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The integer quantum Hall effect concerns the transport properties of a 2-dimensional electron
system in the presence of a magnetic field. We analyze the theoretical underpinnings of this effect,
emphasizing in particular the role of disorder and topological considerations. We proceed to review
the classic experiment of von Klitzing et al. [1], which provided the earliest experimental confirma-
tion of exact quantization of Hall conductivity. Finally, we discuss metrological applications of the
quantum Hall phenomenon.

I. INTRODUCTION

In a 2-dimensional electron system (2DES), Ohm’s
Law J = σE gives the relationship between the applied
electric field and the induced current density at the level
of linear response theory, where the conductivity σ is a
rotationally-invariant 2× 2 matrix of the form

σ =

[
σxx σxy
−σxy σxx

]
. (1)

The components σxx, σxy are referred to as the longitu-
dinal and Hall conductivities, respectively. Remarkably,
it is observed that, when a strong magnetic field is ap-
plied orthogonal to the plane of the 2DES (see schematic
in Fig. 1(a)), the Hall conductivity varies stepwise with
the strength of the magnetic field (see Fig. 1(b)), with
plateaux at the universal quantized values

σxy =
eν

Φ0
, ν ∈ N . (2)

where we have defined the fundamental constant Φ0 =
2π~/e, known as the flux quantum. Moreover, the longi-
tudinal conductivities vanish precisely on these plateaux
(also seen in Fig. 1(b)), indicating the absence of lon-
gitudinal transport. This is the (integer) quantum Hall
effect (QHE).

The observation that the Hall conductivity is exactly
quantized as in equation (2) for any magnetic field
strength was first realized experimentally by von Klitzing
et al. [1]. Since then, a rich body of literature (see e.g.
[2]) has developed to provide a theoretical foundation for
this phenomenon, involving the confluence of a number
of important concepts, such as the role of disorder in lo-
calizing quantum states, and the relevance of topological
considerations. We elaborate upon these developments
below, beginning with an elementary description of a sin-
gle electron in the presence of a magnetic field.

II. THEORY

A. A First Approach: Landau Levels

The quantum Hamiltonian for a single particle in a
magnetic field B = ∇×A = B ẑ is given by

Ĥ =
1

2me

(
p̂ + eA(x̂, ŷ)

)2
, (3)
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FIG. 1. (a) Schematic of a Hall bar apparatus, with orthog-
onal B-field; a current is applied in the y-direction, and the
longitudinal (y-direction) and transverse (x-direction) voltage
are measured. (b) Hall resistance Rxy and longitudinal resis-
tance Rxx as a function of magnetic field strength; for the
quantum Hall system, σxx = 0 if and only if Rxx vanishes,
and σxy = R−1

xy . Figure taken from [3].

where one has p̂ = −i~
(
∂x, ∂y

)
for a system constrained

to the (x, y)-plane, and me and e are the electron mass
and charge. It will be advantageous to use Landau gauge

A(x, y) = xBŷ , (4)

whereupon the Hamiltonian can be written as

Ĥ =
1

2me

(
p̂2
x + (p̂y + eBx̂)2

)
. (5)

Evidently, the momentum py is a good quantum number,
so we may investigate product eigenstates of the form

ψky (x, y) = eikyyfky (x) , (6)

upon which the Hamiltonian acts as

Ĥψky =
1

2me

(
p̂2
x + (~ky + eBx̂)2

)
ψky

=
( p̂2

x

2me
+
meω

2
B

2

(
x̂+ ky`

2
B

)2)
ψky ,

(7)

where we have recalled the expression ωB = eB/me for
the cyclotron frequency of an electron in a uniform mag-
netic field, and we have implicitly defined the magnetic
length `B ≡

√
~/eB. This is manifestly the Hamiltonian
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for a 1-dimensional quantum harmonic oscillator (QHO)
centred at x = −ky`2B ; if we define operators

â =
1√

2~eB
(
p̂x − ieBx̂

)
, â† =

1√
2~eB

(
p̂x + ieBx̂

)
,

(8)
then we recover the typical QHO commutation relations,
and we can implement the standard QHO analysis. The
energy levels are En = ~ωB

(
n + 1

2

)
, where n ∈ N is

the eigenvalue of the number operator N̂ = â†â. Conse-
quently, if we neglect spin, then the operators p̂y and N̂
form a complete set of commuting observables, and we
can index all energy eigenstates ψn,ky (x, y) by the corre-
sponding quantum numbers (n, ky).

The eigenenergies of the system thus arrange them-
selves into highly degenerate Landau levels (LLs), in-
dexed by the quantum number n, with the degeneracy
corresponding to a continuum of possible momenta ~ky.
In reality, the Hall geometry has finite dimensions Lx, Ly,
so the momenta must be quantized, and we expect a cut-
off at large momenta, due to the non-zero lattice spac-
ing within a given material; the degeneracy is thus large
but finite. If we model the edges of the Hall sample with
an ‘infinite well’ confining potential, then the y-momenta
are quantized as ky ∈ 2π

Ly
N. Furthermore, since the eigen-

states in a given LL are harmonic oscillator eigenstates
centred at x = −ky`2B , the restriction |x| < Lx/2 can
be interpreted as a restriction |ky| < Lx/2`

2
B on allowed

momenta. The degeneracy in a single LL is then roughly

NLL =
Ly
2π

∫ Lx/2`
2
B

−Lx/2`2B
dk =

LxLy
2π`2B

=
BLxLy

Φ0
. (9)

1. From Landau Levels to the QHE

In Section II C, a fully quantum mechanical treatment
of the multi-particle QHE is given; however, our discus-
sion of LLs already allows for an intuitive semi-classical
derivation, following [4], in the case of integer filling frac-
tion ν ≡ N/NLL, interpreted as the number of filled LLs.
One such derivation is found in Appendix B, where we
assume a large sample, so that edge effects may be ne-
glected; it is seen that an applied electric field lifts the
degeneracy in each LL, and one recovers the correct ex-
pression for the conductivities. In reality, one cannot ne-
glect edge effects; in fact, the physics of the near-edge re-
gion is essential to an understanding of the QHE. We will
therefore introduce an approximately U-shaped confining
potential V (x), as depicted in Fig. 2(a), with a steep in-
cline near the edges of the sample in the x-direction; one
has

eVH = V (x+)− V (x−) , (10)

where x± are the positions of the edges, and VH is the
applied Hall voltage. In the previous section, the degen-
eracy in a single Landau level was indexed by momentum

(a)
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FIG. 2. (a) U-shaped confining potential; dots represent
states localized around a given x-position. (b) Deformation of
the U-shaped potential, due to applied voltage and impurities.
Figures taken from [4].

ky, or equivalently, by the equilibrium position −ky`2B of
the state in the x-direction; the eigenstates continue to
be localized in the x-direction in the presence of a uni-
form electric field. We may therefore assume that the
effect of the confining potential is to increase the energy
associated with the states localized near the edge, which
are referred to as edge states or edge modes, as depicted
in Fig. 2(a). (The unperturbed energy eigenstates local-
ized in the bulk are strongly suppressed near the edges if
`B � Lx, so the confining potential only slightly deforms
these states.)

If the potential can be approximated as linear in the
vicinity of the edges, so that

V (x) ≈ ∂V

∂x

∣∣∣
x=x±

(x− x±) , (11)

then one might classically anticipate that an electron lo-
calized near the edges should have velocity

v = − 1

eB

∂V

∂x

∣∣∣
x=x±

ŷ , (12)

since this satisfies the Lorentz force law; for a single
electron, this should also hold quantum mechanically by
Ehrenfest’s theorem. That is, the edge states result in
an effectively 1-dimensional current flowing at the edge
of the material, as though a wire were placed along the
periphery of the sample; since the current flows in one
direction, the edge states are said to be chiral.

If precisely an integer number ν ∈ N of LLs is filled
with non-interacting electrons, then the induced current
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is seen to be

I ≈ −νe
∫
dky
2π

vy(ky) =
ν

2πB

∫
dx

`2B

∂V

∂x
ŷ =

eνVH

Φ0
ŷ ,

(13)
from which we may immediately deduce the desired con-
ductivity in equation (2). We note that, as seen from the
above computation, the conductivity is actually insensi-
tive to the precise form of the potential in the interior,
provided that the potential is sufficiently weak in the
interior that the only states near the Fermi energy are
edge states (see Fig. 2(b)). This illustrates the crucial
role played by the edge states in charge transport; more-
over, this invariance to small variations in the potential
will be of particular interest in the next section, where
we consider the role of disorder.

B. Hall Plateaux and the Role of Disorder

So far, our analysis has only been applicable to the case
of integer filling fractions, and is thus unable to account
for the plateaux in the values of the Hall conductivity
that are observed as the magnetic field is varied. The
ingredient missing from the above discussion is the vital
role played by the impurities present in a realistic system.

Disorder in a system can be modelled by adding a
small, random electronic potential to the Hamiltonian; in
a quantum Hall system, provided that this random po-
tential is much smaller than the energy associated with
the electronic cyclotron motion, this can be treated in
perturbation theory. The disorder potential then leads to
splitting in the highly degenerate Landau levels, so that
the density of states, previously δ-function localized to
the LL energies, becomes broader and turns into bands,
as shown in Fig. 3(a). Between these bands reside only
the edge states, whose energies deviate significantly from
the LL energies.

The way in which disorder induces Hall plateaux, how-
ever, is through the mechanism of localization, wherein
quantum states are restricted to small regions of the to-
tal system, rather than diffusing throughout the system.
The genericity of localization in the presence of disorder
is a well-studied phenomenon (see e.g. [5–9]), including
in the case of the QHE [10]; most notably, in the cele-
brated tight-binding model

H = −t
∑
〈m,n〉

c†mcn +
∑
n

Unc
†
ncn (14)

of Anderson [5], with constant hopping t and on-site
terms Un which are i.i.d. random variables in some fixed
range Un ∈ [−W,W ], the energy eigenstates are found to
be localized states of the form

|ψ(r)|2 ∼ e−|r−r0|/ξ (15)

in the thermodynamic limit n→∞, provided that W is
larger than some critical value Wc. Here, ξ is understood
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FIG. 3. (a) Broadening of Landau levels due to microscopic
disorder. (b) States at the edges of the Landau bands are
localized, whereas states in the centre are extended; if the
Fermi energy lies between bands, then the conductivity lies
on a plateaux.

to represent the correlation length of such a state, giving
a characteristic length scale for the distribution of the
wavefunction. In the limite ξ → ∞, the state becomes
an extended state.

In the quantum Hall system, there is another way to
analyze the localization effect. Recall that a classical
electron in a magnetic field undergoes cyclotron motion

x(t) = x0 −R sin(ωBt+ φ) = x0 +
ẏ(t)

ωB

y(t) = y0 +R cos(ωBt+ φ) = y0 −
ẋ(t)

ωB
;

(16)

one may therefore argue that the quantized versions of
the ‘centre position’ variables x0, y0 are given by

x̂0 = x̂− 1

ωB

d

dt
ŷ , ŷ0 = ŷ +

1

ωB

d

dt
x̂ , (17)

whence one finds from the Schrödinger equation, and the
canonical commutation relations for x̂, ŷ and their deriva-
tives, that

i~ˆ̇x0 = i`2B
∂V (x̂, ŷ)

∂y0
, i~ˆ̇y0 = −i`2B

∂V (x̂, ŷ)

∂x0
. (18)

Thus, in expectation value, a single electron moves along
equipotential contours. Generically, the equipotential
contours of a random potential will be closed orbits; con-
sequently, an electron restricted to move along such a
contour will be bound to a small region, whose size is
comparable to the distance between impurities. In par-
ticular, the states that are most localized are those re-
stricted to equipotentials contours near the peaks and
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troughs of the disorder potential, which are also at the
upper and lower edges of the Landau band (see Fig.
3(b)).

The relevance of the localization phenomenon comes
from the fact that, to a first approximation, a localized
state does not transport charge, and therefore does not
contribute to the current. If the Fermi level lies within
the region of extended states, then the conducting elec-
trons can move freely, as in a metal. However, if we
increase the electron density in the system or reduce the
magnetic field, so that the Fermi level lies within the
region of localized states, we do not gain any current-
carrying states (and the material is said to be an Ander-
son insulator); therefore, the conductivity remains the
same, a fact which is responsible for the plateaux ob-
served over a broad range of filling fractions ν (see Fig.
3(b)). The region between the bands of extended states
is referred to as a mobility gap. The precise role of dis-
order in Hall quantization is made manifest in a classic
argument due to Laughlin [11]; a presentation of this ar-
gument can be found in Appendix D.

C. QHE from Topology

Insensitivity of the QHE to deformations of the system
may be recognized as evidence that this effect is topologi-
cal in origin. In the following, we will give a schematic ar-
gument [12] that the Hall conductivity σxy is an example
of a topological invariant known as a TKNN invariant.
We draw upon the discussion from [4, 13, 14].

Consider a particle on a rectangular lattice, with lattice
constants ax, ay, and general lattice vectors

Rmn = maxx̂ + nayŷ , m, n ∈ Z. (19)

The primitive lattice vectors for the reciprocal lattice are
evidently b1 = 2π

ax
x̂, b2 = 2π

ay
ŷ, and the first Brillouin

zone is simply the region k ∈ [− π
ax
, πax )× [− π

ay
, πay ). In-

variance of the Hamiltonian H to lattice translations im-
plies that we have energy eigenstates of the Bloch form

ψk(x) = uk(x)eik·x ,

uk(x + axx̂) = uk(x + ayŷ) = uk(x) .

We thus have effective momentum-dependent Hamilto-
nian Hk = e−ik·xHeik·x such that Hk|uk〉 = Ek|uk〉. It
is then natural to define the current operator to be the
charge multiplied by the ‘group velocity’ operator for a
wavepacket of Bloch eigenstates; namely, we define

J = e× 1

~
∂Hk

∂k
. (20)

Suppose that the Hamiltonian for the system neglects
electron-electron interactions, and that the Fermi energy
EF lies in a gap between bands; in reality, we have seen

that the latter condition should actually refer to a mo-
bility gap. In Appendix E, the Kubo formula

σxy = i~
∑
n 6=m

〈m|Jy|n〉〈n|Jx|m〉 − 〈m|Jx|n〉〈n|Jy|m〉
(En − Em)2

.

(21)
for the conductivity in the energy eigenstate |m〉 of a
quantum mechanical system was derived, where |n〉 are
eigenstates of the Hamiltonian with energy eigenvalues
En. This formula must be somewhat modified to de-
scribe the conductivity in the many-body ground state;
using the current defined in equation (20), the appropri-
ate reformulation for our purposes is

σxy =
ie2

~
∑

Eα<EF<Eβ

∫
d2k

(2π)2

d2k′

(2π)2
S(uαk , u

β
k′) , (22)

where

S(uαk , u
β
k′) =

〈uαk |∂Hk

∂ky |u
β
k′〉〈u

β
k′ |∂Hk

∂kx |uαk〉
(Eβ(k′)− Eα(k))2

− 〈u
α
k |∂Hk

∂kx |u
β
k′〉〈u

β
k′ |∂Hk

∂ky |uαk〉
(Eβ(k′)− Eα(k))2

.

(23)

Here, the integrals are over the Brillouin zone, while the

sum is over pairs of states uβk′ , u
α
k above and below the

Fermi energy respectively. A simple manipulation em-
ploying the completeness relation∑

β

∫
d2k′

(2π)2
|uβk′〉〈u

β
k′ | = 1−

∑
α

∫
d2k

(2π)2
|uαk〉〈uαk | (24)

then yields

σxy =
ie2

~
∑

Eα<EF

∫
d2k

(2π)2

[
〈∂u

α
k

∂ky
|∂u

α
k

∂kx
〉 − 〈∂u

α
k

∂kx
|∂u

α
k

∂ky
〉
]
.

(25)
We would like to use the Kubo formula to relate the

Hall conductivity to a fundamental topological invariant
of the system. To this end, we define the quantity

Aj(α,k) = −i〈uαk |
∂

∂kj
|uαk〉 ; (26)

it can be seen that this is nothing other than an Abelian
connection over the Brillouin zone for the band α, a so-
called Berry connection, analogous to the gauge field of
classical electromagnetism. In particular, we see that un-
der a local phase shift of the Bloch states uk → eiω(k)uk
with ω(k) a generic smooth function, one has

Aj(α,k)→ Aj(α,k) +
∂ω

∂kj
, (27)

the expected behaviour for a connection under a U(1)
gauge transformations. The curvature tensor correspond-
ing to this connection is

Fij(α) =
∂Aj(α,k)

∂ki
− ∂Ai(α,k)

∂kj

= −i〈∂u
α
k

∂ki
∣∣∂uαk
∂kj
〉+ i〈∂u

α
k

∂kj
∣∣∂uαk
∂ki
〉 ,

(28)
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so we see instantly that

σxy =
e2

~
∑
α

∫
dkxdky

(2π)2
Fxy(α) . (29)

By an extension of the Gauss-Bonnet theorem, the in-
tegral of the Berry curvature Fxy(α) over the Brillouin
zone is 2πCα, with Cα an exact integer, referred to as
the Chern number. We thus recover Hall quantization

σxy =
e2

2π~
∑
α

Cα ∈
e2

2π~
Z . (30)

This argument reveals something deep about the impor-
tance of topological order in determining the properties
of a material.

III. EXPERIMENTAL REALIZATIONS

Experimental probing of the QHE was instigated in
[15], where the Hall conductivity was measured for the
2-dimensional electron gas (2DEG) formed in a MOS in-
version layer (c.f. below). Similar techniques were subse-
quently employed in the seminal work of von Klitzing [1],
where the QHE plateaux of Fig. 1 were first observed;
this work was honoured with the Nobel Prize in physics
in 1985. Even though some aspects of the QHE, such
as the vanishing of the longitudinal resistance, had been
known prior to the work of von Klitzing [15, 16], the
quantized Hall resistance had not been theoretically an-
ticipated. As discussed above, this discovery heralded the
pervasive role of topology in condensed matter physics,
which remains and active area of research (e.g. in studies
of the fractional Hall effect and the quantum spin Hall ef-
fect). In the following, we provide some experimental de-
tails regarding the von Klitzing experiment; more recent
experimental investigations involving graphene systems
include [17, 18] (see Appendix F).

A. 2DEG in the inversion layer of a MOSFET

The main experimental challenge in observing the
QHE is the manufacture of a 2DEG, whose transport
properties in the presence of a magnetic field may then
be probed. This can be realized using a quantum well
with width comparable to the de Broglie wavelength of
the electron. This splits the energy spectrum into dis-
tinct subbands; at sufficiently low temperatures, only the
lowest energy subband is occupied, and the electrons are
effectively confined to 2 dimensions. In [1], the n-type
inversion layer of a Metal-Oxide-Semiconductor-Field-
Effect-Transistor (MOSFET) was used (see schematic in
Fig. 4). A metallic gate electrode is located above the
p-type silicon substrate, which is electrically insulated by
an SiO2 layer. This setup allows the charge carrier den-
sity of the inversion layer to be adjusted by varying the
gate voltage.
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Properties of Semiconductor Surface Inversion Layers in the
Electric Quantum Limit*

FRANK STERN AND W. E. HowARD
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The strong surface electric Geld associated with a semiconductor inversion layer quantizes the motion
normal to the surface. The bulk energy bands split into electric sub-bands near the surface, each of which is
a two-dimensional continuum associated with one of the quantized levels. We treat the electric quantum
limit, in which only the lowest electric sub-band is occupied. Within the effective-mass approximation, we
have generalized the energy-level calculation to include arbitrary orientations of (1) the constant-energy
ellipsoids in the bulk, (2) the surface or interface, and (3) an external magnetic Geld. The potential asso-
ciated with a charged center located an arbitrary distance from the surface is calculated, taking into account
screening by carriers in the inversion layer. The bound states in the inversion layer due to attractive Cou-
lomb centers are calculated for a model potential which assumes the inversion layer to have zero thickness.
The Born approximation is compared with a phase-shift calculation of the scattering cross section, and is
found to be reasonably good for the range of carrier concentrations encountered in InAs surfaces. The low-
temperature mobility associated with screened Coulomb scattering by known charges at the surface and
in the semiconductor depletion layer is calculated for InAs and for Si (100) surfaces in the Born approxima-
tion, using a potential that takes the inversion-layer charge distribution into account. The InAs results
are in good agreement with experiment. In Si, but not in InAs, freeze-out of carriers into inversion-layer
bound states is expected at low temperatures and low inversion-layer charge densities, and the predicted
behavior is in qualitative agreement with experiment. An Appendix gives the phase-shift method for two-
dimensional scattering and the exact cross section for scattering by an unscreened Coulomb potential.

I. INTRODUCTION

A N e-type inversion layer is produced at the surface
of a p-type semiconductor when the energy bands

near the surface are bent down enough that the bottom
of the conduction band lies near or below the Fermi
level. This band bending can be introduced by applying
an electric Geld to the surface, in a conGguration like
that shown in Fig. 1, or by the presence of positive
charges at or near the surface associated with impurity
ions or other Coulomb centers.

The electric field associated with an inversion layer
is strong enough to produce a potential well whose
width in the s direction, the direction perpendicular
to the surface, is small compared to the wavelengths
of the carriers. Thus the energy levels of the electrons
are grouped in what we call electric sub-bands, each
of which corresponds to a quantized level for motion

GATE
VOLTAGE

"
METALLIC GATE ELECTRODE

INSULATOR

n-TYPE
DIFFUSED
CONTACT

n- TYPE
INVERSION
LAYER

p-TYPE SEMICONDUCTOR

FIt. 1. Schematic metal-insulator —semiconductor structure
used for inversion-layer experiments. The inversion-layer electron
concentration is changed by changing the gate voltage. The
inversion-layer conductance is measured by applying a small
potential diGerence between the n-type contacts and measuring
the resulting current.

* Some of the results of this work were presented at the Chicago
meeting of the American Physical Society, March, 1967; Bull.
Am. Phys. Soc. 12, 2/5 (1967).
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in the s direction, with a continuum for motion in the
plane parallel to the surface.

The quantization of energy levels in inversion layers
has been anticipated for many years, ' but the two-
dimensional nature of the electron gas when only one
electric sub-band is occupied was only recently con-
Grmed by experiments on e-type inversion layers on a
(100) surface of silicon in the presence of a magnetic
Geld perpendicular to the surface. '

The principal purpose of this paper is to study the
e8ect of charged centers near the surface on the
properties of electrons in the inversion layer. To do
this we Grst Gnd the average potential due to such a
charge seen by the inversion layer electrons, including
for the first time the effect of screening in this quasi-
two-dimensional system. From this potential we Gnd
both the scattering cross section of the electrons and
the inversion-layer bound states that result when the
potential is attractive.

The calculated scattering rate is compared with
experimental results on inversion-layer mobility at
low temperatures in InAs' and in Si.4 These experi-
ments measure the conductance between the e-type
contacts of Fig. 1, and determine the inversion-layer
electron mobility by using the Hall e6ect4 or magneto-
resistance. ' Thus an experimental curve of inversion-

J. R. Schrieffer, in Semiconductor Surface Physics, edited by
R. H. Kingston (University of Pennsylvania Press, Philadelphia,
Pennsylvania, 1957),p. 55.

2 A. B. Fowler, F. F. Fang, W. E. Howard, and P. J. Stiles,
Phys. Rev. Letters 16, 901 (1966); in Proceedings of the Inter-
national Conference on the Physics of Semiconductors, kyoto, 1966,
Q'. Phys. Soc. Japan Suppl. 21, 331 (1966)g.

8S. Kawaji and Y. Kawaguchi, in Proceedings of the Inter-
national Conference on the Physics of Semicondlctors, Eyoto, 1W6,
PJ. Phys. Soc. Japan SuppL 2l. , 336 (1966)).

4 F. F. Fang and A. B. Fowler (to be published).
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FIG. 4. Schematics of a metal-insulator-semiconductor struc-
ture, with an n-type inversion layer as 2DEG. The traditional
MOSFET uses silicon as substrate and SiO2 as insulator [19].

Fig. 5 shows the MOSFET band diagram near the sur-
face of the substrate. The z-axis is chosen to be perpen-
dicular to the device, starting at the substrate-insulator
interface (z = 0 Å) and going deeper into the substrate
for increasing z-values. Band-bending is observed at the
junction; the lower edge of the conduction band Ec is at
a minimum near the substrate-insulator interface, with
precise shape determined by the gate voltage. The curve
g(z) represents the charge carrier density for electrons in
the lowest energy subband E0, which becomes localized
at the interface, leading to the 2DEG [19]. The energies
E1 and E2 of higher subbands are also shown.
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layer mobility versus inversion-layer free-carrier con-
centration can be constructed.

Because the inversion layer is thin —of the order of
100 4 or less—the mobility is sensitive to scattering
associated with the surface, and thus provides a power-
ful tool for studying surface-scattering mechanisms.

If the Coulomb centers near the surface are positively
charged, they attract electrons, and in general lead
to bound states. The properties of these bound states
depend strongly on the amount of screening by in-
version-layer electrons, and are among the most
interesting results of our work. In particular, we 6nd
that in Si inversion layers the bound states in the
absence of screening are deep enough to trap the 6rst
electrons which enter the inversion layer at low tem-
peratures. As the gate voltage is increased and more
electrons are added, some will enter the electric sub-
band and will contribute to screening, thus weakening
the attractive potential. At a sufficiently high inversion-
layer electron concentration, the screening will reach
its full value, and the energy levels will be so shallow
that the orbits of inversion-layer electrons bound to
adjacent Coulomb centers overlap. Vnder these condi-
tions the bound states merge with the bottom of the
lowest electric sub-band and effectively disappear. In
InAs, on the other hand, the bound states merge with
the bottom of the lowest electric sub-band even in the
absence of screening, and effects associated with bound
states are not expected.

Except for the calculation of Landau levels in
Appendix A, all of our results apply to zero magnetic
field. In addition we restrict ourselves to low tempera-
tures, for which only the lowest electric sub-band is
occupied by electrons. We call this limiting case the
electric quantum limit.

The organization of the remainder of the paper is
summarized by the following Table of Contents:

Section 2.
3.
4

5.

Electric Sub-bands
Coulomb Potentials and Screening
Bound States
A. General Considerations
B. Bound States for a Model Potential
Impurity Scattering
A. Born Approximation
B. Validity of the Born Approximation
Comparison with Experiment
A. InAs
B. Si
Discussion and Conclusions

Appendix

Appendix

Appendix

A. Landau Levels

B. Screened Coulomb Potential

C. Two-Dimensional Scattering

2. ELECTRIC SUB-BANDS

In this section we consider the energy levels of
inversion-layer electrons moving in a potential well
which depends only on s, the distance from the surface.
We 6nd the effective masses for motion parallel to the
ggrf@ce g,nd the corresponding one-dimension@1 Scb.ro-
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FIG. 2. Surface potential well and surface charge distribution
for a representative Si surface. The curve labeled E, gives the
energy of the bottom of the conduction band near the semi-
conductor-insulator interface at @=0. Also shown are the position
of the Fermi level for 10" electrons/cm' in the inversion layer,
and the positions of the 6rst two excited states, as calculated by
Howard {Ref. 10). The zero of energy is taken to be the bottom
of the lowest electric sub-band. The upper curve is the charge
distribution of carriers in the lowest electric sub-band, taken from
Ref. 10. Also shown is a vertical line at the average inversion-layer
thickness as computed from the approximate relations given in
Eqs. {22) and {42).

dinger equation for motion perpendicular to the surface
for an arbitrary surface orientation and for arbitrary
bulk. ellipsoidal constant-energy surfaces.

The electron potential well near the semiconductor-
insulator interface is shown for a typical case in Fig. 2.
We wish to 6nd the energy levels E and envelope
functions f belonging to self-consistent solutions of the
effective-mass equation

$~0 as 3'~ ~, (3a)

where ~,. and ff:;, are the static dielectric constants of
the semiconductor and the insulator, respectively.

The effective-mass equation (1) is perhaps a poorer
approximation in the inversion-layer problem than in
some other applications, since the width (in the s
direction) of the inversion-layer envelope function f
is only of the order of 20 A in some cases, and therefore
not much larger than atomic dimensions, The boundary

where T is the kinetic-energy operator and p is the
electrostatic potential, which in turn is the solution of
Poisson's equation

Py = —4n.p/~.

Here p is the charge density given by the fixed charge
in the depletion layer plus the charge in the inversion-
layer states, and ~ is the dielectric constant. The
boundary conditions on P are

FIG. 5. Potential well (Ec) near the substrate-insulator inter-
face (z = 0 Å). The charge carrier density g(z) of the lowest
subband E0 has a maximum near the surface, resulting in the
2DEG [19].
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1. The Hall Bar and Four-Terminal Measurement

In order to accurately determine the longitudinal and
transverse resistances, one needs to perform a precise
measurement of both the current and voltage in the Hall
bar system. Starting with the longitudinal resistance, one
could imagine applying the simple setup of Fig. 6(a).
The 2DEG is connected with two ohmic contacts to a
voltage supply U and the current meter I. The equiva-
lent circuit in Fig. 6(b) shows the additional measured
resistances of the current meter RiC, the powersupply
RiV and the two contacts Rcontacts, which would lead to
inaccurate measurement results. A much improved re-
sult can be achieved by using the so called four-terminal
measurement seen in Fig. 6(c). Here, the voltage supply
is changed to a current source I, which drives a constant
current through the 2DEG. A high impedance-voltmeter
V is used to measure the longitudinal voltage drop of the
2DEG. Its contacts (Fig. 6(d)) have ideally no voltage
drop due to the high impedance measurement.152 Diffusive classical transport in two-dimensional electron gases

Fig. 10.8 (a) Two-terminal measure-
ment with a bar geometry. (b) Equiv-
alent circuit with contact resistances
Rcontact and the internal resistances
of the voltage source RiV (typically
< 50 Ω) and of the ammeter RiC

(typically ≤ 10 Ω). (c) Four-terminal
measurement with a bar geometry.
(d) Equivalent circuit with contact re-
sistances Rcontact, the internal resis-
tance of the voltmeter RiV (typically
> 10 MΩ) and the internal resistance of
the current source (typically > 10 MΩ).

I

(a) (b)

(c) (d)

I
U

j

E

I

j

E

U

L

U

R2DEG Rcontact

RiCRiV

Rcontact

U

Rcontact
no
current

Rcontact

RcontactRcontact R2DEG

RiV

RiCI

I
W

In general, the setup shown schematically, which is called a two-terminal
measurement, will not lead to the measurement of the two-dimensional
electron gas resistance, because the resistances of the electrical contacts,
Rcontact, the internal resistance of the voltage source, RiV, and that of
the ammeter, RiC, are connected in series. According to the equivalent
circuit shown in Fig. 10.8(b) we obtain for the measured resistance R =
U/I = R2DEG + 2Rcontact + RiV + RiC. A significant improvement can
be achieved using the four-terminal arrangement depicted schematically
in Fig. 10.8(c). Two narrow side contacts have been attached to the
bar which leave the current distribution and the electric field essentially
undisturbed, but allow the voltage to be picked up along the electron
gas. In the measurement setup the voltage source has been replaced by
a current source which delivers a well-defined current I independent of
the size of the load resistance. The resistances of the voltage contacts do
not play a role, because no current will flow through the voltmeter due
to its very large internal resistance. As a consequence, the electric field
in the two-dimensional electron gas is given by |E| = U/L, the current
density is |j| = I/W and therefore the specific resistivity takes the value

ρxx =
U

I

W

L
.

If a magnetic field is applied normal to the plane of the two-dimensional
electron gas, the pattern of field lines will be changed as depicted in
Fig. 10.9. Near the current contacts which are equipotential lines of the
electric field, the equipotentials are forced to run parallel to the edge of
the contact, roughly as long as the distance from the contact is less than
the width W of the sample. The field lines of the current density, how-
ever, must be at the Hall angle relative to the direction of the electric
field. Far away from the current contacts (much further than W ) the
edges of the sample force the field lines of j into a direction parallel to

FIG. 6. (a) Two-terminal measurement for a 2DEG. (b)
Equivalent circuit showing the additional measured resis-
tances, which lead to inaccurate results. (c) Four-terminal
measurement. (d) Equivalent circuit which allows the resis-
tance measurement of only the 2DEG [20].

For the measurement of the transverse Hall resistance,
one adds two additional contacts on the transverse edges
of the 2DEG (as seen in Fig. 1), leading to the typical
Hall bar geometry. Using the same principle, one achieves
reasonably good values for the Hall voltage drop and the
Hall resistance.

IV. APPLICATIONS

The robustness of the Hall quantization to microscopic
disorder and changes in the macroscopic properties of a
material makes the measurement of the Hall conductiv-
ity an appealing metrological standard. The relation be-
tween the fine structure constant α and the von Klitzing
constant RK is given by

RK ≡
2π~
e2

=
µ0c

2α
. (31)

In SI, the vacuum permeability µ0 and the speed of light
are fixed constants; thus, the fine structure constant can
be inferred directly from a measurement of RK . The op-
erative impediments to this method are then limitations
in how well the precision of a reference resistor can be
maintained. At present, two electrical units need to be
realized in terms of the metre and the kilogram in order
to make electrical units measurable in the SI. Generally,
the ohm (Ω) and the watt (W ) are chosen, as these units
can be most accurately determined experimentally [21].
Due to a theorem of Thompson and Lampard [22], the ca-
pacitance of a particular class of capacitor can be related
to a single length measurement. With this calculable ca-
pacitance, the resistance of a resistor can be determined
through bridge techniques [23], with a precision of up to
1 part in 108, about two orders of magnitude less precise
than the reproducibility of the von Klitzing constant. Fi-
nally, a DC current comparator bridge may be used to
determine RK relative to the reference resistance. This
procedure constitutes the second most accurate method
for the determination of α; the most accurate involves
comparing the experimentally observed anomalous mag-
netic moment ae of the electron to the famous QED pre-
diction, evaluated up to tenth order in [24].

Historically, the QHE has also been used to define the
SI unit of resistance, from which all other electric units
must be derived. However, this definition is likely to be
abrogated during the revision of the International System
of Units, to take place in early 2019, wherein fixed values
will be assigned to seven physical constants, including
the Planck constant and the elementary charge, thereby
making the von Klitzing constant a defined quantity (see
Appendix G for further discussion).
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Appendix A: Classical Hall Effect

At the classical level, one can analyze the Hall effect
by considering the average motion of a single electron
in a Hall bar geometry with orthogonal magnetic field
B = Bẑ and in-plane electric field E = Ex̂. The Lorentz
force law, modified by a Drude model-type friction term,
gives

me
d

dt
〈v〉 = −e

(
E + 〈v〉 ×B

)
− m

τ
〈v〉 , (A1)

where 〈v〉 is an ensemble average for the electron velocity,
me is the electron mass, and τ is the mean free time. At
equilibrium, d

dt 〈v〉 = 0, so the above yields

0 = −eEx − eB〈vy〉 −
m

τ
〈vx〉

0 = −eEy + eB〈vx〉 −
m

τ
〈vy〉 ,

(A2)
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that is,

e

[
Ex
Ey

]
= −

[
m/τ eB
−eB m/τ

] [
〈vx〉
〈vy〉

]
. (A3)

Given that the current is J = −ne〈v〉, we have immedi-
ately that

E =
1

ne2

[
m/τ eB
−eB m/τ

]
J ≡ ρJ . (A4)

We have therefore found longitudinal and Hall resistivi-
ties

ρxx =
m

ne2τ
, ρxy =

B

ne
=
mωB
ne2

, (A5)

where ωB = eB/m denotes the typical cyclotron fre-
quency for an electron in a uniform magnetic field. Note
that the Hall resistivity varies linearly with the magnetic
field B in the classical case, rather than stepwise.

Appendix B: Landau Levels with Constant Electric
Field and the QHE

The analysis of a single electron in the presence of a
magnetic field, discussed in Section II A, may be repeated
with the addition of an in-plane electric field E = Ex̂,
implemented through electrostatic potential energy term
Φ(x, y) = −Ex. The Hamiltonian is thus modified to

Ĥ =
1

2me

(
p̂2
x + (p̂y + eBx̂)2

)
− eEx̂ . (B1)

The momentum py is still a good quantum number, so
we can again consider product eigenstates as in equation
(6), upon which the Hamiltonian acts as

Ĥψky =
[ 1

2me

(
p̂2
x + (~ky + eBx̂)2

)
− eEx̂

]
ψky

=
[ p̂2

x

2me
+
meω

2
B

2

(
x̂+ ky`

2
B −

meE

eB2

)2]
ψky

+
[~kyE

B
− mE2

2B2

]
ψky .

(B2)

This is now a QHO Hamiltonian with a trivial offset in
the energy; the energy eigenvalues are then

En,ky = ~ω2
B

(
n+

1

2

)
+

~E
B
ky −

mE2

2B2
, (B3)

which breaks the degeneracy in each LL.
We can use the above to derive the QHE for the case

of integer filling fraction ν, so that the Fermi energy EF
lies between Landau levels. We assume that the sample
is sufficiently large that edge effects can be neglected; the
applied Hall voltage then manifests as a uniform electric
field E = Ex̂ throughout the sample, the scenario that
we have just analyzed. (In reality, the electrostatic po-
tential within the bulk will not be exactly linear, due to

impurities and edge effects; see Fig. 7.) Hamilton’s equa-
tions yield meẋ = p+eA, and the sensible single-electron
current operator is Î = −eˆ̇x; in second quantization, this
becomes

Î = − e

me

∑
n,ky

〈ψn,ky |
(
− i~∇ + eA

)
|ψn,ky 〉c†n,kycn,ky ,

(B4)
where we have obviously continued to neglect spins. In
Landau gauge, we must therefore evaluate expectation
values

− i~〈ψn,ky |∂x|ψn,ky 〉 , −i~〈ψn,ky |
(
∂y +

ieBx̂

~

)
|ψn,ky 〉 .

(B5)
The first quantity vanishes, since the momentum expec-
tation value in an eigenstate of a QHO is zero. The latter
yields

~ky − eB
(
ky`

2
B +

meE

eB2

)
=
meE

B
, (B6)

given that the QHO states are centred at −ky`2B + meE
eB2 .

FIG. 7. Approximate bending of Landau levels in a 2DES.
In each diagram, the pink curve represents the Hall poten-
tial. The upper and lower insets illustrate the differentiation
between compressible and incompressible regions. Diagrams
(a) and (d) illustrate the case of a 2DES in thermal equilib-
rium, diagrams (b) and (e) the case of a small applied Hall
voltage, and diagrams (c) and (f) the case of a large applied
Hall voltage. Figure taken from [3].

If we neglect electron-electron interactions, then the
many-body ground state is simply a Slater determinant
of the eigenstates ψn,ky such that n ∈ {1, 2, . . . , ν}. The
expectation value for the current operator is then

〈GS|Î|GS〉 = − e

me
ŷ

ν∑
n=1

∑
ky

(meE

B

)
= − eν

Φ0
ELxLyŷ

(B7)
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where we have used the result of equation (9) (neglecting
spin degeneracy). It follows that the expectation for the

current density is Ĵx = 0, Ĵy = −eEν/Φ0, from which
we may deduce the desired conductivities

σxx = 0 , σxy =
eν

Φ0
. (B8)

In addition to eliding the role of edge states in the
QHE, this derivation is also unsatisfactory in that it ne-
glects the two-fold degeneracy that should be associated
with spin-1/2 particles. The reason that this is generally
a reasonable approximation is that the electron spins will
also lead to a Zeeman splitting [20]

E → E ± 1

2
gµBB . (B9)

Since we are interested in the strong field and low tem-
perature regime, the energy cost associated with flipping
a given spin is typically very large, so we may neglect the
spin degeneracy.

Appendix C: Landau Level Wavefunctions in
Symmetric Gauge

Although it has been utilitarian to use Landau gauge
when approaching the problem of a single particle in
a magnetic field, changing to a rotationally symmetric
gauge may also provide some insight; in particular, it
will be valuable for analyzing the rotationally symmet-
ric Corbino disk geometry of Appendix D. We therefore
choose to work in symmetric gauge

A = −yB
2

x̂ +
xB

2
ŷ = −1

2
r×B . (C1)

We may anticipate that angular momentum Lz = −i~∂φ
should be a good quantum number; on states of the form
ψm(r, φ) ∼ eimφf(r), the Hamiltonian acts as

Ĥψm =
1

2me

(
p̂2
r + (

~m
r̂

+
eB

2
r̂)2
)
ψm

= − ~2

2mer
∂r(r∂r)ψm

+
(meω

2
B

8
r̂2 +

~mωB
2

+
~2m2

2mer̂2

)
ψm .

(C2)

Anticipating a wavefunction damped at large radii for
the sake of normalizability, we may define without loss

of generality f(r) = g(r)e−r
2/4`2B . The time-independent

Schrödinger equation then yields

g′′(r) +
1

r

(
1− r2

`2B

)
g′(r)− m2

r2
g(r)

=
( (m+ 1)meωB

~
− 2meE

~2

)
g(r) .

(C3)

Assuming a terminating series solution g(r) =
∑
k ckr

k,
one finds recurrence relation

(
(k+2)2−m2

)
ck+2 =

2me

~2

(
(m+k+1)

~ωB
2
−E

)
ck. (C4)

The series must terminate at both sufficiently large and
small (possibly negative) k; if k0 is the first index such
that ck0 6= 0, then we must have k0 = −2±m. We then
have ck0 , ck0+2, . . . , ck0+2j non-zero for some j ≥ 0, and
ck0+2j+2 = 0; for this to be true, we must have

E =
~ωB

2
(m+ k0 + 2j + 1)

=
~ωB

2
(m±m+ 2j + 1) ,

(C5)

which are indeed the previously determined Landau level
energies. In particular, the lowest Landau level (LLL)
corresponds to taking the negative sign and j = 0; in
this case, c−m−2 is the only non-zero coefficient in our
series solution, and we have eigenfunction

ψm,LLL ∼ eimφrme−r
2/4`2B . (C6)

Appendix D: QHE from Gauge Invariance

Although it is intuitively clear from the discussion in
Section II B that the existence of Hall plateaux can be ex-
plained through localization whilst the Fermi energy lies
within a ‘mobility gap’ in the spectrum, it remains un-
clear why the Hall resistivity at these plateaux takes the
observed values ρxy = 2π~/νe2, since these values were
naively derived with the assumption that all states in the
filled Landau levels should be involved in charge trans-
port. The apparent robustness of the quantum Hall state
to the macroscopic characteristics of the system and the
effects of disorder has motivated a formulation of this
effect on the general grounds of gauge invariance. We
present such an argument, initially due to Laughlin [11]
and revised by Halperin [25], which integrates the pre-
vious discussion regarding the role of localized states in
preserving exact Hall quantization, following the discus-
sion in [4].

Given the observed insensitivity of the QHE to the
global geometric features of the sample, we may choose
for the purposes of the following argument a ‘Corbino
disk’ geometry, consisting of a two-dimensional conduc-
tive annulus encircling a solenoid with magnetic flux Φ,
as depicted in Fig. 8. The disk is also subject to a uni-
form magnetic field B. The vector potential throughout
the disk can be taken to be

A(r) = Aφ(r)φ̂φφ =
(Br

2
+

Φ

2πr

)
φ̂φφ . (D1)

If impurities are sufficiently small to be neglected for the
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FIG. 8. Corbino disk geometry with magnetic field B,
threaded by flux Φ. Figure taken from [4].

time being, the Hamiltonian is then

HΦ =
1

2m

[(
pr + eAr

)2
+
(
pφ + eAφ

)2]
=

1

2m

[
− ~2

r
∂r
(
r∂r
)

+
(
− i~

r
∂φ +

eBr

2
+

eΦ

2πr

)2]
(D2)

If the flux Φ is taken to vanish, then we simply have the
typical QHE Hamiltonian; in this case, the LLL wave-
functions derived in symmetric gauge (see Appendix C)
are of the form

ψm(r, φ) ∼ eimφrme−r2/4`2B , m ∈ Z . (D3)

In particular, these wavefunctions are peaked near
rmax ≈

√
2m`B . (In fact, our analysis has neglected the

fact that the Corbino disk has inner and outer bound-
aries, so the Hamiltonian should actually have confin-
ing potentials at these edges; however, the wavefunctions
which are peaked within the available radial range of the
disk are suppressed at these boundaries, so we may as-
sume that the Corbino disk supports energy eigenstates
which are only slight deformations of the typical LLL
states.) If Φ is non-zero, one can verify that the LLL
eigenstates are generalized to

ψm ∼ eimφrm+eΦ/2π~e−r
2/4`2B . (D4)

The naive interpretation is that an increase in the flux
Φ should result in outward radial motion of the electron,
or charge transport.

We can attempt to ‘gauge away’ the non-zero flux term
from the Hamiltonian, meaning that we can perform a
gauge transformation of the form

ψ(r, φ)→ ψ̃(r, φ) = e−ieΦφ/2π~ψ(r, φ) (D5)

on our wavefunctions, whereupon acting with the Hamil-
tonian HΦ on ψ̃ is tantamount to acting with the Hamil-
tonian HΦ=0 on the state ψ. This simply amounts to

choosing a more convenient gauge in which to approach
the quantum mechanical problem, wherein an explicit
contribution of the flux to the energy spectrum is now
absent. For an extended state, whose wavefunction ψ
is non-vanishing throughout the disk, one sees that for
such a gauge transformation to leave the wavefunction
single-valued, one requires eΦ

2π~ ∈ Z; that is, Φ must be
an integer multiple of the flux quantum Φ0. On the other
hand, for a localized state, we can choose the position of
the branch cut for the phase such that it coincides with
a region where the wavefunction vanishes; thus, we have
no such quantization criterion in this case. As a result,
we see that the energies of localized states are insensitive
to the flux Φ, whereas those of the extended states are
sensitive to the non-integer part of Φ/Φ0.

One might expect, therefore, that if the system be-
gins in an energy eigenstate ψm, and Φ is increased from
zero to Φ0, then the system will end in the state ψm,
given that the flux has changed by an integer multiple
of Φ0. However, if the change occurs as an adiabatic
(quasistatic) time-dependence in the Hamiltonian, over
a time period T � ω−1

B , then the states will in fact un-
dergo spectral flow ; although the spectrum will return
to its initial form, the indiviual states ψm will be shifted
ψm → ψm+1. We can argue heuristically that this should
occur on the basis of the above observation that increas-
ing Φ results in outward radial transport. If we have
ν Landau levels, the result is that charge −νe is trans-
ported outward through any concentric ring within the
disk in a time T ; this is interpreted as a radial current
Ir = −e/T . The state nearest the outermost edge of the
disk can only flow to the edge; we therefore transport
one ‘edge mode’ to the outer edge of the disk for each
filled Landau level. The introduction of the flux is also
accompanied by an induced EMF in the disk as a result
of Faraday’s law, with Eφ = −∂tΦ ≈ −Φ0/T . We have
thus recovered that an EMF in the azimuthal direction
results in a current in the radial direction, from which we
may infer the typical Hall resistivity

ρrφ =
Eφ
Ir

=
2π~
νe2

. (D6)

The key realization is that, since the flux term in the
Hamiltonian can always be gauged away for localized
states, these states do not undergo spectral flow; in par-
ticular, they do not transport charge as the flux Φ is
increased. Nonetheless, we have found that, regardless
of how many states in each Landau level actually par-
ticipate in transport, we recover the same values for the
Hall plateaux.

Appendix E: Linear Response and the Kubo
Formula

One motivation for considering two-point functions
in quantum mechanics is that these objects encode
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the linear response behaviour of a quantum mechani-
cal system. Consider some unperturbed, multi-particle,
Heisenberg-picture Hamiltonian H0, to which we add a
time-dependent source term

Hsource(t) =
∑
i

φi(t)Oi(t) , (E1)

where Oi(t) are Heisenberg picture observables; we will
assume that the sources φi are small, so that we can use
perturbation theory. By definition, states in the interac-
tion picture evolve according to

i∂t|ψ(t)〉I = Hsource|ψ(t)〉I ; (E2)

the solution to this first order ODE is the state

|ψ(t)〉I = U(t, t0)|ψ(t0)〉I , (E3)

where we have implicitly defined the unitary operator

U(t, t0) = eiH0(t−t0)e−iH(t−t0)

= T exp
(
− i
∫ t

t0

Hsource(t′)dt′
)
,

(E4)

with T denoting time-ordering within the Taylor expan-
sion of the exponential (see e.g. [26] for details). In
particular, if the system is initialized in some state |Ω〉 in
the distant past t→ −∞, then the expectation value for
the operator Oi at later times (in the presence of sources
φj) is

〈Oi〉φ = 〈Ω|U(−∞, t)Oi(t)U(t,−∞)|Ω〉

= 〈Ω|
(
Oi(t) + i

∫ t

−∞
dt′[Hsource(t′),Oi(t)] + . . .

)
|Ω〉

≈ 〈Oi〉φ=0 + i

∫ t

−∞
dt′〈[Hsource(t′),Oi(t)]〉 ,

(E5)

where we have truncated to first order in the sources. We
can express this result as

δ〈Oi〉 ≡ 〈Oi〉φ − 〈Oi〉φ=0

= i
∑
j

∫ t

−∞
dt′ 〈[Oj(t′),Oi(t)]〉φj(t′) , (E6)

which is referred to as the Kubo formula. This expres-
sion encapsulates the system’s response to turning on the
various sources at the linearized level.

In the quantum Hall case, the field to be turned on is an
electric field E(t) = Ee−iωt, the source is some current
density J, and the response function of interest is the
conductivity σij . Working in the Weyl gauge At = 0, the
source term is simply the coupling of the current to the
gauge potential

Hsource = −J ·A , (E7)

where explicitly, one has

A =
1

iω
Ee−iωt (E8)

for our AC electric field. Applying the above generalized
analysis to the present situation, we find

δ〈Ji〉 =
1

~ω
∑
j

∫ t

−∞
dt′〈[Jj(t′), Ji(t)]〉Eje−iωt

′
, (E9)

where we have manually restored factors of ~. If we
henceforth fix the state |Ω〉 to be an eigenstate |m〉 of
the unperturbed Hamiltonian, with H0|m〉 = Em|m〉, we
have at this level in perturbation theory

〈[Jj(t′), Ji(t)]〉 = 〈e−iEmt/~Jj(t′)Ji(t)eiEmt/~〉
− 〈e−iEmt/~Ji(t)Jj(t′)eiEmt/~〉

= 〈e−iH0t
′/~Jj(t

′)Ji(t)e
iH0t

′/~〉
− 〈e−iH0t

′/~Ji(t)Jj(t
′)eiH0t

′/~〉
= 〈Jj(0)Ji(t− t′)〉
− 〈Ji(t− t′)Jj(0)〉

= 〈[Jj(0), Ji(t− t′)]〉 ;

(E10)

that is, the two-point function depends only on the time
difference s = t− t′. We may therefore rewrite the above
as

δ〈Ji〉 =
1

~ω
∑
j

∫ ∞
0

ds〈[Jj(0), Ji(s)]〉Eje−iω(t−s) .

(E11)
Specifically, we have

δ〈Ji〉 =
∑
j

σij(ω)Eje
−iωt (E12)

implicitly defining the frequency-space response function

σij(ω) =
1

~ω

∫ ∞
0

ds〈[Jj(0), Ji(s)]〉eiωs . (E13)

Now, if we insert a complete set of eigenstates for the
unperturbed Hamiltonian, then we find

σij(ω) =
1

~ω

∫ ∞
0

ds eiωs
∑
n

(
〈m|Jj(0)|n〉〈n|Ji(s)|m〉

− 〈m|Ji(s)|n〉〈n|Jj(0)|m〉
)

=
1

~ω
∑
n 6=m

∫ ∞
0

ds eiωs

(
〈m|Jj |n〉〈n|Ji|m〉e−i(Em−En)s/~

− 〈m|Ji|n〉〈n|Jj |m〉e−i(En−Em)s/~
)

(E14)
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where we have defined Jk ≡ Jk(0), and noted that the
term with n = m cancels. If we integrate along a slightly
deformed contour, or equivalently if we shift the fre-
quency space pole slightly via ω → ω + iε, then we can
perform the convergent integrals∫ ∞

0

dseiωs−εse−i(Em−En)s/~ =
[ eiωs−εse−i(Em−En)s/~

iω − εs− i(Em − En)/~

]∞
0

→ −i~
~ω + En − Em

.

(E15)

We would now like to take a limit ω → 0, to find the Hall
conductivity for a DC electric field. Given that

1

~ω + En − Em
≈ 1

En − Em
− ~ω

(En − Em)2
+O(ω2) ,

(E16)
we see that to lowest finite order in ω,

σij(0) = i~
∑
n6=m

〈m|Jj |n〉〈n|Ji|m〉 − 〈m|Ji|n〉〈n|Jj |m〉
(En − Em)2

.

(E17)
In particular, σxy ≡ σxy(0) is what we refer to as the
Hall conductivity in the state |m〉.

Appendix F: QHE in Graphene

As an inherently 2-dimensional structure, graphene
also provides an experimentally realizable quantum Hall
system. In [17], high-mobility graphene samples were ob-
tained, using a mechanical exfoliation technique similar
to that applied in [27]. Graphene layers were deposited
on a degenerately doped Si substrate, with a 300 nm
insulating SiO2 layer. The number of layers in each pre-
pared sample was inferred from both atomic force mi-
croscopy (AFM) profiles and chromatic shifts in optical
microscopy images, allowing single-layer samples to be
isolated. To fabricate the Hall-bar type apparatus, elec-
tron beam lithography was used to pattern samples, fol-
lowed by a Cr/Au thin-film deposition.

While the operating principle behind experimental
studies of the QHE in graphene is similar to the case of
semiconductor devices, the theoretical description must
be modified; in particular, a half-integer quantum Hall

effect

R−1
xy =

gse

Φ0

(
n+

1

2

)
(F1)

emerges, with gs a factor accounting for both spin and
sub-lattice degeneracy. This phenomenon can be under-
stood from a simple tight-binding analysis of the hexago-
nal graphene structure [28–31], which reveals a relativis-
tic dispersion relation near the two inequivalent corners
of the Brillouin zone, known as Dirac points; the struc-
ture near the Dirac points is expected to dominate the
dynamics in the continuum limit. The half-integer effect
is then seen to be a result of the electron-hole degener-
acy in this model, in the limit that the effective Semenoff
mass of the charge carriers vanishes.

Appendix G: Resistance Standard

As noted in Section IV, two electrical standard units
are required in order to represent or measure all other
electric units in SI. It is known that the resistance value of
a wired resistor drifts over time [32]. On the other hand,
the Josephson effect and the quantum Hall effect together
provide an accurate and reproducible means of realiz-
ing two such electrical units in terms of non-electrical SI
units. It was therefore realized that the world-wide con-
sistency of electrical measurements could be improved by
assigning constant values to the von Klitzing constant
RK and the Josephson constant KJ = 2e/h. In 1990,
aggregating data from all relevant experiments prior to
June 1988, RK was assigned the value

RK−90 = 25812.807 Ω .

This was essentially a weighted average of measurements
performed as in Section IV and values based on the cal-
culation of the fine structure constant in terms of the
anomalous magnetic moment of the electron [21]. To
ensure reproducibility, Technical Guidelines for Reliable
Measurements of the Quantized Hall Resistance [33] have
been established, ensuring that the used QHE device is
working in the correct realm.

While the assigned RK−90 remains valid at the time of
writing, it will most likely be abrogated at the revision of
the International System of Units (SI) [34]. As mentioned
in Section IV, this revision will result in redundancy in
the definition of the von Klitzing constant.
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