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1 Introduction

Angular-resolved photoemission spectroscopy
(ARPES) is an experimental technique that allows
for the determination of the electronic band struc-
ture of a material. This is typically done by illumi-
nating the sample with ultraviolet light and measur-
ing the angle of the emitted photoelectrons, which is
proportional to their crystal momentum. The most
common sources of high energy light for ARPES are
synchrotron radiation and vacuum ultraviolet lasers,
each of which have unique advantages and disadvan-
tages. By polarizing the light from these sources,
spin-dependent probing can be achieved in materi-
als to investigate whether bands are spin-degenerate.
In materials that lack inversion symmetry, the va-
lence bands can split due to spin-orbit coupling,
which can be detected with spin-resolved ARPES
(SR-ARPES). This technique is an effective tool
which can probe exotic materials such as topologi-
cal insulators, which have nontrivial spin-polarized
surface states.

2 Theory

2.1 ARPES

Photoemission spectroscopy (PES) experiments are
based on the photoelectric effect, in which electrons
are ejected from a sample using high energy radia-
tion. This technique enables one to probe the elec-
tronic structure of materials by relating the energy
and momentum of the photoemitted electron to the
energy and momentum the electron had in the sam-
ple. Suppose an electron is excited by a photon with
energy hν into a state with momentum ~k. The elec-
tron is ejected from the sample, and measured in
vacuum as having energy εk and momentum ~K at
an angle θ (Figure 1) relative to the surface normal.
The kinetic energy of the photoemitted electron sat-
isfies εk = hν−φ−|EB| where φ is the work function
of the material, and EB is the binding energy relative
to the Fermi level EF (EB = E(~k)− EF ).

Conservation of momentum applies to the par-
allel components of momentum due to translational
symmetry at the surface of the material [1] (see Ap-
pendix for discussion of perpendicular components).

k|| = K|| =

√
2mεk
h̄

sin(θ) (1)

Figure 1: Schematic of APRES geometry. Emitted
photoelectron direction is specified by (θ, φ) [2].

In experiments, the photoemitted electron inten-
sity (or photocurrent) for a given range of energies
and angular distributions is the quantity being mea-
sured by ARPES. Starting with a N-electron system,
incident radiation will excite an electron in a single-
particle state φi to a state φf , where we separate

the remaining (N-1)-electron states before (Ψ
(N−1)
i )

and after (Ψ
(N−1)
f ) removal of the electron. The to-

tal transition probability per unit time, associated
with the time-dependent perturbation Ĥint ∝ ~A · ~p,
is given by Fermi’s Golden Rule (see Appendix for
derivation)

I = Σi,fwi→f (2)

where

wi→f ∝ Σs|〈Ψ(N−1)
f,s |Ψ(N−1)

i 〉 |2|Mi,f |2δ(Ef − Ei − hν)
(3)

where |Mi,f |= |〈φf (εk,~k)| (~ε · ~r) |φi(~ki)〉 | is the
ARPES matrix element [1]. The final (N-1)-
electron state may contain a range of electron and

quasiparticle excitations (Ψ
(N−1)
f,s ) depending on the

strength of electron-electron, electron-phonon, etc.,
interactions in the system. All of these interac-
tions are described by a continuous function known
as the spectral function A(~k, ω) (related to the

|〈Ψ(N−1)
f,s |Ψ(N−1)

i 〉 | term in Eq. 3)

A(~k, ω) =
1

π

Im(Σ(~k, ω))

(h̄ω − ε0k − Re(Σ(~k, ω)))2 + Im(Σ(~k, ω))2

(4)
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Σ(~k, ω) is known as the self-energy. The self-energy
is a complex function that has real and imaginary
parts corresponding to a shift in the electron en-
ergy in the band ε0k due to interactions, and the life-
time of the quasi-particle, respectively [3]. In the
case of non-interacting systems, the self-energy is
zero and the spectral function reduces to a delta
function centered at the band energy ε0k. In the
interacting case close to the Fermi surface (where
ε0k − µ >> |Im(Σ(~k, ω))|, as in the case of a Fermi
liquid), one can then expand the spectral intensity
(Eq. 13) about the poles. The singular and non-
singular terms of this expansion correspond to the
coherent (main line, quasiparticle peak) and inco-
herent (satellite parts of the spectral intensity), re-
spectively.

Figure 2: Spectral distribution peaks as a function
of wavevector ~k and energy E near the Fermi energy.
The in coherent part of the spectrum broadens, while
the quasiparticle lifetime grows as the Fermi energy
is approached [2].

Spectral intensity (I(~k, ω) ∝ Σi,f,s|Mi,f |2A(~k, ω))

measured as a function of momentum ~k is known as
an energy distribution curve (EDC). Peaks in these
curves correspond to high photoelectron densities
indicating the center of an electron band, while the
widths of these peaks correspond to the lifetimes of
quasiparticles, as shown in Figure 2.

2.2 Spin Polarization

SR-ARPES experiments take advantage of the spin-
dependence in scattering experiments to characterize
the spin-polarization P (~k, ω) of electrons with mo-

mentum ~k measured with the spectrometer:

P (~k, ω) =
I↑(~k, ω)− I↓(~k, ω)

I↑(~k, ω) + I↓(~k, ω)
(5)

where I↑↓(~k, ω) is the SR-ARPES spectrum corre-
sponding to a particular spin axis [4].

3 Light Source

Synchrotron radiation is a common source of light for
SR-ARPES experiments. Beams can be produced by
the cyclotron-motion of electrons about a constant
magnetic field along a circular track. Another com-
mon technique is the use of undulators, which are
periodically spaced magnets with fields in opposing
directions, causing the electrons to oscillate as they
travel down a path [5]. Diagrams of the two dif-
ferent types can be seen in Figure 3. In both cases,
this acceleration causes the electron to emit photons,
which are sent down beam lines to be used for ex-
periments. Synchrotrons produce photons with an
energy range of approximately 20-200 eV, but a grat-
ing monochromator can be used to select narrower
bands of frequencies [6]. Any arbitrary polarization
can be achieved from synchrotrons using wave-plates
[7].

Figure 3: Diagrams of the bending magnet (top)
and wiggler (bottom) synchrotron designs, as well
as their corresponding output [8].

Another common source of light for SR-ARPES
are solid-state vacuum ultraviolet lasers, which are
capable of providing photon energies of around 5-7
eV, exceeding the work function of most materials
[9]. Typically, frequency quadrupling of Ti:sapphire
lasers (through non-linear effects in crystals such as
β-barium borate) are used to produce photon ener-
gies of 6 eV [10]. Unlike synchrotron sources, these
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lasers are not tunable, but they do have a much
higher energy (momentum) resolution due to their
lower photon energy. Laser-based ARPES systems
have been demonstrated with photon energy resolu-
tion as low as 0.26 meV, while state-of-the-art syn-
chrotron sources only reach as low as 4 meV [11][9].
Another advantage of using lower energy photons is
that it restricts emitted electrons to the first Bril-
louin zone, reducing background noise due to scat-
tering.

Furthermore, lasers are able to provide photon
fluxes on the order of 1015 photons/s, which is at
least two orders of magnitude higher than fluxes pro-
vided by modern synchrotron sources. This greatly
improves the signal-to-noise ratio [11]. Both laser
and synchrotron sources are capable of achieving
spot sizes down to 0.2 mm [9].

If too many photoelectrons are ejected simulta-
neously, they will experience a Coulombic repulsion
known as the space charge effect, introducing an
uncertainty into the final momentum measurement
[13]. For this reason, Ti:sapphire lasers use pulses of
a few picoseconds, as opposed to tens of femtosec-
onds, which is a limitation in studying time-resolved
electron dynamics. Systems using synchrotrons ex-
perience much greater space charge effects, which
can be attributed mostly to their larger energy band-
width [9].

Figure 4: Inelastic mean free path vs. electron en-
ergy relation that is approximately valid for most
materials [12].

Another important consideration is the inelas-
tic mean free path (IMFP) of the emitted elec-
tron, which describes how far an electron will travel
through a solid before losing its kinetic energy due
to collisions, resulting in the formation of electron-
hole pairs, phonons, and plasmons [14]. The mean

free path is approximately the same for different ma-
terials, instead varying primarily due to the kinetic
energy of the electron [12]. As seen in Figure 4, the
mean free path is the smallest for energies in the 20-
100 eV range, which is the main operating range of
synchrotron sources.

Ultraviolet lasers are therefore capable of pene-
trating further into the material, with depths up to
3-10 nm, while synchrotrons are only go to depths
of 0.5-2 nm, limiting them to surface states [9].

4 Detector

Compared to traditional ARPES, spin resolved mea-
surements must sacrifice some energy and momen-
tum resolution to resolve the photoelectron’s spin in
addition to ~K and E. This is due to the more com-
plex electron detector which typically involves the
electrons undergoing an additional scattering event
before detection.

The following discussion pertains to both tradi-
tional and spin resolved ARPES. In this low energy
photon-electron scattering there is no biasing be-
tween the lab frame and center of momentum frame
[15]. Because of this, the detector is usually rotated
relative to the sample at a fixed radius. A sketch of
the experimental setup is shown in Figure 5, where
the electron detector measures the scattering angle
θ in the mirror plane. It is important that the sam-
ple be properly aligned with respect to the incoming
photons such that φ and θ properly reflect the scat-
tering angles. If not, the components of K|| will be
rotated and erroneous in magnitude (|K|||∝ sin θ).

Figure 5: A SIMION simulation showing how elec-
trons with different energy behave in the half-sphere
electron detector. The outer shell is at negative po-
tential while the inner shell is positively charged.
Taken from [16].
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spa

Figure 6: Left: The incoming electrons scatter to either side depending on their spin coupling with the
induced ~B field. Right: The Mott effect is dominant at θ ≈ 120o in the differential cross section, this
example for 50 keV electrons impinging on gold. Image adapted from [18].

Upon entering the detector the electrons are first col-
limated using a series of electrostatic lenses (analo-
gous to focusing light)1. A half sphere electron de-
flector is then used to select the energy of the photo-
electrons. The outer and inner spheres (with radius
Rout and Rin) are held at potential difference ∆V .
Highly energetic electrons will not be sufficiently de-
flected while low energy electrons are attracted to
the inner sphere (at positive potential). The energy
of surviving electrons E, and energy resolution ∆E
are given by the formulas below, where the slit width
a = Rout−Rin and ∆θ is the polar acceptance angle
of the detector (with respect to the sample) [17].

E =
e∆V

Rin
Rout
− Rout

Rin

∆E = E

[
2a

Rin +Rout
+ (

∆θ

2
)2

]
Before entering the deflector, a retarding potential
can be applied to lower E and improve the energy
resolution. The expression above for ∆E is for a
perfectly monochromatic light source, but in reality
the bandwidth of the laser must be convolved with
the detector’s resolution to give a total energy reso-
lution. The momentum resolution is approximately

given by ∆k|| ≈
√

2mE/h̄2 cos θ∆θ. In ARPES a
continuous dynode or multi-channel electron multi-
plier (electron counter) will be placed at the exiting
end of the deflector to count the electrons.

In spin resolved measurements an additional
complexity is required before counting electrons.

The most common technique2 uses Mott scattering,
a spin-orbit interaction, to resolve spins. After pass-
ing through the deflector described above the elec-
trons are accelerated to ∼ 100keV before impinging
upon a thin film of high Z material (typically a noble
metal, such as gold). The electrons penetrate to the
metal’s nucleus and see a net positive charge which
induces a magnetic field [18].

~B = −1

c
~v × ~E =

Ze

cr3
~r × ~v =

Ze

mcr3
~L (6)

Where ~E = Ze
r3
~r was used. The electron’s spin will

couple with this magnetic field through the dipole
interaction:

VLS = −~µ · ~B =
Ze2

2m2c2r3
~L · ~S (7)

This spin-orbit potential will pull the electron to one
side or another depending on the spin, as seen in
Figure 6. However this effect is weak and cannot
be easily resolved at all scattering angles or ener-
gies. The effect becomes more prominent at higher
energies and when the electrons back-scatter off the
foil at about θ ≈ 120o. At low energy the electron
cloud shields the nucleus reducing the Mott effect,
and for softer scattering angles the electron is likely
to multi-scatter. As θ approaches 180o ~L decreases,
also weakening the spin-orbit potential VLS . At very
high energies brehmsstrahlung and other effects oc-
cur, so these detectors must operate within these
limits to minimize other non-Mott scattering effects.

1It is interesting to note that the particle density of the electron beam in the phase space (~r, ~p) is conserved by Liouville’s
theorem. Performing collimation will increase the momentum spread but the product of momenta and displacement for the
beam population will remain constant

2Very Low Energy Electron Diffraction, VLEED, is becoming more popular in the field. It utilizes spin exchange inter-
actions with spin-polarized copper-oxides to resolve spin. It works with much lower voltage and has a better signal to noise
ratio compared to Mott detectors.
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Two electron counters are placed at ±120o from
the gold foil, each one measuring a given spin po-
larization. This second scattering event reduces the
total number of electrons measured by a factor of
10−3−10−4 leading to a reduced intensity. A retard-
ing potential can be added to deflect multi-scattered
(lower energy) electrons which allows the detectors
to be made smaller as lower potentials are needed.
SR-ARPES detectors operate with energy resolu-
tions on the order of 10 meV and angular resolu-
tion of about one degree, although it varies greatly
from one system to another. This detector provides
a precise method to measure the complete state of
electrons near the surface of materials.

5 A Motivating Example

Topological states are interesting because the pre-
served time reversal symmetry (the Hamiltonian
commutes with the time reversal operator) at the
surface guarantees conductance due to the elimina-
tion of back-scattering. Topological states are real-
ized when Kramer’s degeneracy is broken, implying
a splitting in the energies of spin states predicted
by Kramer’s theorem. This theorem states that spin
1
2 particles will have degenerate energy eigenstates.
This energy splitting may be complemented by mo-
mentum dependent splitting known as the Rashba
effect, where spin-orbit coupling and asymmetry in
the crystal structure (specifically in the direction
perpendicular to the proving surface) are responsi-
ble.

SR-ARPES allows for the direct probing of the
spin polarization of energy bands with high momen-
tum resolution. Because of the net zero spin polar-
ization of the system it is difficult to show any spin
dependence. This technique proves extremely useful
when considering the spin states in such materials
where the surface or edge bands are distinct from
that of the bulk. In these systems it is not only the
linear dispersion of the bands that is unique but the
projection of the spin. Fundamentally, this is due to
the spin orbit interaction inverting the bulk bands,
which causes an energy gap.

In addition to spin-orbit coupling topological
states are often realized in materials with small band
gaps. Significant change to the electronic structure
is brought about via the spin-orbit interaction typi-

cally introduced as a small perturbation. Thus one
should look low on the periodic table for constituent
candidates for topological materials, where the rela-
tivistic effect of spin-orbit coupling is greatest. Here
we discuss an archetypal compound, Bi2Se3 to de-
velop an idea of the insight gained from SR-ARPES.

5.1 Bismuth Selenide Bi2Se3

Hexagonal Bi2Se3 with a band gap of ∼220 meV
has been suggested to host topologically non-trivial
states centered around the gamma point (center of
the Brillouin Zone). In this region the boundary be-
tween the topological trivial vacuum states (Chern
number is equal to zero) and the non-trivial bulk
states (Chern number is non-zero) gives rise to non-
trivial surface states where Kramers degeneracy is
lifted. A toy description of these bands can be seen
in Figure 7 where a cut through the gamma point
reveals that the bulk valence band and bulk conduc-
tion bands are gapped, but the topological surface
states are continuous. These spin-split states will
again be degenerate at the Dirac point where the
spin up and spin down bands overlap.

Figure 7: A toy model of the electronic structure of
Bi3Se3. The bulk conduction band (BCB) and bulk
valence band are gaped where the topological sur-
face state (TSS) is present within the bulk energy
gap. Note the m-shape of the BVB which is a tell
tale sign of band inversion [19]. At this point ignore
the colour of the bands.
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Figure 8: a) Spin-resolved spectra measuring the equilibrium states of Bi2Se3 taken along kx = 0 with
has no spin resolution. The color bar represents intensity of photo-emission. (b) The same spectrum
as in a), but with ”pump” which optically excites electrons into previously unoccupied states above the
Fermi energy. (c) SR-ARPES spectra of after the optical pumping, the two dimensional colour scheme
represents the intensity where bold (faded) corresponds to high (low) intensity and colour corresponding to
spin polarization asymmetry measured in the y direction following a cut through the gamma point along
~kx [19].

With this picture we can imagine probing states
with ARPES to construct such a band map through-
out the Brillouin zone. Utilizing spin resolution we
can gain more information about each band. Specif-
ically we will be able to determine what spin states
comprise the bands if there exist such spin polariza-
tion. Thus probing energy eigenstates outside of the
gamma point one expects to see an asymmetry of
spin up and spin down states.

Indeed spin polarization is experimentally ob-
served. Jozwiak et al. performed SR-ARPES on
Bi2Se3 which confirmed a spin polarized band struc-
ture of the TSS within the bulk gap. Data can been
seen in Figure 8, which confirms the existence of
topological surfaces states below EF with ARPES.
This measurement allows one to picture the rela-
tively high density of states of the TSS bands com-
pared to the BCB.

It is often beneficial to use an an optical pump to
excite electrons into states above EF which yields
insight into the dispersion of the TSS and their rel-
ative intensities, data of such a measurement is pic-

tured in Figure 8. Most importantly spin resolved
ARPES was used to detect the spin polarization of
each band. As expected from a topological material,
the TSS are spin split as indicated by the red-blue
colour map.

Another way to visualize c) in Figure 8 is through
the intensity vs ~kx vector as shown in Figure 9. Here
the asymmetry in spin intensity (red(blue) triangles
indicating spin up(down) in the y basis) is precisely
shown as the difference in the two sets of data, which
can then be related to the intensity of the dispersion
curves in Figure 8. These cuts across the gamma
point are also above the Dirac point as pictured in
Figure 8 b). If the measurements are carried out
while probing at lower energy (below the Dirac point
pictured in b)) one would observe spin polarization
opposite to that observed above the Dirac point. In
other words the positive ~kx values would be red. As
an aside the hexagonal Brillouin zone is pictured in-
dicating a hexagonal Wigner-Seitz cell as expected.

The spin states of various ~k values can be de-
duced from the spin intensity data along any cut
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through the gamma point i.e. if a cut is made in
any direction through the gamma point in the x,y
plane in any direction oppositely polarized states in
the TSS bands are observed. Thus spin locked states
can be pictured as states where the spin polarization
is orthogonal to the k vector at all points along the
Fermi surface. These states are commonly referred
to as helical Dirac states.

The utility of SR-ARPES has been demonstrated
using a topologically insulating material which can
be used to realize new physics in many condensed
matter systems. This technique allows researchers
to observe the spin helical structure caused by band
inversion which splits spin up and spin down states
into individual bands.

Figure 9: A Spin-resolved spectra measuring the asymmetry in spin polarization along a cut along kx

through the gamma point. Spin polarization is measured in the y direction. The spin dependent states
can be deduced from the spin intensity data which demonstrates the spin helical surface states [20].
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Appendix

Momentum Relations

The perpendicular component of momentum can be found by accounting for electron diffraction through
the surface barrier. Let θi be the angle of the electrons wave-vector ~kf with respect to the surface normal.
The electron will be transmitted through a barrier V0, which will then decrease the overall perpendicular
momentum component K⊥, meaning the conservation of energy in the perpendicular direction gives

kf,⊥ =

√
2m(Ek cos2(θ) + V0)

h̄2 (8)

Fermi’s Golden Rule

ARPES experiments rely on the photoelectric effect, so we will consider the effects of incident radiation
~A(~r, t) on an N-electron system Ψ

(N)
i , where Ψ

(N)
i is an eigenstate of the unperturbed Hamiltonian. Suppose

the radiation excites one of the N electrons initially in state φi(~ki) to the state φf (εk,~k). The cumulative

initial and final N-electron states can then be written as Ψ
(N−1)
i φi(~ki), and Ψ

(N−1)
f φf (εk,~k), respectively.

The transition probability per unit time between these states in the presence of a perturbation Ĥint =
h̄e
mc

~A · ~̂p is given by Fermi’s Golden Rule as

wi→f ∝ |〈Ψ
(N−1)
f φf (Ekin,~k)| Ĥint |Ψ(N−1)

i φi(~ki)〉 |2δ(Ef − Ei − hν) (9)

where hν is the energy is the incident light [1]. In separating the photoelectrons state from the (N-1)-
electron final state, we have used what is referred to as the ‘sudden approximation’. This assumes that the

photoelectron is immediately decoupled from the remaining (N-1)-electron state Ψ
(N−1)
f upon excitation,

before relaxation occurs. Further, we will assume Ψ
(N−1)
f can be expressed as the sum of all eigenstates

of the perturbed Hamiltonian Ψ
(N−1)
f,s with energy E

(N−1)
s , i.e., Ψ

(N−1)
f = ΣscsΨ

(N−1)
f,s . Assuming a dipole

approximation ( ~A ∝ eikr, eikr ≈ 1), we can re-write Eq. 9 as

wi→f ∝ Σs|〈Ψ(N−1)
f,s |Ψ(N−1)

i 〉 |2|〈φf (εk,~k)| (~ε · ~r) |φi(~ki)〉 |2δ(Ef − Ei − hν)

= Σs|ci,s|2|Mi,f |2δ(Ef − Ei − hν)

where ~ε is the polarization vector of the incident field, Mi,f = 〈φf (εk,~k)| (~ε · ~r) |φi(~ki)〉, and ci,s =

〈Ψ(N−1)
f,s |Ψ(N−1)

i 〉. Therefore the total transition rate (often called spectral intensity or photocurrent)
I = Σi,fwi→f can be written as

I ∝ Σi,f,s|Mi,f |2|ci,s|2δ(εk + E(N−1)
s − E(N)

i − hν) (10)

Eq. 10 applies to atoms and molecules, but for solids, we define a continuous function A(~k, ω), called the
spectral function, which accounts for all electron, phonon, and magnon excitations associated with the
creation of a hole with wavevector ~k. It is convenient to re-write Eq.10 as I(~k, ω) ∝ Σi,f,s|Mi,f |2A(~k, ω)

the physical meaning of A(~k, ω) is given by

A(~k, ω) = − 1

π
Im(G(~k, ω)) (11)

where ε0k be the one-electron energy, and

G(~k, ω) =
1

h̄ω − ε0k − Σ(~k, ω)
(12)
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Accounting for the self-energy, the spectral function becomes

A(~k, ω) =
1

π

Im(Σ(~k, ω))

(h̄ω − ε0k − Re(Σ(~k, ω)))2 + Im(Σ(~k, ω))2

(13)
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