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Majorana fermions are fermions that are their own antiparticles. Although they remain elusive
as elementary particles (how they were originally proposed), they have rapidly gained interest in
condensed matter physics as emergent quasiparticles in certain systems like topological supercon-
ductors. In this article, we briefly review the necessary theory and discuss the “recipe” to create
Majorana particles. We then consider existing experimental realisations and their methodologies.

I. MOTIVATION

Ettore Majorana, in 1937, postulated the existence of
an elementary particle which is its own antiparticle, so
called Majorana fermions [1]. It is predicted that the neu-
trinos are one such elementary particle, which is yet to
be detected via extremely rare neutrino-less double beta-
decay. The research on Majorana fermions in the past
few years, however, have gained momentum in the com-
pletely different field of condensed matter physics. Arti-
ficially engineered low-dimensional nanostructures which
show signatures characteristic of Majorana bound states
have been shown to exist in the system of semiconduc-
tor nanowires [2–5], topological insulators [6], magnetic
atom chains [7],etc., just to name a few. The outcome
of these results shows that it is possible to simulate el-
ementary particles using their quasiparticle counterpart
in condensed matter systems.

Another big motivation for realizing Majorana
fermions is the fact that they make ideal candidates
for topological quantum computation circumventing the
need for quantum error corrections and for minimizing
the interactions with the environment . Quantum al-
gorithms achieved via exchange of Majorana fermions
(called ‘braiding’), and qubit registers stored in spatially
separated Majorana fermions are topologically protected
from noise and decoherence. This means that small dis-
turbances cannot decohere the qubit registers without
inducing a topological phase transition. This unique ad-
vantage, combined with much lower error rates result-
ing from ‘braiding’ operations makes quantum computing
with Majorana fermion networks the choice of companies
such as Microsoft in the race to build the first universal
quantum computer.

II. THEORY

A. Kitaev Toy Model

Although Majorana fermions were originally predicted
in the context of elementary particle physics, they can
also emerge in solid state systems as emergent quasipar-
ticles as shown originally by Kitaev [8]. These are spin- 12
particles which are their own antiparticles, and can be
seen as a solution of the Dirac equation (see appendix

A).

Kitaev used a simplified quantum wire model to show
how Majorana modes might manifest as an emergent
phenomena, which we will now discuss. Consider 1-
dimensional tight binding chain with spinless fermions
and p-orbital hopping. The use of unphysical spinless
fermions calls into question the validity of the model,
but, as has been subsequently realised, in the presence
of strong spin orbit coupling it is possible for electrons
to be approximated as spinless in the presence of spin-
orbit coupling as well as a Zeeman field [9]. We require
spinless fermions since we want to end up with single
unpaired Majorana fermions (and so must get rid of all
degeneracies, including spin degeneracy). We can write
a non-interacting tight binding Hamiltonian with super-
conducting gap ∆ = |∆| exp(iθ), hopping integral t, and
chemical potential µ as

H =
∑
j

[−µa†jaj − t(a
†
jaj+1 + a†j+1aj)+

∆ajaj+1 + ∆∗a†j+1a
†
j ]

(1)

As usual, aj and a†j denote annihilation and creation op-
erators respectively.

We define the Majorana operators, with superconduct-
ing phase absorbed into their definitions, as

c2j−1 = exp

(
i
θ

2

)
aj + exp

(
−iθ

2

)
a†j ,

c2j = −i exp

(
i
θ

2

)
aj + i exp

(
−iθ

2

)
a†j ,

for j = 1, . . . , N for anN atom chain. From the definition

we immediately see that ci = c†i for i = 1, . . . , 2N and
therefore create particles which are their own antiparti-
cles as required. It can also be shown that {ci, cj} = 2δij .

Let us now consider the case where |∆| = t > 0, µ = 0.
Here, equation (1) reduces to (using our new Majorana
operators):

H = it

N−1∑
j=1

c2jc2j+1.

Now we can construct new creation and annihilation op-
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FIG. 1: Illustration for Kitaev’s toy model, i.e. p-wave superconducting tight-binding chain. Each square represents
an electron and the circles are Majorana fermions. Upper diagram: each Majorana operator c2i and c2i−1 can be
obtained by splitting fermion operator ai. Lower diagram: case |∆| = t > 0, µ = 0, the diagonalised Hamiltonian

can be obtained by combining Majorana operators on neighbouring sites instead: this gives two unpaired operators
c1 and c2N , which can be combined to give a non-local fermion operator ãM .

erators by combining Majorana operators on neighbour-
ing sites.

ãj =
1

2
(c2j + ic2j+1),

ã†j =
1

2
(c2j − ic2j+1).

The Hamiltonian from equation (1) now becomes

H = 2t

N−1∑
j=1

(
ã†j ãj −

1

2

)
.

For an illustration of the discussion so far, see FIG. 1.
Here we can see that the ãj operators correspond to

Fock . Notice, however, that the Majorana operators
c1 and c2N are completely absent from this diagonalised
Hamiltonian. These can be combined to a single, highly
non-local fermionic operator

ãM =
1

2
(c1 + c2N )

Occupying this state requires zero energy (since it does
not appear in the Hamiltonian), and thus we can have an
odd number of quasiparticles at zero energy cost (unlike
the superconductors we are used to, where we require an
even number, i.e. Cooper pair condensates). This even-
ness/oddness is called parity and can be determined by

the eigenvalue of ã†M ãM (0 for even or 1 for odd parity).
Although we only showed this for a special case,

namely |∆| = t > 0, µ = 0, Kitaev showed that the Ma-
jorana edge states (called Majorana zero modes, MZMs)
exist as long as |µ| < 2t [8] (i.e. µ is inside the gap).
More generally, these Majorana states may not be lo-
calised, but instead decay exponentially away from the
ends.

B. Mapping Kitaev Model in Semiconductors

Kitaev’s toy-model’s key ingredient is spinless nearest
neighbour p-wave superconductivity which has not been
realised in real materials. In 2010, however, two seminal
papers show how to map the Kitaev p-wave quantum
wire to an s-wave quantum wire in the presence of strong
spin orbit coupling and a magnetic field. [10, 11]. The
resulting Hamiltonian, without superconductivity, is

H =
∑

k,k′,σ,σ′

Hk,k′,σ,σ′a†kσak′σ′ ,

Hk,k′,σ,σ′ = 〈kσ| p
2

2m
− µ+ αn̂ · (σ × p) +Bσz|k′σ′〉.

Here the magnetic field is aligned along the wire (in
the positive z direction), n̂ is perpendicular to the plane
in which the wire lies, and σ is the vector of Pauli matri-
ces. In our case the term n̂ · (σ × p) simplifies to σxpz.
This Hamiltonian is simply diagonlized, with the result-
ing energy spectrum being

E(kz) =
~2k2z
2m

− µ±
√
α2k2z +B2.

If we now introduce BCS superconductivity with the
gap parameter ∆, the new Hamiltonian can be diago-
nalized using the Bogoliubov-de-Gennes transformation
[12], resulting in the new dispersion relation

E2(kz)± =

(
~2k2z
2m

− µ
)2

+ (αkz)
2 +B2 + ∆2

±2

√
(B∆)2 + [B2 + (αkz)2]

(
~2k2z
2m

− µ
)2

.

The effects of the different components of the Hamilto-
nian is shown in FIG. 2 as a function of increased mag-
netic field. Magnetic field induces topological transitioni
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which ends (in the figure) with the topological supercon-
ducting bulk state with Majorana fermions at the edge
of the nanowire.

III. EXPERIMENTAL REALIZATION

A. Material Choice and Device Fabrication

As shown in the previous section, Majorana Zero
Modes (MZMs) can be obtained by tuning chemical po-
tential or magnetic field to drive the system towards
topological superconductor phase. The other compo-
nents of the ’recipe’ (spin-orbit coupling, proximitized
superconductivity) are intrinsic material properties. The
common choice for the 1D nanowire with strong spin-
orbit interaction so far has been the heavy element semi-
conductors InSb and InAs[10]. The two criteria, super-
conductivity and magnetic field, compete in a way that
large magnetic field can destroy the triplet pairing in
the induced superconductivity. A large Zeeman splitting,
however, is required in order to prevent interaction be-
tween the pairs of Majorana fermions (at the same edge
location) of the two spin channels, which combines into
fermionic mode at zero energy. Therefore, nanowire with
a large Lande g-factor is desired to obtain large Zeeman
splitting at fields below the critical field of s-wave super-
conductor.

The choice of superconductors, correspondingly, re-
quire a large superconducting gap and high critical field
to withstand the applied in-plane magnetic fields. In
the experiments so far, two different superconductors
have been used: NbTiN (Type-II superconductor) and Al
(Type-I). The first generation of the device used NbTiN
due to its much higher critical field. It was discovered,
however, that Al has two main advantages in terms of
higher interface quality and a type-I hard superconduct-
ing bandgap as compared to NbTiN. Higher interface re-
sults from capability of in-situ deposition of Al, which
suppress undesired sub bandgap density of states. Al as
type-I superconductor has an additional benefit of not
having issues with vortices disturbances created by mag-
netic field in type-II superconductor. This vortices are
suspected to turn the band gap into a ’soft gap’ which
degrades the conductance signal of MZMs[5, 10]. The de-
vice schematics of the first and latest generation of MZMs
nanowire are shown in fig. 4.

B. Signature of Majorana Fermions: Zero Bias
Peak

Low-bias transport of a normal metal-superconductor
interface is predominantly determined by the Andreev
reflection, in which incident electron is reflected as a hole
and a Cooper pair is created in the superconductor re-
sulting in a net charge transfer of 2e. Differential con-
ductance is related to the probability of electron reflected

as a hole (|reh|2) by:

G(V ) =
dI

dV
= 2G0|reh|2, (2)

where G0 = e2

h is the conductance quanta. If a zero
energy mode is present in the superconductor, the reflec-
tion amplitude is maximized |reh|2 = 1 similar to the
resonant tunneling from equal double barriers which re-
sults to perfect Andreev reflection and G = 2G0. Res-
onant tunneling measurement provides the local density
of states of this interface where the MZMs are expected
to reside.

The InAs/Al device tunneling schematic is shown in
lower part of fig.4, and the differential conductance re-
sults are shown in fig. 6. The conductance spectrum
shows the topological transition from trivial supercon-
ductor (the normal proximited superconductivity) into
the topological superconductivity with MZMs at critical

magnetic field, Bc =
√

∆2 + µ2 ≈ 0.7 Tesla. Zero bias
peak (ZBP) is not unique to MZMs, but further investi-
gations have eliminated the false positives coming from
e.g. local Andreev bound states, disorder-induced zero-
bias states, etc. Furthermore, the measured ZBP was
shown not to depend on the tunneling barrier height as
in the case of local Andreev bound states and is the char-
acteristic of robust topological MZMs[5, 10].

IV. FUTURE DIRECTIONS: TOWARDS
QUANTUM COMPUTING WITH MAJORANA

FERMIONS

The results published in [5] shows a very convincing
evidence of the Majorana bound states (MZMs) in the
semiconductor nanowire devices. The next step would
be to prove the possibility of creating a nanowire junc-
tion and readout for ’braiding’ operation. As mentioned
in the introduction, quantum computing operation is ob-
tained via exchaging the adjacent Majorana fermions and
this operations forms a ’weave’ pattern unique to that
particular operation. In 1D nanowire, however, there
is only one channel for the Majorana fermion to move
around. Therefore, a junction is required to allow one
Majorana to exit the channel, before switching its loca-
tion to the neighboring Majorana fermions (fig. 7. By
forming ’trenches’ on the substrate, network of nanowire
can be grown from the bottom-up to form what is called
a ’hashtag’ circuit (fig.8). Preliminary measurements of
this ’hashtag’ have shown phase coherent transport, and
therefore shows a very promising development for real-
world topological quantum computing in the near future.

V. CONCLUSION

This short report was intended to give a brief overview
of the physics of Majorana fermions, an ever-growing sub-
ject of interest, especially in condensed matter physics.
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FIG. 2: Semiconductor nanowire proximitized with s-wave superconductivity as magnetic field is increased.
Left:Trivial (normal s-wave) superconducting phase. Middle: Crossing of energy band occur as a result of

topological transition with delocalized Majorana across nanowire. Right: Re-opening of the gap into the topological
superconducting state with localized Majorana at the edges of nanowire (Majorana Zero Modes). ∆1 and ∆2 are

superconducting gap at k = 0 and kF which magnitude differ in the topological superconducting phase.[13]

FIG. 4: Upper: First generation of InSb/NbTiN
nanowire MZMs device[14]; Lower: Latest generation of

InSb/Al schematics (inset shows false-color electron
micrograph)[10].

We illustrated the fundamental principles in a simplified
toy model, first proposed by Kitaev, then discussed one
of the first experimental realisations and the methodolo-
gies used to find Majorana fermions by mapping Kitaev
p-wave superconductivity to semiconductor nanowires.
The devices and signatures resulting from Majorana Zero

Modes (MZMs) have been shown which shows a strong
indication of localized Majorana fermions in the nanowire
edges. This is the unique feature of the topological su-
perconducting phase. Furthermore, the current status of
realizing a scalable quantum computer using nanowires is

FIG. 5: Andreev resonant tunneling in
metal/superconductor interface in the presence of

MZMs or zero energy bound states[10].

being pursued, showing very promising results for a more
robust and fault tolerant topological quantum computer
using Majorana Fermions.
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Appendix A: Majorana’s Solution to the Dirac
Equation

The relativistic Dirac equation can be derived [18] by

replacing the classical Hamiltonian p̂2

2m + V (x̂, t) in the
Schrödinger Equation with the relativistic Hamiltonian√
p2 +m2, in which case the corresponding equation of

motion becomes

i
∂

∂t
ψ =

√
p2 +m2ψ.

To obtain a Lorentz invariant form of the equation, we
can rewrite p2 +m2 as the square of a different quantity,
p2+m2 = (α·p+α0m)2 for some objects α = (α1, α2, α3)
and α0. Upon squaring the quantity α · p + βm and
equating with p2 +m2, we obtain the relations{

α2
i = 1

{αi, αj} = 0
,

which can be satisfied by setting

α =

(
0 σ
σ 0

)
, α0 =

(
I 0
0 −I

)
.

The resulting Dirac equation is i ∂∂tψ = (α · p̂+α0m)ψ.
Since the αi’s are 4×4 matrices, the solutions ψ must be

4 component spinors. In the case of charged spin- 12 parti-
cles, which the Dirac equation was initially derived to de-
scribe, the components correspond to the two spin states
of the electron and the two spin states of the positron.
In the Weyl representation, with

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
,

the equation can be rewritten as (iγµ∂µ −m)ψ = 0 [19].

The choice of matrices γµ are not unique. In particu-
lar, as realised originally by Majorana in 1937, if the γ
matrices are chosen as

γ0 = i

(
0 −σ1

σ1 0

)
, γ1 = i

(
0 σ0

σ0 0

)

γ2 = i

(
σ0 0
0 −σ0

)
, γ3 =

(
0 σ2

−σ2 0

)

the solutions to the Dirac equation in this are real val-
ued and neutral. The spinor ψ now describes a spin- 12
particle which is its own antiparticle, a Majorana fermion
[9].


