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Abstract—The superconducting state, a macroscopic quantum
phenomena which exhibits resistanceless electric transport, en-
ables many unique measurements and experiments. One applica-
tion is a Superconducting Quantum Interference Device (SQUID),
which can measure magnetic flux with incredible precision. Based
on the Josephson Effect, SQUIDs have become instrumental in
Condensed Matter Physics for their precision and versatility.

I. INTRODUCTION

J osephson first formulated the theory for tunneling between
superconductors in 1962. His result, for which he won the

Nobel prize in 1972, indicated that a tunneling supercurrent
would occur between two superconductors separated by a
small insulating junction. According to his calculations this
supercurrent would be related to the phase difference between
the two superconductors. In practice this principle enables the
phase difference of two superconducting materials to be mea-
sured. And since the phase of a quantum state is also altered by
magnetic flux, this magnetic flux can be measured precisely.
Since its first construction in 1964, SQUIDs have become
an instrumental part of condensed matter physics. Used most
frequently as a highly precise magnetometer, SQUIDs can also
be adapted and applied to other problems and combined with
novel techniques. In this paper we will derive the equations
that govern the behavior of a SQUID, and give a brief overview
of its many interesting applications.

II. PHYSICS OF A SQUID

A Josephson Junction, as shown in Fig. 1 forms the founda-
tion of a SQUID. There are two types of SQUIDs commonly
used in applications: a DC SQUID, which contains two parallel
junctions, and an RF SQUID, which contains just one junction.
To begin our treatment of SQUIDs we will therefore turn to the
dynamics of a Josephson Junction. We will then look into the
effects of an external magnetic field on a Josephson Junction
in order to show how a SQUID can measure magnetic flux.

A. The Josephson Junction

As shown in Fig. 1, a Josephson junction consists of two
superconductors separated by an insulating material. Interest-
ing physics arises due to the tunneling of cooper pairs across
the insulating barrier. While this is quantum mechanical in
nature, we do not need to turn to BCS theory in order to
understand this. Instead we can choose a phenomenological
and macroscopic ansatz for the superconductors wave function,

which is explained in more detail in reference [5] as well as
the Appendix:

Ψ(~r) =
√
ns · eiφ(~r) (1)

Here ns = Ψ · Ψ∗ is the cooper pair density and φ(~r) is the
phase. This wave function in and of itself is very interesting
and gives a clear example of how superconductivity leads
to quantum behavior on a macroscopic scale. Here the wave
function describes a large number of cooper pairs which are
phase coherent, so we can see a quantum mechanical behavior
on a classical length scale.

Therefore we can assume that the two superconductors
in Fig. 1 have wave functions Ψ(~r) =

√
n1 · eiφ1(~r) and

Ψ(~r) =
√
n2 · eiφ2(~r). Given that the typical width of the

Fig. 1. A Josephson junction: It is made of two superconductors connected
through a small insulating layer.

insulator is around 100nm, we can also assume that the two
superconductors are weakly coupled with a coupling constant
K, i.e. cooper pairs can tunnel between the two superconduc-
tors, but they still separate enough that they are described by
different wavefunctions. The Schrodinger equation for the two
superconductors (i, j ∈ {1, 2} and i 6= j) then reads:

i~
∂Ψi(~r)

∂t
= EiΨi +KΨj (2)

Assuming that we have the same type of superconducting
material on each side of the barrier (a reasonable assumption,
since in practice we can design the Josephson Junction out of
whatever material we choose), we know that E1 = E2. But we
will also connect this Josephson Junction to a battery such that
we have a potential difference E1 − E2 = qV . Choosing the
reference point for energy in the middle between the energies,
the Schrodinger Equation becomes:

i~
∂Ψi(~r)

∂t
= (−1)i+1 qV

2
Ψi +KΨj

We can now plug in our superconducting wavefunction (1)
to get the following four equations for the real and imaginary
parts of Ψ that describe the dynamics of tunneling cooper
pairs.
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dn1

dt
=

2K

~
√
n1 · n2 · sin(φ2 − φ1)

dn2

dt
= −2K

~
√
n2 · n1 · sin(φ2 − φ1)

dφ1

dt
= −K

~
√
n2/n1 · cos(φ2 − φ1)− qV

2~
dφ2

dt
= −K

~
√
n1/n2 · cos(φ2 − φ1) +

qV

2~
Since the current is I = nAq dxdt with cross section A, charge
carrier density n, and charge of the carriers q, the first two
equations become:

Is = I0 · sin(φ2 − φ1) (3)

where we assumed I0 = 2K
~ 2qΩ where n1 = n2 = n, and Ω

is the volume of the two superconductors. This is known as
the first Josephson Equation and describes how the tunneling
current will depend on the phase difference between the two
superconductors. But how does the phase difference evolve in
time? If we again assume n1 = n2 = n and subtract the third
and fourth equations from each other we get:

d

dt
(φ2 − φ1) =

qV

~
(4)

which is the second Jospehson equation and describes the time
evolution of the phase difference given an external voltage.
These two Josephson equations describe the phase evolution
of the two superconductors and give rise to very interesting
and non-intuitive physics. Suppose for example that there is a
constant voltage applied to our Josephson Junction. Then (4)
tells us that the phase difference will evolve linearly in time.
Plugging this back into (3), we see that we will then get an
AC current. This is known as the AC Josephson effect.

But what if we apply no external voltage? The phase differ-
ence, given by (4), now becomes constant. Again plugging this
back into (3) we see a constant supercurrent flowing despite
no external voltage. This very unconventional behavior results
directly from the phase coherence of the cooper pairs, which
is also known as the DC Josephson effect.

B. The DC Squid

Now that we have the equations that describe just one
Josephson junction, we can apply these to a loop with two
Josephson Junctions in a magnetic field, as shown in Fig.2. We
will see in this section that we can determine the flux present in
the loop between the junctions with extreme precision because
of the unique properties of the Josephson Junction.

We know now from basic quantum mechanics that the
probability current in the electromagnetic field is given by
the following equation [5]:

J =
1

2

{
Ψ∗

[
P̂ − qA
m

]
Ψ + Ψ

[
P̂ − qA
m

]∗
Ψ∗

}
If we use (1) we see that this becomes:

J =
~
m

(
∇Φ− q

~
A
)
ns (5)

Fig. 2. A DC SQUID is made up two Josephson junctions a and b connected
in parallel.

Since ns is proportional to the charge carrier density of
cooper pairs, we treat it as a current density.1 Similarly, in
a superconductor the current induced by an external magnetic
field flows mostly on the surface, so the current density J will
be zero at some point in the volume.

This result is shown through a detailed analysis of (5), as
is done in [3]; it is closely related to the Meissner effect.
Essentially, by exploiting Maxwell’s equations we can obtain
a differential equation for B using (5). By solving it we
see that the magnetic field is exponentially suppressed in
the superconductor. By plugging that solution into the third
Maxwell equation again, this also leads to an exponentially
suppressed current in the superconductor. This, in essence, is
the Meissner effect, where the current on the surface creates
a magnetic field which cancels the external one. Intuitively
this make sense since we know that the magnetic field is
not energetically favorable for a superconducting state. But
for our purposes this means that there exists a path where
J = 0 around the entire loop. This allows us to simplify (5)
significantly by integrating over that path from point 1 to 2
where J = 0.∫ 2

1

∇φds = φ2 − φ1 =
2qe
~

∫ 2

1

Ads (6)

where qe is the charge of the electron. Because the wavefunc-
tion is single valued, the change in the phase between the
points P and Q in Fig. 2 is:

φQ − φP = δa +
2qe
~

∫ Q

P

Ads = δb +
2qe
~

∫ Q

P

Ads

where δa and δb are the additional phase differences of the
superconductors. By using Stokes theorem we get:

δb − δa =
2qe
~

∮
Ads =

2qe
~

∫
BdA =

2qe
~

Φ

Another common approach that considers the gauge invariant
phase change can be found in [4] and also reaches the same
conclusion. The current Iges is now the sum of the two
branches. If we use this, the first Josephson equation with
δ = φ2 − φ1, δa = δ0 + qe

~ Φ and δb = δ0 − qe
~ Φ we get:

Iges = I0

{
sin
(
δ0 +

qe
~

Φ
)

+ sin
(
δ0 −

qe
~

Φ
)}

1This can be easily verified by checking the units.
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We can rewrite that as:

Iges = 2I0sin(δ0)cos
(qe
~

Φ
)

(7)

This result means that we can determine an unknown mag-
netic flux by measuring the current. 2I0sin(δ0) can first be
determined by putting the dc SQUID in some known magnetic
flux Φ=Φknown, e.g. Φknown = 0 or the earth’s magnetic field
flux for example. Then the only independent variable would
be Φ in the above equation, and we can measure the unknown
magnetic flux from the current. Let’s look at an concrete
example to see how sensitive a dc squid can be. A typical
value for the area of a SQUID used as a magnetometer is
A = 1 cm2. In this case a change in the magnetic flux density
of 1 · 10−11 T is a half period in the current and can therefore
be measured easily.

C. RF SQUID

As opposed to the DC SQUID, which has two junctions, the
RF SQUID is composed of just one junction. In order to fully
account for the behavior of the RF SQUID, we must look at
the inductance of a Josephson Junction in an external field.
(C.1) One junction superconducting loop

Fig. 3. A one-junction superconducting loop in an external magnetic field.

Suppose a one-junction superconducting loop is put in an
external flux Φex as shown in Fig. 3. Since in any real material,
there is always a certain inductance L in a circuit we must
now take that into account in our equations. By including the
inductance in our equation for the flux we now find that the
total flux is given by:

Φ = Φex − LI (8)

where I is the current flowing in the loop.
Let δ be the phase difference across the junction, then the

phase change around the loop is

δ +

∮
~∇φd~s = δ +

2qe
~

∮
~Ad~s (∵ eq(6))

= δ +
2qe
~

Φ

This phase difference must be equal to 2πn such that there
is no physical observable change in our wave function. Rear-
ranging, we get

δ = 2πn− 2qe
~

Φ

Putting this in eq(3), the current in the loop then becomes

I = I0sin(2πn− 2qe
~

Φ)

= −I0sin(
2qe
~

Φ) (9)

The last equality exploits the identity that sin(2πn − θ) =
−sin(θ). Recall from (8) that Φ = Φex − LI . Inserting I
found in (9), we find a self-consistent relation for the flux
through the loop, which will be very useful in discussing the
RF SQUID in (C.2):

Φ = Φex − LI0sin(
2qe
~

Φ)

= Φex − LI0sin(
2π

Φ0
Φ) (10)

where Φ0 is defined to be h
2qe

.

(C.2) RF SQUID

Fig. 4. Basic circuit of RF SQUID: a one-junction superconducting
loop coupled to a LC circuit with a alternating current source of radio
frequency.(Credits: [4])

The RF (Radio Frequency) SQUID is a one-junction SQUID
loop that can be used as a magnetic field detector (Fig. 4).
Although it is less sensitive than the DC SQUID, it is cheaper
and easier to manufacture and is therefore more commonly
used. The Quantum Design SQUID Magnetometer that is
frequently used by experimenters for example, uses a one loop
RF SQUID.

In the RF SQUID, the one-junction superconducting loop
is coupled to a circuit driven by a RF current source, i.e.
the loop would experience the flux produced by the current
(ΦRF ). When the loop is put in some magnetic flux Φq that we
want to measure, the total external flux is Φex = Φq + ΦRF .
Recall from (10) that the flux through the loop is given by
Φ = Φex − LI0sin( 2π

Φ0
Φ), which can be plotted below.

The RF SQUID has two modes of operation, the hysteretic
and non-hysteretic modes. When 2πLI0

Φ0
> 1, we can see from

the plot of Φ vs Φex in Fig. 5 that some parts of the curve
will have positive slope and some will have negative slope.
This is the ‘hysteretic mode’. When the RF current and thus
ΦRF oscillates over time, as shown by the orange curve in
Fig. 5, the Φ curve will trace out the blue of the curve. A
flux quantum enters and leaves the loop during the upward
and downward transitions respectively. The amount of ΦRF
required to conserve the energy in the transition depends on
how big Φq is (Recall Φex = Φq+ΦRF ). Since the voltage in
the RF circuit is related to ΦRF , the voltage readout reflects
the Φq that we are measuring. In fact, as in DC SQUID, when
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Fig. 5. Plot of Φ vs Φex in the oscillating ΦRF for 2πLI0
Φ0

> 1. (Credits:
[4])

Φq is changed, there is also a periodic variation of the RF
voltage which is measured to determine Φq .

The other mode of SQUID, the nonhysteretic mode, occurs
when 2πLI0

Φ0
< 1, and the Φ vs Φex relation is therefore single-

valued. In this case no more energy is lost in the loop. But as
Φq is varied, the current induced in the SQUID loop is varied.
Through the mutual inductance between the SQUID loop and
the RF circuit, the load on the RF circuit and thus RF voltage
are similarly varied. In this way measuring the RF voltage
enables us also to measure Φq .

III. SQUIDS IN THE REAL WORLD

Based on the principles outlined above, it is clear that
SQUIDs enable the precise measurement of magnetic flux
and therefore, the magnetization of crystal samples. But many
issues arise in application that require more complex exper-
imental setups than those. In practice, however, one might
be interested in measuring the magnetization at temperatures
and magnetic fields far above the Tc or Hc of the SQUID.
Therefore designs are used that isolate the SQUID from the
sample. These systems are very complex and because of this
most SQUID magnetometers are not built at home but rather
purchased from Quantum Design. The basic schematic of a
Quantum Design SQUID magnetometer is shown in figure 6.
Owing to the commercial nature of this system, the intricate
details are not readily available. However the basic operation
is as follows: the sample is placed in the system such that it
sits inside the four pickup coils. These coils are electrically
connected to a SQUID which is kept isolated from any applied
magnetic field and far below Tc, usually at Liquid Helium
Temperatures. The sample is then moved vertically inside
the four pickup coils and the voltage across the SQUID is
measured as a function of sample position. The use of four
coils cancels out an externally applied magnetic field and helps
to isolate the flux from the sample itself. This voltage versus
position graph is then fit to a model using a complex algorithm
designed by Quantum Design that uses the equations outlined
above to determine the magnetization.

Data obtained via SQUID typically falls into three cate-
gories: crystal characterization, analysis of spin structure, and

Fig. 6. A SQUID magnetometer design used in the commercial Quantum
Design Magnetic Property Measurement System as shown in reference [11].
Four loops are used, two with currents going clockwise and two with currents
going counterclockwise, to cancel out the effects of a static magnetic flux. The
sample is moved from below the lowest loop to above the highest loop and the
flux is measured as a function of position via the RF SQUID. The isolation
transformer is used to decouple the SQUID loop from the pickup coils when
the temperature and magnetic field are changed. Any abrupt changes in the
current, like those due to changes in the external field, can damage the
Josephson Junction. This design allows for the SQUID to be kept at low
magnetic field and temperature while the sample temperature and field are
varied.

novel techniques that use a SQUID as part of a more complex
experimental setup. Because SQUIDs are so prevalent it is
difficult to give a full accounting of all the ways they are used
experimentally.

The magnetization of a complex magnetic system can often
be used as an order parameter, so measuring it with a SQUID
is a useful way to characterize complex phase transitions.
The Meissner effect in superconductors, for example, where
the superconductor expels all magnetic fields below Tc, can
be readily observed using a SQUID. As a superconducting
sample drops below Tc, the system will react to an external
magnetic field by creating its own equal and opposite field
as previously outlined. In effect the superconducting system
becomes magnetized so that the total internal magnetic field is
zero. This change in magnetization can be used to determine
the Tc of a superconducting sample with good precision. This
principle is outlined in figure 7 where the the magnetization of
supercondcuting cuprate is shown as a function of temperature
and clearly shows the transition to a superconducting state
[6]. This is just one example of how a SQUID can be used
to determine the transition temperature of a system into or
out of a magnetic state. The same principle can be used to
understand transitions as a function of magnetic field as well.

In order to better understand the spin structure of a system,
a SQUID can be used to measure the magnetization as a
function of magnetic field. In complex magnetic systems,
determining the correct model to describe the underlying
spin physics is often difficult. Magnetization measurements
obtained via SQUID are vital for this process. In Cr1/2NbS2,
for example, by comparing magnetization measurements to
modeled results, it was shown that the intercalated Cr spins
are described by a Heisenberg Spin Hamiltonian with an added
interaction known as a Dyzaloshinkskii-Moriya interaction and
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Fig. 7. The magnetization as a function of temperature for a superconducting
sample of YBCO measured via a SQUID from reference [6]. The system
undergoes a clear phase transition to a superconducting state at T ≈ 93K.

crystaline anisotropy [7]. In this example, the magnetization
was measured as function of magnetic field for three different
field orientations as shown in figure 8. Again this is just one
of many possible instances in which magnetization data can
be compared to models to determine underlying spin physics.
This is such a fundamental part of modern condensed matter
physics that it is hard to find a material where this has not
been done.

Fig. 8. (a-d) The magnetization of Cr1/2NbS2 as a function of magnetic
field for four different field orientations from reference [7]. The red line is the
modeled result from a Heisenberg Spin Hamiltonian with a Dyzaloshinkskii-
Moriya interaction while the blue dots are the actual measured data. The units
are represented such that it is the magnetic moment per Cr ion. (e) The spin
structure of the Cr ions determined from this data at B = 0.174T

SQUIDs can also be combined with other novel experi-

mental techniques such as scanning probe microscopy. In a
scanning SQUID Microscope, for example, a DC squid is
attached to the end of an SPM and scanned across a sample.
This allows for the determination of the magnetic properties
of a system as a function of position [8]. The limiting factor
to the spatial resolution is the size of the SQUID itself and
currently SQUID loops are constructed that are on the order of
100nm [8]. With these systems the magnetic structure at the
surface of a material can be mapped with excellent resolution.
These microscopes have been used to map out the edge
currents in quantum wells for example [10]. Because currents
generate a magnetic field, the currents in a material can be
mapped out using a scanning SQUID microscope [8], [10].
This is especially useful as non-trivial topolical phases are
investiagted in materials as some of these systems lead to edge
currents [8]. They have also been used to determine spatial
inhomogeneity of the superconducting phase in 2D Niobium
doped SrTiO3 [9]. Figure 9 shows this inhomogeneity at
330mK [9]. Similarly with figure 7, the lower magnetic flux is
an indication that the sample is superconducting because of the
Meissner effect. This inhomogeneity in the superconducting
state is very useful for understanding the effects of local
structural and doping variations [9].

Fig. 9. The magnetization as a function of position in Niobium doped SrTiO3

thin films as reported in reference [9]. Here a SQUID is scanned across the
sample to determine the magnetic properties as a function of position.

Ultimately it is difficult to outline just how universal
SQUIDs are in modern condensed matter physics. From basic
crystal characterization to scanning SQUID microscopy, there
are very few experiments that are not at least tangentially
connected to the use of a SQUID.

IV. CONCLUSION

Because of this, the SQUID is one of the most versatile mag-
netic flux measurement techniques in modern physics. Here we
have outlined the basic principles which govern the behavior
of the DC and RF SQUID and given a very brief outline of
the SQUID’s myriad uses. To say that this treatment of the
applications is complete would be a mischaracterization as
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SQUIDs are relevant to everything from quantum computing
to detectors at CERN.

V. APPENDIX

Here we will discuss the wave function (1) and its motiva-
tion as based on reference [3]. At temperatures near the phase
transition TC it can be derived directly from BCS theory, as
was first done by Gor’kov in 1959 [2]. This means that this
wavefunction is not explicitly valid for all temperatures, but is
still applicable for the analysis here because it preserves the
macroscopic physics we are dealing with.

To begin this analysis we turn to the cooper pair, a bound
state of two electrons, one with spin up and one with spin
down. The wave function for one cooper pair added to an
inert Fermi See can be written as follows: [1]:

Ψ(~ρ) = ei~q
~R ·
∑
~k> ~kf

A(~k) · ei~k~ρ (11)

where ~ρ = ~r1 − ~r2, the center of mass coordinate is
~R = 1/2(~r1 + ~r2) and the center of mass momentum is
~q = 1/2( ~k1 + ~k2) (which is zero here owing to the cooper pair
being composed of two electrons with opposite momentum
i.e. ~k and ~−k). For simplicity we will only look at the spatial
part of the wavefunction and not worry about the symmetry
requirements.

We will be interested in the electrodynamics of this wave-
function so we can now consider the effects of an electric field,
which will add a finite momentum ~~q to the cooper pair.

We can also assume that the N particle wavefunction
can be expressed as the product of all single cooper pair
wavefunctions. Taking this analysis one step further, since
cooper pairs are bosons they are not restricted by the Pauli
exclusion principle. Therefore, we can imagine a state where
all cooper pairs are condensed in the lowest energy state. Since
the cooper pairs are in the same state any applied field will
give all the cooper pairs the same momentum ~~q. Therefore the
wave function (without antisymmetrisation) can be estimated
as:

Φ( ~R1, ~R2, ..., ~RN ) = ei~q(
~R1+···+ ~RN )Ψ( ~ρ1) · · ·Ψ( ~ρN )

This state has a precisely defined phase at each point ~r in
the superconductor if there is a large number of cooper pairs.
Similarly, the wave functions for the relative coordinates can
be thought of as a cooper pair density since they are functions
of position. From this we can see where the wave function
outlined in (1) is not completely unjustified and has a physical
basis in the physics of cooper pairs. Clearly this is just an
intuitive picture and not an rigorous derivation.
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