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Abstract— This report comprises our understanding of the
Berezinskii-Kosterlitz-Thouless transition in two-dimensional
systems. We start by considering the two-dimensional XY
model, the physics of which maps well onto the two-dimensional
Bose gases produced in cold-atom experiments. Such 2D systems
are not expected to possess long-range order due to transverse
fluctuations, though they exhibit quasi-long range order in
finite-size systems at very low temperatures. The occurrence of
the Berezinskii-Kosterlitz-Thouless transition is marked by the
transition of bound vortex-antivortex pairs at low temperatures
to isolated vortices and antivortices above some critical tem-
perature. We also consider a notable experiment that explicitly
shows this transition.

I. INTRODUCTION

In 2016, David J. Thouless, F. Duncan M. Haldane, and J.
Michael Kosterlitz, were awarded the Nobel Prize in Physics
for “theoretical discoveries of topological phase transitions
and topological phases of matter”.[1] In this report we focus
on the example of the Berezinskii-Kosterlitz-Thouless (BKT)
transition, first exploring its theoretical origin, then its ex-
perimental realisation. This phase transition stems from the
realisation that topological defects can influence the long-
range order of a system.[2]

We begin by discussing the two-dimensional XY model,
the theoretical regime in which the BKT transition was
discovered. In particular, we investigate the possibility that
a system of rotors can be arranged such that its spins form
vortices. These vortices correspond to the aforementioned
topological defects and [some] evidence is given for how,
above some critical temperature, they may arise in a system
spontaneously.

This BKT transition can be observed experimentally in
trapped two-dimensional Bose gases. Since the phenomena
is specific to two-dimensional systems, we discuss how the
dynamics of a three-dimensional degenerate Bose gas can
be constrained to just two-dimensions. The experimental
methodology of detecting the phase transition is then dis-
cussed. More specifically, we focus on how two layers are
imaged, and how the interference between these layers allows
the change in topology to be detected.

II. THE XY MODEL

In order to study the BKT phase transition, we will need to
consider the two-dimensional XY model. The XY model is
reminiscent of the Ising Model, however instead of discrete
spin values we place a rotor at each site which can point in
any direction in the two-dimensional plane. Such a model is

described by the Hamiltonian[3]

H = −J ∑
〈i, j〉

Si ·S j (1)

= −J ∑
〈i, j〉

cos(θi−θ j), (2)

where θi corresponds to the angle of our rotor at site i. The
interaction between neighbouring rotors is quantified by the
constant J. This can then be expanded in powers of (θi−θ j):

H =−J ∑
〈i, j〉

[
1− 1

2
(θi−θ j)

2 +O
(
(θi−θ j)

4)] . (3)

To better quantify the structures that cause the BKT transi-
tion, it will be useful to take the continuum limit in which
sites are arbitrarily close together. In this limit we will require
that our rotors vary smoothly from site to site such that
quantities of the order (θi− θ j)

4 are negligible. This leads
us to the Hamiltonian

H ' E0 +
J
2

∫
d2r |∇θ(r)|2, (4)

where the scalar field θ(r) now labels the angle of the rotors
at each point in the plane, and E0 =−2JN is the energy of
the system when all N rotors are aligned.∗

A. Partition Function

We recall that the thermodynamics for a system is given
by the partition function

Z(β ) = ∑
n

e−βEn = ∑
n
〈n|e−βH |n〉, (5)

where β = 1/kBT is the inverse temperature and En are
the energy eigenvalues of the system, H|n〉 = En|n〉. This
implies the second equality, where one sums over the index
n labelling energy eigenstates. For the XY model, we can
use the basis of “configurations” n = {θi}, i.e the basis in
which we specify the spin at each lattice site. This leads to

Z(β ) = ∑
θi

exp

[
Jβ ∑
〈i, j〉

cos(θi−θ j)

]
. (6)

Notice that we are summing over all configurations of
spins; when taking the continuum limit, we have to “in-
tegrate” over all possible functions θ(r), as this is what
replaces {θi}. This is similar to the case where one replaces

∗Equation 4 can be calculated explicitly by considering the action of the
discrete Laplace operator in the continuum limit.
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a sum over discrete momentum with an integral over con-
tinuous momentum; the result is known as the functional
integral:

Z(β )→
∫

D[θ(r)]exp
[
−β (E0 +

J
2

∫
dr(∇θ)2

]
. (7)

The exact details of the functional integral and the measure
D[θ(r)] are not important; suffice it to say, we evaluate the
Hamiltonian on every possible function θ(r) and sum them
all up.

B. Vortices are Solutions

The integrand of this partition function is not particularly
easy to deal with, so we will use perturbation theory to
simplify the problem. First we define

H [θ ]≡ J
2

∫
d2r |∇θ(r)|2, (8)

and then we demand that

δH [θ ]

δθ(r)

∣∣∣∣
θ=θ0

= 0. (9)

This allows us to use a saddle point approximation, i.e.
we expand our functional in terms of small fluctuations,
δθ , around functions, θ0, that correspond to minima of H .
That is, the field configurations are approximated as θ(r)'
θ0(r)+δθ(r). Using this approach, we can approximate our
partition function as:

Z 'e−βE0 ∑
θ0

∫
D[δθ ]exp

{
−β

(
H [θ0]+

1
2

∫
dr1dr2 δθ(r1)

δ 2H [θ ]

δθ(r1)δθ(r2)

∣∣∣∣
θ0

δθ(r2)

)}
,

(10)

where we have omitted terms of the order O(δθ 3) and
higher. We need to be careful here. For this to be a good
approximation we require that the leading order contributions
to Z, proportional to H[θ0], dominate over the higher order
terms that depend on δθ (and we sum over all minima θ0).

Given that H[θ0] dominates, we will find some θ0 that
solve equation 9 and use them to proceed classically. This
corresponds to finding solutions of:

∇
2
θ(r) = 0. (11)

This differential equation has many solutions, the simplest
of which are

θ = a; θ = ax+by; θ = a(x2− y2), (12)

in Cartesian coordinates (x,y), ∀a,b ∈ R. The first, most
trivial, solution corresponds to all of our rotors pointing in
the same direction - the configuration whose energy was E0.
However, there are also non-trivial solutions corresponding to
topological defects such as vortices and antivortices. Figure 1
shows examples of systems including such defects. Notably,
these defects cannot be reached by simple perturbations

b)

d)c)

a)

Fig. 1. Examples of systems with topological defects. a) Streamlines
for the vortex θ+. b) Streamlines for the antivortex θ−. c) The vortex’s
gradient, ∇θ+. d) The antvortex’s gradient, ∇θ−. Circulation quantifies how
the vectors in c) and d) rotate when integrating along a closed path..

of the ground state - they correspond to non-perturbative
solutions. Examples of such configurations are

θ± =±arctan
(

y−b
x−a

)
. (13)

θ+ corresponds to a charge +1 (vortex) solution, and θ− a
charge −1 (antivortex) solution. Both θ+ and θ− are singular
at (x,y) = (a,b).

In order to quantify the (anti)vortices present in the
system, we can compute a circulation integral

Γ[θ ] =
∮

γ

∇θ(r) ·dl = 2πn. (14)

Here n is an integer corresponding to the total charge of the
vortices enclosed by the curve γ , and it is easy to check that
Γ[θ+] = 2π and Γ[θ−] =−2π . Interestingly, if one considers
a curve that encloses both a vortex and an antivortex (of the
same magnitude charge) then the total circulation is zero.
This is well illustrated by figure 2 where we clearly see that
only sites in the immediate vicinity of the vortex-antivortex
pair are influenced by them; the spins far away are almost
unperturbed.

These vortex solutions exhibit a rotational symmetry such
that ∇θ(r) = ∇θ(r). Hence, we can use the circulation
integral, along a radius r circle centred at the vortex’s
singularity, to compute |∇θ(r)|:

Γ[θ ] = 2πr|∇θ(r)| (15)
⇒ |∇θ(r)| = n/r. (16)

This result can then be substituted into the classical Hamil-
tonian, equation 4, to give the energy of a configuration that
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Fig. 2. A rough plot of a vortex-antivortex pair embedded in an ordered
system, in which all spins were originally pointing upwards.

features a single vortex:

Evor = E0 +
J
2

∫ L

a
dr 2πr

n2

r2 (17)

= E0 +πn2J ln
(

L
a

)
. (18)

Here, L is our system size and a is our lattice spacing,
such that N = L2/a2. It’s worth noting that in the limit L→
∞, a→ 0 this quantity diverges. A similar, but less trivial,
calculation can be done for a vortex-antivortex separated by
some distance R. This results in an energy of the form[3]

E2vor = E0 +2Ec +E1 ln
(

R
a

)
, (19)

where Ec is the energy of each individual vortex core and
E1 is some constant proportional to J. This is in agreement
with the expectation that a vortex-antivortex pair will only
have significant impact on the system if their separation is
large.

C. Lack of long-range order in two-dimensions

We want to determine whether or not it is possible to have
long range order for the XY model in an arbitrary dimension
d. One way to test this is to specify the sites to be on a d-
dimensional cubic lattice (with lattice spacing a and length
L in each direction) and calculate the expectation value of
some relevant parameter as L→∞. We choose the projection
of the spins along the x direction, i.e the x magnetization,
〈Sx〉= 〈cosθ(r)〉. For a cubic lattice with long range order,
we expect to be able to find some non-zero expectation
value, reflecting the possibility of the spins being aligned
throughout the crystal. If we neglect vortex contributions (in
effect allowing us to Fourier transform the field), we find[3]

〈Sx〉=
1

Z(β )

∫
D[θ(r)]cosθ(r)e−βH

= exp
(
− T

2Ja2−d S[d]
∫

π/a

π/L
dkkd−3

)
,

(20)

where S[d] is the surface area of a d-dimensional sphere. We
see that the integral in this expression depends strongly on

the spatial dimension; as L→ ∞,

∫
π/a

π/L
dkkd−3 =


L
π

d = 1
lnL/a d = 2

1
d−2

(
π

a

)d−2 d ≥ 3.

(21)

We see linear divergence for d = 1, a logarithmic divergence
for d = 2, and no divergence for d ≥ 3. This leads to
the conclusion that 〈Sx〉 = 0 in one and two dimensions,
and can posses a finite, non zero value in three dimen-
sions. We also consider the “one body correlation function”
G1(r) := 〈S(r)S(0)〉= Re〈exp[i(θ(r)−θ(0))]〉, which gives
the correlation between finding the rotor at r at a certain
angle when θ(0) is known. A similar calculation to (20)
yields[3]

G1(r) =


exp
(
− T

2Ja r
)

d = 1( r
L

)− T
2πJ d = 2

exp(−CT ) d ≥ 3.

(22)

This shows that the three and higher dimensional case is
ordered, as the correlation decays to a non-zero constant. The
two-dimensional case algebraically decays to 0 with r, while
the one dimensional case exponentially decays to zero.

However, this algebraic decay of the correlations with
distance indicates what is known as “quasi-ordering”; while
in the full thermodynamic limit we lose long-range order-
ing, the decay of the correlation is slow enough that we
can maintain some ordering for smaller system sizes. This
behaviour can be observed most notably in two-dimensional
Bose gases, as we will see later. Quasi-ordering is one of
the reason we consider two dimensions, despite being more
difficult to realize experimentally.

Recall that we have been neglecting vortices in these
calculations. Vortex pairs, due to their localized effects, are
expected to not alter the presence of quasi-ordering by much,
while free vortices destroy it. This can be seen by considering
a vortex in between 0 and r; the presence of the vortex
enforces θ(r)≈ θ(0)+π , leading to the conclusion that if the
temperature is high enough to excite free vortices, 〈S(r)S(0)〉
will go to zero exponentially rather than algebraically. Thus,
we expect the proliferation of free vortices to correspond
with the loss of quasi-ordering.

D. Spontaneous Vortex Formation

We have discussed vortices as special configurations of
our system, but is it actually likely that they will arise
spontaneously? Assuming we keep our system size and tem-
perature constant, classically the viability of vortex formation
is described by,

∆F = ∆U−T ∆S. (23)

Where ∆F is the change in Helmholtz free energy due
to adding a charge +1 vortex to the system. The change
in internal energy from some initial configuration to some
configuration with a vortex is

∆U = Evor. (24)
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Here, we assume that our initial configuration is sufficiently
simple, e.g. the ground state, such that vortex formation
increases the internal energy by exactly the energy of one
vortex. Again, assuming a sufficiently simple system then
the change in entropy will be exactly the Boltzmann entropy

∆S = kB ln(W ) (25)

= kB ln
(

L2

a2

)
. (26)

By requiring that the vortex be centred at a lattice site, the
number of microstates W is given by the total number of
sites. Putting this all together we see that our change in free
energy is

∆F = (πJ−2kBT ) ln
(

L
a

)
. (27)

In the L→∞ limit this clearly diverges, however the sign of
∆F depends on the temperature:

lim
L→∞

∆F =

{
−∞ if T > πJ

2kB

+∞ if T < πJ
2kB

.
(28)

Thus, when the temperature rises above some critical value,
vortex formation will become a spontaneous process - one
through which the system can reduce its free energy. This is
precisely the behaviour of the BKT transition, and suggests
the loss of quasi-order in the system (as in II-C). If we were
not in two-dimensions then the vortex energy would not have
precisely combined with the change in entropy to cause this
phase transition. Whilst this is a purely classical argument,
it is evidence that a BKT transition may exist.

This discussion of XY model began by discussing spins on
a lattice. However, the mathematics here are simply that of
scalar fields - any two-dimensional system of rotors coupled
in this way, not necessarily spins, ought exhibit a similar
phase transition.

III. DEGENERATE BOSE GASES

We wish to find an example of system containing a BKT
transition that can actually be observed experimentally. Con-
sider an N-body Bose-Einstein Condensate (BEC) in three
dimensions, confined by some magnetic trap. Including two
particle interactions, the gas is described by the following
Hamiltonian:

Ĥ = ∑
i

(
p̂2

i
2m

+V 3D
trap(r̂i)

)
+∑

i< j
U(r̂i− r̂ j). (29)

This Hamiltonian is simply comprised of the kinetic energy
of each boson, the potential energy due to our magnetic trap,
and the interaction between each particle. Experimentally
one will prepare a degenerate Bose gas in which many
bosons are in the approximately same quantum state (in the
momentum space). Hence, using the Hartree-Fock approxi-
mation, the total wavefunction of the gas can be written in
terms of the wavefunctions of individual bosons, i.e.

Ψ(r1,r2, . . . ,rN) = φ(r1)φ(r2) . . .φ(rN). (30)

Using this approximation it can be shown that the mean
energy of the BEC, 〈Ψ| Ĥ |Ψ〉, is given by†

E[φ ] =
∫

d3r
(

h̄2

2m
|∇φ(r̂)|2 +V 3D

trap(r̂)|φ(r̂)|2 +
g
2
|φ(r̂)|4

)
.

(31)
Here, we have restricted our bosons to only interact with one
another via collisions, thus

U(r̂− r̂′) = gδ (r̂− r̂′). (32)

This constant g is related to the three-dimensional scattering
length asc of the gas by[5]

g =
4π h̄2asc

m
. (33)

A. 2D Bose Gas

We now want to achieve a two-dimensional Bose gas
from our three-dimensional BEC. One way to achieve this
is by adding a strong harmonic potential in the z direction,
Vharm = 1

2 mω2
z z2. With this, we can “freeze-out” one of the

spatial axes by forcing every particle into the harmonic
ground state along the z-axis. This allows us to write
φ(r) = ψ(x,y)χ(z),with χ(z) ∝ e−z2/2a2

h ,ah =
√

h̄/mωz. We
can now integrate out the z component of the energy func-
tional, yielding

E[ψ] =
∫

A
d2r

h̄2

2m
|∇ψ|2 + h̄2

2m
g̃|ψ|4, (34)

where g̃ =
√

8π
asc
ah

is the new interaction coupling, and we
only integrate over the area of our trapped system. The
wavefunction is best written in polar coordinates, ψ(r) =√

ρ(r)eiθ(r), since the interaction energy depends only on
the density |ψ|2 = ρ , and for further reasons we will soon
detail.

We can calculate the energy for the ground state ψ(r) =
√

ρ0: E0 = Ein,0 = h̄2

2m g̃L2ρ2
0 . At low temperature, we will

have excitations due to both phase and density fluctuations
in the wavefunction. However, we find that Ein/N

kBT � 1 at
low temperature; this suggests that density fluctuations are
greatly suppressed. Thus for the kinetic energy term, we
can approximate the density as roughly constant, and we
can focus on the phase fluctuations of the wavefunction
θ : |∇ψ|2 = ρo(∇θ)2. This yields the exact same formula as
the continuum XY model, plus a small, density dependent
interaction part:

E[ψ]≈ Ein,0 +
h̄2

2m
ρ0

∫
A

d2r(∇θ)2 +δE[δρ]. (35)

We once again have saddle-points for θ corresponding to vor-
tices. Since v(r)= h̄

m ∇θ , a single, fixed vortex corresponds to
a meta-stable (i.e a local but not global minima), unchanging
fluid current around this vortex (as in figure 1c). The ability
to have meta-stable currents is exactly the hallmark of a
superfluid!

†This expression is known as the Gross-Pitaevskii Energy Functional,
more information about its derivation can be found in[4].
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There is one thing we must note regarding vortices and
interactions We see in figure 3 that vortices correspond to
zeros in the density, which certainly seems to go against
the claim of the density being almost constant! In the end,
however, we only care about the long distance physics, such
as calculating correlation functions for relatively large r. To
account for how the short distance physics (e.g vortices,
interactions) affect the long distance physics, we use the
heuristic of replacing the density ρ0 with the smaller “super-
fluid density” ρs, which “absorbs” the short distance physics
into it.‡. ρs essentially measures how much of the BEC is
in a superfluid state; it decreases with temperature up to the
BKT critical temperature, where it abruptly goes to zero.

Fig. 3. Demonstrating that the location of a vortex coincides with a zero
of the wavefunction, and hence a zero of the density[5]..

Since equation 35 has almost the exact same functional
form as equation 4, almost all the results from the XY model
regarding vortices carry over, with small changes due to
the interaction term. While we could calculate the actual
density profile near a vortex using equation 34, and use
that to calculate the interaction energy, we instead model the
profile with a step function, introducing negligible changes:
ρvortex(r) ≈ ρΘ((r− r0)− ξ ), where ξ = (2g̃ρ)−1/2 is the
“healing length”, or vortex size (determined from the proper
calculation). This density can be used to calculate the change
in the interaction energy for a single vortex, ε0 ≈ h̄2

ρ

m .
For a single vortex, this is negligible compared to the
kinetic energy. For a vortex pair, the kinetic and interaction
energy are comparable only when the vortex separation and
healing length are comparable. This means the interaction
terms doesn’t qualitatively change the process of the BKT
transition.

We now apply the previous sections results and their in-
terpretation to the 2D BEC. We still see that vortex pairs can
have small energy and so are expected at low temperature.
This leads to the algebraic decay of the one body correlation
function that is the signature of quasi-ordering, with an

‡The technical procedure for this is known as “renormalization group
flow”, in which one “integrates out” the short distance degrees of freedom.
However, going into the details of this procedure will take much longer than
a short report!

exponent αs ∝ 1/ρs that depends on the superfluid density,

G1(r) := 〈ψ∗(r)ψ(0)〉 ≈ ρ0e−〈(θ(r)−θ(0))2〉/2
∝ 1/rαs . (36)

Past the BKT critical temperature, free vortices proliferate
and we lose quasi-ordering, leading to the exponential decay
of the one body correlation function, G1(r) ∝ exp(−r/l).
Below the critical temperature, we expect the gas to be a
superfluid, as vortex pairs can be shown to not affect a meta-
stable circulating current, while above it we expect to lose
superfluidity, as free vortices do cause fluctuations in the
current as they move. This description exactly corresponds
with ρs abruptly jumping to zero at the critical temperature,
leading to a divergence in αs.

IV. EXPERIMENTAL REALIZATION FOR THE BKT
TRANSITION IN TRAPPED 2D BOSE GAS

Experiments on liquid helium films[6], superconducting
Josephson junctions[7], and 2D atomic hydrogen[8] have been
used to study BKT transitions. However, only macroscopic
properties of the system can be measured in such exper-
iments. This is in contrast with various atomic physics
experiments that offer access to the underlying microscopic
phenomena. Moreover, experiments involving matter-wave
interference allows the direct detection and visualization
of the proliferation of free vortices discussed previously.
In this section, we describe experimental studies of BKT
transitions in two-dimensional atomic systems such as those
discussed in (§ III). We discuss the results of the first such
implementation by Hadzibabic et. al.[9] which has proven to
be a motivation for further studies on superfluidity of Bose
gases.[10].

A. Creation of the cold two-dimensional atomic gas

First, a degenerate cold three-dimensional cloud of atoms
is produced using a Doppler cooling technique with the help
of a magneto-optical trap (MOT), which basically employs a
clever Zeeman shifting trick to kick the atoms to the centre
of the trap[11]. The gas produced through this technique has
temperature in the range of microkelvin. Further, techniques
such as evaporative cooling help in bringing the temperature
of the gas down to a few tens of nanokelvins. After this, a
1D optical lattice is created by standing waves using a laser
along the z-axis. The atoms are coupled with the gradient
of the optical lattice potential and therefore accumulate at
the maxima or minima of the potential. Depending on the
difference between the laser frequency and the atomic reso-
nance frequency, the atoms accumulate at the nodes or anti-
nodes of the standing wave. This yields an implementation
of the procedure mentioned in (§ III-A), allowing for the
creation of multiple strong harmonic potentials in the z-
axis that compresses the gas into two-dimensional layers,
as shown in figure 4.

The experiment studied here[9] uses a 3D degenerate 87Rb
gas subjected to 1D optical lattice potential with period d =
3µm. The lattice potential is ramped up slowly over 500ms
and the resulting 2D clouds are allowed to reach thermal
equilibrium for another 200ms. The potential barrier between
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Fig. 4. A periodic optical lattice potential in the z direction created by two
532 nm laser beams intersecting at a small angle split the 3D degenerate
Bose gas into two 2D planar systems.[9].

Fig. 5. The imaging of the interference pattern onto a CCD camera using
the absorption of a resonant probe laser. The waviness of the interference
fringes contains information about the phase patterns in the two planar
systems.[9]

the planes is sufficiently large (V0/h = 50 kHz) so that the
tunneling between the two layers is negligible. The x and y
lengths of the strips are 120 µm and 10 µm respectively.
The corresponding chemical potential and healing lengths
are µ/h = 1.7 kHz and ξ = 0.2µm respectively.

B. Observation and interpretation of the interference pattern

After the 2D layers are obtained, the confining potential
is abruptly switched off. This results in the interference of
matter waves as the two clouds expand perpendicular to the
x-y plane. As discussed below, imaging these interference
pattern helps us detect non-trivial BKT physics taking place
in these atomic two-dimensional systems. In the absorption
imaging technique, a laser beam is tuned close to resonance
with an atomic transition. This probe laser beam passes
through the cloud and creates a shadow which is captured
using a camera as shown in figure 5. A detailed description
of measurement of density and momentum distribution of
the atomic clouds can be found in Appendix A.

As in (§ III-A), the wavefunctions for the 2D clouds in
the planes (a,b) are given by ψa,b(x,y) =

√
ρa,beiθa,b . When

these clouds interfere, the interference pattern depends on the
relative phase θa−θb that corresponds to the position of the
fringes on the camera along the z-axis. These interference
patterns can be observed by imaging along the x-z plane
using a probe laser along y-axis after allowing the gases to
expand for a sufficient amount of time (20 ms here). The
interference signal ρ(r) at position r is given by

ρ(r) = |ψa|2 + |ψb|2 +
(

ψaψ
?
b ei2πz/Dz + c.c.

)
, (37)

where Dz = ht/mdz is the period of the interference fringes
and dz is the z-axis separation between the layers. The
local contrast of the interference fringes is denoted by
C(r) = ψa(r)ψ?

b (r). Hence, the correlation function can be
calculated as

〈C(r)C?(r′)〉= 〈ψa(r)ψ?
b (r)ψ

?
a (r
′)ψb(r′)〉

= 〈ψa(r)ψ?
a (r
′)〉〈ψ?

b (r)ψb(r′)〉
= |G1(r,r′)|2,

(38)

which gives the one-body correlation function. Since the
interference image is produced in the x-z plane, it depends
on the average of the density in the y direction, allowing
one to obtain the y-averaged local contrast c(x) through
experimental fitting.

Further analysis is done by further integrating the y-
averaged contrast c(x) over various lengths Lx along the x-
axis. With the assumption that Lx >> Ly, the mean value of
the resulting contrast C2, for a truly uniform system, should
behave as

〈C2(Lx)〉 ∼
1
Lx

∫ Lx

0
dx(G1(x,0))2

∝

(
1
Lx

)2α

. (39)

For a system with true long-range order, G1 would be
constant and the interference fringes would be perfectly
straight. This corresponds to the case where α = 0, i.e., no
decay of the contrast upon integration. On the other hand,
if G1 decays exponentially on a length scale much shorter
than Lx (similar to the case for ideal gases and other non-
ordered systems) the above integral is independent of Lx.
This corresponds to the case of setting α = 1/2, which
amounts to adding up local interference fringes with random
phases. For the algebraic decay found in a quasi-ordered
system, an intermediate α is expected. Since the system is
not truly uniform, a modified integrated contrast C̃(Lx) is
taken, which takes into account the non-uniformity.

The different temperature regimes for the 2D gas can
be accessed by varying the final radio frequency νrf used
in the evaporative cooling of the 3D gas. The temperature
T ∝ ∆ν = νrf−νmin

rf , where νmin
rf is the final radio frequency

that would completely empty the trap. As a result, the
temperature dependence of the average y-averaged local
contrast c0 = 〈c(0)〉 at the centre of the interference pattern
can be obtained.

Figure 6 shows the fitted values of the exponent α in
the different temperature regimes. At higher temperatures
(corresponding to lower values of c0, up to about 0.13), α is
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Fig. 6. Decay exponent α as a function of c0. The dashed lines are the
theoretically predicted values of α above and below the BKT transition in
uniform systems.

Fig. 7. The sharp dislocation in interference pattern due to vortex formation
which leads to relative phase jump by π .

close to 0.5 and fairly constant, indicating a disordered sys-
tem. Upon reducing the temperature (which corresponds to
increasing c0), α falls to about 0.25, indicating the presence
of quasi-ordering. In the context of atomic interferometry
with uniform 2D Bose gases, this sudden drop in the value
of α from 0.5 to 0.25 corresponds to the ‘universal jump in
superfluid density’. As a result, we see a transition between
two different regimes at high and low temperatures.

The merit of this experiment is that it allows for the direct
visualization of vortices. If a free vortex is present in one
of the interfering clouds, the relative phase θa−θb suddenly
jumps by π at the position of the vortex. Therefore, the vortex
appears as a sharp dislocation in the interference pattern
(provided the phase of the other cloud varies smoothly across
the same region) as shown in figure 7. The vortex-antivortex
pairs at much lower temperatures are not observable in the
interference fringes since they create infinitesimal phase slips
in the interference pattern. The probability of occurrence of
these dislocations increases with increasing temperature up
to the BKT critical temperature. This increase in waviness of
the smooth interference pattern is shown in figure 8. Beyond
the critical temperature, the interference pattern vanishes due
to large phase fluctuations.

Fig. 8. Probing the coherence of 2D atomic gases using matter-wave
heterodyning at different temperatures. At low temperatures, the vortex-
antivortex pairs are bound together and the interference patterns are perfectly
straight. At intermediate temperatures, there is a possibility of exciting a
vortex which leads to sharp dislocations in the fringe pattern. There is a
proliferation of free vortices at higher temperatures.

V. CONCLUSION

Two-dimensional systems cannot undergo conventional
phase transitions associated with spontaneous symmetry
breaking. In such systems, at higher temperatures, there
is an exponential decay of a so-called correlation function
implying that there is no long range order present. However,
at low temperatures, there can be quasi-long range order
in two-dimensional systems. This transition from the high-
temperature disordered phase to this low-temperature quasi-
ordered phase is the Berezinskii-Kosterlitz-Thouless transi-
tion. In this report, we motivated the understanding of BKT
transitions by starting with the XY model and discussion
of quasi-long range order in 2D systems. We discussed the
role of topologically non-trivial but stable configurations
called vortices in such transitions. Out of the numerous
experimental implementations of this theory, we focused on
experiments that involve observing these transitions in two-
dimensional atomic gases. These experiments support the
notion of proliferation of free vortices as the microscopic
mechanism destroying the quasi-long-range coherence in 2D
systems. This is directly observed in the abrupt phase shifts
in the matter wave interference of two 2D atomic layers of
87Rb as implemented by Hadzibabic et. al.[9]. In recent years,
this has also led to direct proof of superfluid character of 2D
trapped Bose gases[10].
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APPENDIX

A. Measurement of density and momentum distribution

In the absorption imaging technique, a laser beam is tuned
close to resonance with an atomic transition. This probe
laser beam passes through the cloud and creates a shadow
which is captured using a camera. The interpretation of the
observed atomic density distribution through this technique
depends on the conditions before the imaging actually takes
place. If absorptive imaging is conducted along z direction
(which is perpendicular to the plane of the gas), an image
of the 2D trapped atomic cloud is obtained. This depicts
the (average) equilibrium density distribution of the trapped
atomic gas. The spatial variation of average density is used to
calculate the compressibility of the gas which, in turn, is used
to deduce whether the gas is fluctuating or has suppressed
density fluctuations (such as in this experiment). When

the confining potential is switched off, all the interaction
energy is taken out of the system without affecting in-
plane momentum distribution. Subsequently, the evolution
of density distribution corresponds to the free expansion of
an ideal gas. In the time of flight imaging technique, the
cloud is released from the trap before the image is taken.
Due to free expansion, the cloud becomes larger than the
initial trap depth. The image of density distribution in this
case represents the momentum distribution. A sharp peak
in the momentum distribution provides evidence of a BKT
transition. This is because the momentum distribution is
the Fourier transform of the correlation function g1 and a
significant condensed fraction with phase ordering over a
large fraction of the trapped cloud gives rise to a sharp peak
in the momentum distribution.
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