange, so they are indeed
inverses [2].

The exchange of two disjoint pairs of particle should not af-
fect one another, so the order in which those exchanges occur
does not matter. This adds the constraint that σiσj = σjσi
for |i− j| ≥ 2. We also add the mathematically imposed
Yang Baxter constraint, that σiσi+1σi = σi+1σiσi+1, which
is necessary for a valid commutator structure [3].

Using our construction of the σi, we see that exchange
in a system of n-particles with θ-statistics has the same
structure as the group generated by σ1, .., σn. This group
is known as the Braid group Bn. It is not generally true
that σ2

i = 1 for each of the σi, which means that the braid
group Bn is an infinite group. Notice that if we repeat this
construction in three dimensions, we obtain the same result
with the additional topological constraint that σ2

i = 1.
We recognize this as being the symmetric group Sn, which
agrees with our understanding that particle exchange in
three dimensions is equivalent to permuting the particles
[3].

To understand how the braid statistics impact the quan-
tum mechanical behavior of an anyonic system, we must de-
termine the action of the braid group on the Hilbert space
H. This requires us to determine a unitary representation
π : Bn −→ U(H), where U(H) denotes the space of unitary
operators acting on the Hilbert space.

II. ABELIAN ANYONS

A. The One-Dimensional Representation of the Braid
Group

Perhaps the simplest non-trivial representation of the braid
group Bn is the one-dimensional representation:

π(σk) = eiθ (2)

It is easy to see that this representation is a unitary
homomorphism that has all of the properties required of
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the generators. Furthermore, the π(σk) mutually commute,
which tells us that the resultant statistics are abelian.
Anyons described by these statistics are called abelion
anyons.

We can write an arbitrary exchange of particles (r1, ..., rn) 7→
(rP (1), ..., rP (n)) as some element b ∈ Bn. Writing this in
terms of the generators, we have:

b =

n∏
k=1

σmk

k (3)

for m1, ...,mn ∈ Z. Applying the the representation π:

π(b) = ei(m1+···+mn)θ (4)

The exchanged wave-function is given by applying the oper-
ator π(b) to the wave function, so we have:

ψ(rP (1), ..., rP (n)) = ei(m1+···+mn)θψ(r1, ..., rn) (5)

Notice that m1 + · · ·mn is an effective degree of the
exchange; each mk is the number of counter-clockwise
exchanges of the k and k+ 1 minus the number of clockwise
exchanges of these particles required to go from the initial
state to the final state.

Next, consider a system of two particles, each of which are
composite bound states of n abelian anyons that obey θ-
statistics. A counter-clockwise exchange σ of these particles
involves n2 counter-clockwise anyon exchanges – each anyon
in one bound state has a counter-clockwise exchange with
each anyon in the other bound state. Then, it follows that:

π(σ) = ein
2θ (6)

which tells us that the composite particles obey n2θ-
statistics. Similarly, we see that the counter-clockwise
exchange of two bound state composed of one anyon that
obeys θ-statistics and one anyon that obeys (−θ)-statistics
accumulates no total phase. Such a bound state, denoted
I, is known the vacuum, and it is equivalent to having no
particle at all.

Now, consider two bound states of anyons that follow θ-
statistics composed of α and β anyons respectively. Using
the same argument as we did with for a particle composed of
n-anyons, the particle made up of the combination, or fusion,
of the two bound states will obey (α + β)2 statistics. This
rule, the fusion rule for Abelian anyons, is written as [2]:

α2θ ⊗ β2θ = (α+ β)2θ (7)

B. Physical Realization – Cyons

Despite the fact that particles constrained to two dimen-
sions are able to have anyon statistics, electrons, atoms,
and photons constrained to two dimensions retain the
same fermionic/bosonic statistics that they obey in three
dimensions. However, it is possible to construct systems
with quasiparticles that obey anyon statistics.

Consider an infinite and very thin solenoid along the z-axis
with magnetic flux Φ along with a spinless particle of charge
q and mass m orbiting the solenoid at a radius r constrained
to some plane perpendicular to the solenoid. The electric
field E experienced by the charged particle is:

E = − Φ̇

2π|r|
φ̂ (8)

Using Coulomb’s Law and Newton’s Equation of motion, we
find that the contribution of the electric field to the angular
momentum of the particle is:

JE =
qΦ

2πc
φ̂ (9)

The canonical angular momentum JC of the particle is n~
for n ∈ Z. Then, using the fact that the canonical angular
momentum is the sum of the electronic angular momentum
JE and the kinetic angular momentum JK , we have:

JK = n~φ̂− qΦ

2πc
φ̂ (10)

Now, consider the limit where r → 0 and the solenoid be-
come infinitely thin. We see that the resulting quasiparticle,
called a cyon. The spin S is defined to be the kinetic an-
gular momentum at n = 0 divided by ~, so the cyon is a
quasiparticle with mass m, charge q, and fractional spin [4]:

S =
qΦ

2π~c
(11)

We shall now demonstrate that cyons obey anyon statistics.
Consider a system of two cyons at the positions r1 and r2

with conjugate momenta p1 and p2 in some finite but ar-
bitrarily large volume V . In the center of mass coordinates
R = (r1 + r2)/2 and relative coordinates r = r1 − r2, the
Hamiltonian H is [5]:

H =
P2

4m
+

(p− qA)2

m
(12)

with P being the momentum conjugate to R and p being
the momentum conjugate to r, and where A is the relative
vector potential given by:

A =
Φ

2π|r|
φ̂ (13)

We are able to separate the center of mass motion term
and relative motion term in the Hamiltonian, so the wave-
function of the system Ψ will be of the form:

Ψ(R, r) = ψR(R)ψr(r) (14)

where ψR is the wave-function corresponding to the first term
in the Hamiltonian and ψr is the wave function correspond-
ing to the second. We now consider the second term. Con-
sider the gauge function Λ given by [6]:

Λ =
Φφ

2π
(15)

The vector potential A′ after the gauge transformation corre-
sponding to this gauge function is given by A′ = A−∇Λ =
0. The gauge transformation also alters the derivatives in
the Schrödinger equation, which causes the wave-function to
transform in the following way [7]:

ψ′r(r) = eiqΦφ/2πψr(r) (16)

In the primed gauge, the Hamiltonian H′ is:

H′ =
P2

4m
+

p2

m
(17)

We see that the wave functions ψR and ψ′r are solutions to the
free field Schrödinger equation. Using these known functions
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and using Equation 16 to transform back into the unprimed
gauge, we find:

Ψ(R, r) =
∑
`,kR

c`,kR
eikR·RJ`(krr)e

i(`−qΦ/2π)φ (18)

for the constants c`,kR
which are such that the wave-function

is normalized, where r = (r, φ), and where J` is the `th bessel
function of the first kind. Using this result, we see that:

Ψ(R, r, φ+ 2π) = Ψ(R, r, φ)e−iqΦ (19)

The rotation φ 7→ φ + 2π of the relative coordinates is two
counter-clockwise exchanges of the cyons. Then, if qΦ 6=
aπ for some even integer a, the cyons accumulate a non-
trivial phase under exchange and are subsequently anyons
with (qΦ/2)-statistics [6].

III. NON-ABELIAN ANYONS

A. Non-Abelian Representations

In dimensions greater than one, representations of the braid
group are not generally abelian, and we can obtain non-
abelian braiding statistics. Consider a degenerate set of m ≥
2 states at the positions r1, ..., rm with the orthonormal basis
ψ1, ..., ψm. Let Π : Bn −→ U(m) be some representation of
Bn. We see that Π(σk) is an m ×m unitary matrix, called
the braiding matrix, and that performing the exchange σk
transforms the basis states in the following way:

ψi =
∑
j

[
Π(σk)

]
ij
ψj (20)

where [Π(σk)]ij denotes the ijth entry of the braiding
matrix. This equation tells us that instead of just adding a
phase to the wave function, the exchange creates non-trivial
rotations in the many-particle Hilbert space [2].

Each species of anyon has a particular type of exchange
statistic dependent on its topology, so we often refer to the
identity of the anyon as its topological charge. Compos-
ite particles made up of non-abelian anyons do not combine
uniquely, their fusion does not have a is a quantum superpo-
sition of states with different topological charges. We subse-
quently define the fusion of a particle with topological charge
a and a particle with topological b to be [8]:

a⊗ b =
∑
c

N c
abc (21)

where we sum over all of the topological charges of the
species c in the system. The number N c

ab is a non-negative
integer equal the number of different ways we can combine
the particles a and b to obtain particle c, and each method
of fusing a and b into c is known as a fusion channel. The
fusion algebra must satisfy the relations N c

ab = N c
ba and

N I
aā = 1 where a and ā are anti-particles. A non-abelian

anyon theory is often stated by specifying N c
ab for the

particles in the system.

For abelian anyons, the fusion product is unique, so N c
ab =

δcc′ for some topological charge c′. We can define the topo-
logical charge of a composite abelian anyon with statistics
k2θ to be k, so c′ = a + b. Then, the general anyon fusion
rule for abelian anyons is [2]:

a⊗ b =
∑
c

δa+b,cc (22)

Anyons a and b in some anyonic system that obey this rule
are abelian anyons, so they only pick up a phase under ex-
change.

B. Fibonacci Anyons

Consider a system composed of anyons with two topological
charges I and τ that have the fusion rules [9]:

χ⊗ I = χ τ ⊗ τ = I + τ (23)

where χ = I, τ . Anyons obeying this relation are known as
Fibonacci anyons. Physically, we see that τ is its own anti-
particle, but that fusing two τ particles can also yield a τ
particle. We can re-write the fusion of two τ particles as:

τ ⊗ τ = f1I + f2τ (24)

where fk denotes the kth number in the Fibonacci sequence.
Taking the fusion of this linear combination, using this as a
base case for induction, we see that:

m⊗
k=1

τ = fm−1τ ⊗ I + fmτ ⊗ τ = fmI + fm+1τ (25)

The dimension of the fusion product ⊗mk=1τ is equal to the
total number of fusion channels available, which we see is
fm + fm+1. Adding an additional τ particle to the fusion
product increases the number of fusion channels to fm+1 +
fm+2. Then, the dimension of a single τ particle is the ratio
(fm+1 + fm+2)/(fm+1 + fm) in the limit where m becomes
very large. We see that:

dim(τ) = lim
m→∞

fm+1 + fm+2

fm+1 + fm
= ϕ (26)

where ϕ is the golden ratio (1 +
√

5)/2. Notice further that:

⊗mk=1I = I (27)

Then, introducing an additional vacuum particle does not
change the number of fusion channels, so dim(I) = 1. Using
our result for the dimension of τ , dim(τ ⊗ τ) = ϕ2. The
subspace corresponding to τ production has dimension ϕ and
the subspace corresponding to I production has dimension
1. Then, the probabilities that a τ particle or I particle will
be produced, denoted P (τ) and P (I) respectively, are [9]:

P (τ) =
1

ϕ
P (I) =

1

ϕ2
(28)

It has been shown that the braiding of Fibonacci anyons al-
lows for universal topological quantum computation, though
this result is far beyond the scope of our discussion [10].

C. Ising Anyons

Consider a system composed of anyons with three topological
charges, I, σ, and ψ that have the fusion rules [8]:

σ ⊗ σ = I + ψ ψ ⊗ ψ = I

I⊗ χ = χ σ ⊗ ψ = σ
(29)

for χ = I, σ, ψ. Anyons obeying these rules are known as
Ising anyons. We immediately see that I and ψ obey Equa-
tion 22 and are then abelian anyons with dimension 1. Con-
sider the following grouping of the fusion of an infinite num-
ber of σ particles:

lim
m→∞

m⊗
k=1

σ = lim
m→∞

m⊗
k=1

σ ⊗ σ = lim
m→∞

m⊗
k=1

(I + ψ) (30)
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v

c

FIG. 1: This is a diagram to demonstrate how we have defined
Av and Bc in the toric code. The point v denotes a vertex, and
we take the product of spin operators on the blue lines to obtain
Av. The point c denotes a center point, and we take the product
of spin operators on the orange lines to obtain Bc.

Notice that I and ψ have dimension 1, so I+ψ has dimension
2. This tells us that each factor of σ⊗σ has dimension 2, so
dim(σ) =

√
2. Then, we see that the fusion σ ⊗ σ has a 1/2

probability of either result.

IV. SOLVABLE ANYON MODELS

In this section, we shall discuss two solvable models in
which anyons arise, one resulting in the emergence of abelian
anyons and the other resulting in the emergence of non-
abelian anyons. Each model is worthy of being the focus of
an entire project on its own, so, for brevity, we shall quote
a number of results without proof. Details can be found in
the referenced material.

A. The Toric Code on a Square Lattice

Consider a two-dimensional N × N square lattice with pe-
riodic boundary conditions. Suppose that we place spins
on each of the edges of the lattice. All spin components
on different edges mutually commute, and the spin compo-
nents on a given edge α obey the anti-commutation rule
{σiα, σiβ} = 2δαβ . The Hamiltonian H of this system is
given by [10]:

H = −
∑
v∈V

Av −
∑
c∈C

Bc (31)

where V is the set of all vertices and C is the set of all centers
of a square of four adjacent lattice points, and where we have
defined the vertex operators Av and plaquette operators Bc
to be :

Av =
∏

j edge of v

σxj Bc =
∏

j nearest to c

σzj (32)

Our definitions of Av and Bv are shown in Figure 1. We can
show that Av and Bc have the eigenvalues ±1 for each v and
c. In addition, we have the constraint that:∏

v∈V
Av =

∏
c∈C

Bc = 1 (33)

Some simple calculations show that [Av, As] = [Bc, Bp] =
[Av, Bc] = 0, so all of the terms in the Hamiltonian mutually
commute. We define ωc of some configuration of spins s
closest to the center c to be:

ωc(s) =
∏

j nearest to c

szj (34)

where szj is the eigenvalue of the spin σzj . Notice that as the
eigenvalues of σz are ±1, we must have ωc(s) = ±1. We say
that when ωc(s) = −1, the configuration is a vortex, and
when ωc(s) = 1, we say that there is no flux. Notice that
−
∑
cBc is minimized when Bc = 1 for each c. In addition,

we see that in the z-basis, Av flips each of the spins upon
which it acts, which leaves the ωc of the centers nearest to
the vertex invariant. Similarly, we can define vortices ωv
corresponding to the vertexes that add energy to the term
−
∑
v Av to be:

ωv(s) =
∏

j edge of v

sxj (35)

that are analogues of the ωc. Then, the ground state |ΨGS〉
is a linear combination of configurations with no vortices.

We shall now determine the behavior of excitations of this
system. Intuitively, these excitations should involve the pro-
duction of a vortex at some center/vertex by flipping the
appropriate spin at some edge. However, we see that this
will also produce another vortex at the other center/vertex
that borders that edge. Notice that we can eliminate the
vertex at this second center by flipping a different spin that
borders this center/vertex, but this will similarly create an-
other vortex. Continuing this procedure, we find that we can
create a chain of spin flips with vortices at the ends of the
chain. We subsequently define the excitations Sz and Sx to
be [10]:

Sz(t) =
∏
j∈t

σzj Sx(t′) =
∏
j∈t′

σxj (36)

for t being a contour passing through vertices and t′ being a
contour passing through centers. See Figure 2 for a diagram
of this. The operator Sz trivially commutes with each of
the Bc, and it commutes with each of the Av except those
at the end points, because it inverts the sign of Av there.
Similarly, Sx commutes with each of the Av and with each
of the Bc, except at the end points. This tells us that the
energy of each excitation comes entirely from the endpoints,
so, provided that the contour does not have any topological
winding about the boundary, different contours with the
same endpoints are equivalent. Thus, we can consider the
endpoints of the contour to be independent quasiparticles
[11].

Let Xt′ and Zt denote an endpoint of an Sx contour t′ and
Sz contour t respectively. Suppose, we adiabatically move an
Xt′ quasiparticle counterclockwise about a Zt particle. This
is equivalent adding a closed loop C to the end of a t′ contour
that crosses the t contour. See Figure 2 for a diagram of this
procedure. The state of the system Ψ as result of adding the
contour C to the Sx chain is:

Ψ = Sx(c)Sz(t)Sx(t′) |ΨGS〉 (37)

Notice that c and t′ cross at one point, and that the operators
acting there anticommute. Then:

Ψ = −Sz(t)Sx(c)Sx(t′) |ΨGS〉 = −Sz(t)Sx(t′)Sx(c) |ΨGS〉
(38)

However, we see that the only action of C on the system is
to introduce two vortices at some center, which is equivalent
to not changing the system at all. Then:

Ψ = −Sz(t)Sx(t′) |ΨGS〉 (39)

Then, adiabatically moving Xt′ about Zt caused the state
to accumulate a phase of e−iπ. This process is equivalent
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t

Zt

Xt′

t′

C

FIG. 2: This is a diagram of the excitations on the toric code.
The red line t is a countour made up of a chain of spin flips
that passes through vertices, and the green line t′ is a contour
made up of a chain of spin flips passing through centers. The
quasiparticles Zt and Xt′ are the endpoints of the contours t and
t′ respectively, and the cyan line C is a closed loop of spin flips
that represents adiabatically transporting Xt′ around Zt. We
have also marked the intersection of C and t that causes the
anyonic exchange statistics.

FIG. 3: This a diagram of the Kitaev Honeycomb Lattice showing
the labeling scheme for the edges x, y, and z and for the vertices
in the plaquette operator.

to making two of the Xt′ and Zt particles, so we see that
the phase accumulated by these particles under exchange is
eiπ/2. Notice that adiabatically moving an Xt′1

quasiparticle
about an Xt′2

quasiparticle or a Zt′1 quasiparticle about a Zt′2
quasiparticle leaves the system invariant, as all of the oper-
ators of the in the excitations commute. Then, we see that
the Xt′ and Zt quasiparticles exchange as relative, abelian
anyons, which are known as semions [10].

B. The Kitaev Honeycomb Model

Consider a planar honeycomb lattice with spin 1/2 particles
at each vertex. The spin components at different vertices
commute, and spin indices at the same vertex obey the an-
ticommutation relations {σi, σj} = 2δij . We label the three
edges leaving a vertex to be x, y, and z, as shown in Figure
3, and we label the two vertices connected by an edge α to
be iα and jα. We consider the nearest neighbor Hamiltonian
H given by [11]:

H = −Jx
∑
x

σxixσ
x
jx − Jy

∑
y

σyiyσ
y
jy
− Jz

∑
z

σzizσ
z
jz (40)

for the coupling constants Jx, Jy, and Jz. We define the
plaquette operator Wp for some hexagon h of lattice points:

Wp = σx1 σ
y
2 σ

z
3σ

x
4 σ

y
5 σ

z
6 (41)

where we enumerate the vertices starting at a point on a
hexagon at the end of an x-edge and proceeding counter-
clockwise around the hexagon as shown in Figure 3. Recog-
nizing that distinct Wp operators share either 0 or 2 vertices,
we see that each of the Wp commute with each other, and
a brief computation shows that the Wp commute with the
Hamiltonian as well. Then, we can simultaneously diagonal-
ize each of the Wp along with the Hamiltonian. We find that
Wp has the eigenvalues Wp = ±1, and that the ground state
lies in the region where Wp = 1 for each of the hexagons. In
this region, a Jordan-Wigner transformation can be used to
Hamiltonian convert the Hamiltonian into the form [12]:

H =
∑
k

εka
†
kak +

i

2

∑
k

∆k

(
a†ka
†
−k + a−kak

)
(42)

where we have defined the parameters:

εk = 2Jz − 2Jz cos kx2Jy cos ky (43)

∆k = 2Jx sin kx + 2Jy sin ky (44)

We subsequently find that the quasiparticle energy E(k) is
of the form:

E(k) =
√
ε2k + ∆2

k (45)

There are two distinct behaviors depending on the values
of the Ja. If Ja > Jb + Jc for one combination of a, b, c, all
distinct, the quasiparticle spectrum has a gap. This is called
the A-phase. When this condition is not met for any of
the Ja, there is no gap. This region is called the B-phase [12].

Similar to the toric code, we add excitations by changing Wp

from 1 to −1 for some hexgan, introducing a vortex on one
of the hexagon. However, these vortices can only be added
in pairs. The excitation operators are [11]:

Szv = e−iπσ
z
v/2 Sxyuv = eiπσ

x
ueiπσ

y
v (46)

where v is some vertex and where u is some vertex adjacent
to v. The first operator flips σx and σy at v, which
changes the value of Wp for the two hexagons with the
z-boundary coming out of v as an edge. We shall denote
such an excitation as an a excitation. The second excitation
operator changes changes a single spin at u and v, which
flips the Wp that have only one of u and v as vertices. We
denote these kinds of excitations as b excitations.

In the A phase, the Honeycomb system maps directly to the
toric code, and we find that these excitations are semions. In
the B-phase, however, we find (through a procedure beyond
the scope of this discussion) that the combination of two u
vortices annihilate, the combination of a u and a v vortex
yields a v vortex, and that the combination of two v vortices
annihilate with frequency 1/2 and produce a u vortex with
frequency 1/2. Notice that these are precisely the fusion
rules for Ising anyons, showing that these vortexes are non-
abelian Ising anyons [13].



6

[1] J. Munkres, Topology (Pearson, 2015).
[2] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and

S. Das Sarma, Reviews of Modern Physics 80, 1083–1159
(2008), ISSN 1539-0756.

[3] R. Chen, Generalized yang-baxter equations and braiding
quantum gates (2011), 1108.5215.

[4] J. Jing, Y.-Y. Ma, Q. Wang, Z.-W. Long, and S.-H. Dong,
International Journal of Theoretical Physics 59, 2830–2838
(2020), ISSN 1572-9575.

[5] E. L. Lev Landau, Mechanics (Elsevier, 2011).
[6] F. Wilczek, Phys. Rev. Lett. 49, 957 (1982).
[7] J. Sakurai, Quantum Mechanics (Pearson, 2016).
[8] V. Lahtinen and J. Pachos, SciPost Physics 3 (2017), ISSN

2542-4653.
[9] S. Trebst, M. Troyer, Z. Wang, and A. W. W. Ludwig,

Progress of Theoretical Physics Supplement 176, 384–407
(2008), ISSN 0375-9687.

[10] A. Kitaev, Annals of Physics 303, 2–30 (2003), ISSN 0003-
4916.

[11] A. Kitaev, Annals of Physics 321, 2–111 (2006), ISSN 0003-
4916.

[12] H.-D. Chen and Z. Nussinov, Journal of Physics A: Mathe-
matical and Theoretical 41, 075001 (2008), ISSN 1751-8121.

[13] V. Lahtinen, New Journal of Physics (2006).


