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Optical Lattices as Quantum Simulators
Mohammad Khalifa, Dominik Koeck, Dominik Neuenfeld

Abstract—This report outlines the use of ultracold atoms in
optical lattices to simulate quantum systems. We show how
optical lattices are created and how they can be used to simulate
real lattices, focusing on the case well described by the Hubbard
model. We briefly comment on the rich variety of experimental
applications.

I. INTRODUCTION

Optical lattices offer a unique way to perform research on
many-body systems. [1] On the one hand, they realize an
accurate physical implementation of the Hubbard model. [2]
Instead of atoms creating a lattice with electrons hopping
from site to site, an optical lattice is created from a carefully
engineered laser field. Neutral atoms can hop between adjacent
potential minima, giving rise to bands just like for electrons in
condensed matter systems. Optical lattices are free of vibra-
tions and also can be made free of defects, and thus allow for
a precise investigation of effects predicted using the Hubbard
model. On the other hand, each of the parameters arising in
the corresponding Hubbard Hamiltonian can be tuned across
a wide range by adjusting the lasers used to create the lattice.
Consequently, one can learn about parameter regimes which
are hard to access by theoretical methods. [3] This facilitates
new insights which might fuel theoretical research but also
allows for a quantum simulation of the systems of interest. It
is even conceivable to take advantage of the high purity of
the lattice to implement quantum computing and thereby the
simulation of arbitrary Hamiltonians. [4]

This report intends to give a short overview over the
function and operation of optical lattices (section II) and
explain how these are used to simulate a Hubbard Hamiltonian
with highly tunable parameters (section III). We close with a
brief description of selected experimental applications (section
IV). Some mathematical details are delegated to an appendix.

II. OPTICAL LATTICES

Optical lattices use standing wave patterns of counter-
propagating electromagnetic waves to create a periodic poten-
tial for ultracold atoms. This section will give a short overview
of how such lattices are operated.

A. Trapping

Optical lattices rely on the AC-Stark effect to confine neutral
atoms in their respective locations. The basis for the AC-Stark
effect is a standing electromagnetic wave. The corresponding
electric field induces a dipole moment in a neutral atom that
usually has no permanent dipole moment and leads to an
attraction or repulsion to minima or maxima of the standing
wave. This effect can be modeled quantum mechanically with

a simple two level atom H0 = h̄ω0 |e〉 〈e|+ 0 |g〉 〈g| interact-
ing through the dipole operator d̂ with the electromagnetic
field ε(r). The detailed description of this is presented in
appendix A. In short, treating the interaction Hint = −d̂ε
in second order perturbation theory after invoking the rotating
wave approximation leads to an energy shift in the ground
state of

E(2)
g =

h̄|Ω(r)|2

δ
. (1)

Here, Ω(r) = 〈e| d̂ε(r) |g〉 /h̄ = degε(r)/h̄ is the Rabi
frequency and δ = ω − ω0 is the detuning between the two-
level atom’s transition frequency ω0 and the light frequency
ω. Using red detuned light with a frequency ω smaller than
ω0 leads to a lowering of the energy E

(2)
g (r) ≤ 0. Thus the

atoms get trapped at the anti-nodes of the standing wave. On
the other hand, blue detuned light δ > 0 yields a positive
energy correction to the ground state energy and therefore
leads to a repulsion from anti-nodes. Using laser light with
a frequency close to the internal transition frequency leads to
a small detuning δ and therefore a large energy correction.

For a standing wave pattern of two counter-propagating
electromagnetic waves ε(r) = ε0(eikr+e−ikr), each with am-
plitude ε0, the ground state energy correction is a periodically
modulated function of r, which results in a potential

Vg(r) =
4|deg|2I
h̄δ

cos2(kr). (2)

The potential depth Vg is linearly proportional to the laser
intensity I ∝ ε20 and also depends on the atomic dipole
moment deg. This and the simple dependence of the lattice
constant on the used laser frequency give a wide range for
manipulating the optical lattice in a desired form. A simple
three dimensional cubic lattice can be created by superim-
posing three orthogonal standing wave patterns with equal
intensities I . To eliminate interference terms we may choose
three orthogonal, linear polarizations εi · εj = Iδij and obtain

Vcubic(r) ∝ I
(
cos2(kx) + cos2(ky) + cos2(kz)

)
. (3)

B. Lattice geometries

We can obtain the desired lattice geometries by interfering
two or more laser beams. Figure 1 shows how to create one,
two or three-dimensional lattices by just adding pairs of laser
beams. By adjusting the laser intensity, effectively one or two-
dimensional lattices can be created, as indicated by red arrow
in figure 1. The details are discussed in section III-B.

Figure 2 shows how to create all five possible Bravais lat-
tices in two dimensions. Since Bravais lattices form a complete
set of possible lattice geometries, basically any lattice type in
2D can be realized. This is simply done by interfering three
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Fig. 1. Realization of different dimensions in optical lattices. The potential
depth is shown in false color. Higher intensity for the Z (Z and Y) direction
can be used to effectively create a 2D (1D) lattice. Figure taken from [5].

laser beams in the same plane with appropriate angles. As
shown in figure 2(f) compared to 2(b), the lattice constant
can also be changed by adding another laser beam. Interfering
laser beams with different wavelengths leads to a beating
pattern. With this beating pattern we can simulate superlattice
structures [1]. Spin dependent lattices can also be realized [6].
Here, the use of circularly polarized light leads to a trapping
potential that depends on the spin state of the trapped atom.

Fig. 2. The realization of all five Bravais lattices in 2D with three laser beams.
(a) Hexagonal lattice, (b) square lattice, (c) rectangular lattice, (d) oblique
lattice, (e) centered rectangular lattice. (f) shows a square lattice realized with
four laser beams. (f) has a different lattice constant than (b). The insets show
the directions of the laser beams needed to create these optical lattices. This
figure was modified from Blakie and Clark [7].

C. Laser Cooling

Cooling is necessary in optical lattices in order to drive the
atoms to their lowest vibrational states and keep them confined
in the potential wells. The lattice barrier height is typically in
the range of hundreds of micro-Kelvin, so atoms should be
cooled down to temperatures of a few micro-Kelvins.

1) Doppler Cooling: The most prominent method for cool-
ing atoms is Doppler cooling. [8] Here, the laser frequency is
selected to be slightly below some internal transition frequency
for the atoms required to be cooled. The atoms moving fast
towards the laser source encounter photons in resonance with

their internal transition due to the Doppler effect. When an
atom absorbs one of these photons, its momentum decreases
by the photon’s momentum, because they are moving in
opposite direction. The excited atom then emits a photon
spontaneously in a random direction. Its momentum changes
by the amount of the emitted photon’s momentum although
in opposite direction (recoil momentum). Since all the photon
absorption processes are in the same direction, while the pho-
ton emission processes are in random directions, the overall
effect is a decrease in the momentum and kinetic energy of the
atom. By applying a laser from the opposite direction, atoms
moving in either direction are slowed down resulting in an
overall cooling effect for the system. Cooling takes place as
long as the average momentum of the atoms is higher than
the recoil momentum. When the system reaches this limit, the
cooling stops and the temperature saturates at a certain value
called TDoppler which is typically around 100 µK. [9]

2) Sub-Doppler Cooling: Cooling to temperatures even
below TDoppler can be achieved by using other techniques
such as Sideband Cooling. [10] There, the atoms are trapped
in an optical lattice potential that is deep enough to be modeled
as a harmonic potential. The atomic states can be represented
by |a,m〉, where a is the internal electronic state of the
atom which we assume to be either ground (g) or excited
(e), and m is the harmonic oscillator vibrational state of the
atom (m = 0, 1, 2...). If the optical lattice laser frequency
is chosen to be ω = ω0 − ωHO, where ω0 is the internal
electronic transition frequency between the states g and e
while ωHO is the harmonic oscillation frequency in the lattice
potential, then an atom in the state |g, n〉 absorbs a photon and
undergoes a transition to the state |e, n− 1〉. Subsequently, the
atom emits a photon spontaneously to relax to its electronic
ground state |g, n− 1〉. By repeating these two transitions
(|g, n〉 ⇒ |e, n− 1〉 ⇒ |g, n− 1〉) the atom is cooled to its
vibrational ground state |g, 0〉.

D. Loading Schemes
In order to prepare an optical lattice that exhibits interesting

physics, it should be loaded with relatively high atomic density
of about one atom per lattice site.

1) Adiabatic Loading: Turning on the optical lattice lasers
on a free atomic gas directly will not get the atoms trapped
in the lattice, because their kinetic energies are higher than
the lattice potential depth. Instead, this process should be
done adiabatically on a pre-cooled atomic system. Typically,
atoms are loaded from a magnetic or a magneto-optic trap
by turning on the optical lattice lasers slowly to superimpose
its potential over the trap’s potential. For instance, a Bose
Einstein Condensate (BEC) can be first prepared in a magnetic
trap, then loaded adiabatically to the optical lattice. [11]
Initially, there will be many atoms per lattice site due to the
high atomic density in the loading trap, but as the optical
lattice depth increases, the atoms will undergo light-assisted
collisions which increase their kinetic energy and get most of
them lost. At the end, each lattice site will contain up to two
atoms. The loading trap is then turned off and cooling laser
beams are turned on to further cool down the optically trapped
atoms to a few micro-Kelvins.
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2) Irreversible loading schemes: In this set of methods,
the optical lattice is turned on in an ultracold degenerate gas.
The atoms start occupying the first Bloch band of the lattice.
Then, they spontaneously emit phonons into the background
superfluid and decay to the lowest Bloch band. The on-site
repulsion in this case prevents more than one atom from
occupying the same lattice site. This method can also be used
to increase the filling percentage of an existing optical lattice
or to cool the atoms already stored in it without affecting
their internal states [12], which represents an advantage over
the adiabatic loading technique.

E. Imaging techniques

To extract quantities of interest from the system, such as
band occupation density, imaging techniques are used. An
often employed method is time of flight expansion imaging in
which the lattice potential is turned off and the momentum
distribution of particles in the lattice is turned into a free
particle momentum distribution. The system is then allowed
to expand before it is illuminated by a laser tuned to the
atoms’ resonance frequencies to measure their location using
absorption imaging: A CCD sensor captures the light which
passed the atoms and their position will be visible as dark spots
on the image, since the laser light was absorbed. Depending on
how fast the potential is ramped down different measurements
can be done. [1], [13]

1) Sudden release: The lattice lasers are turned off imme-
diately and the particles which were located in a superposition
of localized orbitals evolve in time with the free Hamiltonian.
We derive in appendix B that the number density after a time
t has passed is given by

〈n(x, t)〉 =
(m
h̄t

)3 ∣∣∣w̃ (mx

h̄t

)∣∣∣2 G (mx

h̄t

)
, (4)

i.e. it is given by the Fourier transformation of the Wannier
orbital multiplied by the two particle coherence function G(k),

G(k) =
∑
RR′

e−ik(R−R′)〈a†RaR′〉. (5)

This method is useful to establish the presence or absence
of long range coherence, c.f. the experiment discussed in
section IV-A. There, in the case of a Bose-Einstein condensate,
〈a†RaR′〉 is roughly constant at large |R −R′|, and G gives
a standing wave interference pattern. On the other hand, if no
long range coherence is present no interference is visible.

2) Adiabatic release: Turning off the lattice adiabatically
allows to map out the occupancy numbers of different bands.
The lattice lasers are turned off slow enough such that the
particles in the lattice stay in their band. When the lasers
are completely ramped down, a particle with momentum p
in the nth band is mapped to a free particle of momentum
of p + nh̄k, where k is the size of the Brillouin zone. Thus
every band gets mapped to a specific momentum range. Using
absorption imaging to measure the momentum distribution,
the occupancy of bands can be reconstructed. This technique
is used for example in the investigation of Dirac points in
artificial graphene. [14]

III. SIMULATING THE HUBBARD HAMILTONIAN

For strong enough potentials, the cold atoms captured in an
optical lattice get localized in Wannier orbitals w(x) around
the potential minima. They can tunnel between different lattice
sites. The nearest neighbor hopping and on-site interaction
approximations are reasonable as long as the lattice depth
V0 > 5ER, where ER = h̄k/2m is the recoil energy.
This behavior is captured by the Hubbard Hamiltonian. The
corresponding Hamiltonian for a fermionic gas in an optical
lattice is given by [2], [3],

H =
∑
i,σ

εin̂i,σ − t
∑
〈i,j〉,σ

(ĉ†i,σ ĉj,σ + h.c.) + U
∑
i

ni,↑ni,↓.

(6)

The equivalent expression – the Bose-Hubbard Hamiltonian –
for a bosonic gas is given by

H =
∑
i

εin̂i − t
∑
〈i,j〉

(b̂†i b̂j + h.c.) +
1

2
U
∑
i

n̂i(n̂i − 1).

(7)

In both cases εi, t and U are, respectively, the energy offset
of each lattice site, the nearest neighbor hopping parameter
and the on-site repulsion between two atoms. Each of these
parameters is highly tunable and thus allows for the simulation
of a variety of different systems.

A. Tuning the lattice site energy offset

In order to tune the energy offset εi one operates additional
lasers at a larger wavelength than the lasers which create
the lattice. These additional lasers create an external, slowly
varying potential such that the εi are given by

εi =

∫
d3xVe(xi)|w(x− xi)|2 ≈ Ve(xi) (8)

An external, slowly varying potential is not always wanted,
but sometimes needed for practical reasons. It can result in
multiple phases in the optical lattice, e.g. one can have one
phase in the center and another phase towards the boundary
where Ve(x) changes its value significantly. The offset-energy
can be used to study disordered systems. To this end an
additional standing light wave with wavelength λ′ much larger
than the one of the lattice λ is added to the optical lattice with
an angle α � 1 with respect to the lattice axes. This creates
a spatially periodic potential with periodicity l = λ′ sin(α)/2
and adds an energy offset εi that is proportional to cos(xi/l).
Adding more laser beams with different periodicities and
ln � λ allows the site offset energy to be (quasi) random,
realizing a disordered system. [15]

B. Tuning the hopping term

Atoms confined in an optical lattice can tunnel between
lattice sites which is represented in the Hubbard Hamiltonian
by the hopping term with coefficient

t = −
∫
d3xw∗(x−Ri)

[
−h̄2

2m
∇2 + V (x)

]
w(x−Rj)

(9)
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taken between neighboring sites at Ri and Rj . The tunneling
probability between two neighboring sites is a function of
the potential and depends exponentially on the width of the
potential barrier, i.e. the lattice constant, and its height. During
operation it is impractical to change the lattice constant and
one therefore changes the tunneling probability by tuning the
height of the potential. From equation (2) we can see that the
lattice depth V0 is proportional to the laser intensity times the
atomic polarizability.

As mentioned in section II-B one can make the lattice
barrier practically impenetrable in certain directions and re-
alize genuine arrays of 1D and 2D lattices by ramping up
the laser to a large enough intensity. Typically, the lower
bound on the lattice depth is given by the requirement that the
Hubbard-Hamiltonian is still a good approximation. However,
in practice this limit is oftentimes fallen short of and numerical
simulations must be employed.

C. Tuning on-site interactions

The contribution to the on-site interaction is dominated
by scattering of particles in the same potential well and the
coefficient U in the Hubbard Hamiltonian is

U = g

∫
d3x|w(x)|4. (10)

It is approximately given by the overlap of the wave function
of two atoms in the same Wannier orbital w(x) times a
coupling constant g = 4πa/m, where a is the scattering length
and m is the atomic mass. In order to dynamically adjust the
on-site scattering amplitude U , Feshbach resonances can be
employed to change the scattering length a within a wide range
of positive and negative values so that it is possible to realize
both, on-site repulsion and on-site attraction.

1) Feshbach Resonances: Feshbach resonances exploit res-
onant scattering of atoms. As a simple example consider a two-
channel HamiltonianH with one open and one closed channel.
This means that H has one inaccessible (bound) eigenstate
|C〉 = ψ(r) |c〉 with energy Ec. The state |c〉 labels the
channel, which is closed in this case. In addition to this bound
state, there is a continuum of eigenstates |E〉 = φ(r, E) |bg〉,
where |bg〉 is the open background scattering channel. The
wave functions ψ(r) and φ(r, E) are eigenfunctions of the
Hamiltonian with the potentials Vc and Vbg given in figure 3.

If the Hamiltonian contains a small mixing term ∝ |c〉 〈bg|+
h.c. true eigenstates are mixtures of the ones given above. If
the atoms in the trap have different magnetic moments, an
external magnetic field can be used to tune Ec to lie above
or below E. If E is close to Ec the two channels strongly
mix. This changes the scattering length. For these magnetically
tuned Feshbach resonances, the scattering length is given as a
function of an external magnetic field B as

a = abg

(
1− ∆

B −B0

)
, (11)

where abg is the scattering length associated with Vbg , ∆
is called scattering-width and B0 is called the resonance
position.

Fig. 3. The two channels of a Feshbach resonance. The red curve corresponds
to the closed channel |c〉, while the black curve corresponds to the open
channel |bg〉. The potential curves are given in the center of mass frame.
Figure taken from [16].

Another method that can be employed to control the scat-
tering length is optical Feshbach resonances. There, instead of
using a magnetic field to tune the energy levels of a system,
one tunes an external laser so that atoms can almost access a
vibrational mode. [16]

The on-site repulsion U also depends on the lattice depth
V0 as V (D/4)

0 where D is the lattice dimensionality, since the
form of the Wannier orbitals depends on the lattice height.

IV. EXPERIMENTS

In the following we will present a selection of experimental
applications for optical lattices.

A. Mott-Superfluid transition
A simple cubic lattice like the one in equation 3 has been

used [17] to observe phase transitions of bosonic 87Rb atoms
from a Mott-insulating state to a superfluid state. Those two
states are two possible phases predicted by the Bose-Hubbard
model and are shown in the phase diagram in figure 4.

1) Superfluid phase: The superfluid state results from the
limit U � t, when a small potential depth V0, achieved with
a low laser intensity, is used to create the optical lattice.
The number of lattice sites will be denoted as NL. Below
the critical temperature for Bose-Einstein condensation, all N
atoms condense in the same lowest energy Bloch state

|GS〉U�t =
1√
N !

(
b̂†k=0

)N
|0〉 =

1√
N !

(
1√
NL

NL∑
i=1

b̂†i

)N
|0〉 .

(12)

This is a superfluid and can be described by a macroscopic
wavefunction with long-range phase coherence throughout the
lattice [18].

2) Mott insulating phase: If we increase the potential depth
by increasing the laser intensity, we can simulate the limit
U � t, which will give rise to a Mott insulating phase. For
an integer ratio of atoms to lattice sites n = N

NL
, in the ground

state each lattice site is occupied with exactly n atoms. For
instance for n = 1 we have

|GS〉U�t =

(
NL∏
i=1

b̂†i

)
|0〉 . (13)
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Fig. 4. (a) Zero-temperature phase diagram of the Bose-Hubbard model. Each
of the lobes corresponds to an integer number n = 1, 2, 3 of atoms fixed at
each site. Additional atoms n = 1 + ε on top of integer average numbers
remain in the superfluid regime (see dashed line). (b) shows an illustration
how a system characterization is performed. Cold atoms are illuminated
after a sudden removal of the lattice potential and the absorption images
are measured using CCD-cameras. This method is explained in section II-E.
(c) The absorption intensity after 15 ms of free flight for a superfluid state
for a Vg = 3ER deep lattice potential. The resulting interference pattern
is due to the macroscopic coherence present in the superfluid state of the
atoms. (d) Absorption image after 15 ms for a Mott state. The lattice depth is
Vg = 20ER. The uniform distribution shows, that no large scale coherence
is present. These figures have been taken from [1] and [17] in a modified
form.

In this state each atom is fixed to its lattice site making it
immobile. The Mott state is characterized by being incom-
pressible ∂n

∂µ = 0 under change of the chemical potential µ [1].
We therefore find lobes of constant occupation numbers as
shown in figure 4(a). A transition can simply be done by
changing the lattice potential depth, hence changing the ratio
t/U . A comparable experiment on a real material has been
done for NiO [19], where the transition from a Mott-insulating
to a metal phase was observed. Since in a real material we have
electrons which are fermions, the limit U � t gives a metal
phase instead of a condensation into a superfluid. Trying to
decrease the on-site repulsion U to leave the Mott-insulating
state for a real material like NiO, requires high pressures in
the order of 240 GPa [19].

B. Quantum Computing

Ultracold atoms in optical lattices have many features that
make them a good platform for quantum information pro-
cessing, such as long coherence time, scalability, and reliable
control and readout of qubits. [20] Each individual atom
trapped at a certain lattice site represents a well defined qubit.
There are many techniques to implement quantum computing
with these atomic qubits. Here, we briefly mention only two
examples of how to realize single and double qubit operations
in optical lattices.

1) Single Qubit Operations: An optical lattice is used in
the Mott phase for quantum computing. The logical states |0〉
and |1〉 of the qubit are defined as two hyperfine magnetic
states, for example mF = 1 and mF = −1, with energy shift
h̄ω0 between them. By applying a resonant electromagnetic
pulse, an arbitrary superposition α |0〉+ β |1〉 can be realized,

where α and β are controlled by the duration of the pulse.
In order to manipulate a single qubit without affecting the
surrounding qubits, techniques can be used to change the
transition frequency of this qubit with respect to the other
ones in the lattice [21] (see Appendix C for details).

2) Double Qubit Operations: One of the methods to en-
tangle two atomic qubits in an optical lattice is by collisional
interaction. [22] Consider two atoms in neighboring lattice
sites (j and j + 1) each in the maximum superposition state,
i.e. their total state is given by |Ψ〉 = (|0〉j + |1〉j)(|0〉j+1 +
|1〉j+1)/2. Now, assume the polarization of the optical lattice
laser is slowly changed. Since different magnetic states interact
differently to a circularly polarized field, the two states of
the atoms will have two spatially different potential minima.
For instance, the |0〉 state moves to the left and the |1〉 state
moves to the right to be at their new potential minima, such
that the total state becomes |Ψ〉 = (|0〉l |0〉l+1 + |0〉l |1〉l+2 +
|1〉l+1 |0〉l+1 + |1〉l+1 + |1〉l+2)/2, where the position l is
between positions j − 1 and j. From the third term in this
expression, the state |1〉 of the first atom and the state |0〉
of the second atom are on the same site and, therefore, they
undergo an on-site interaction U01. After time tint, a phase
shift φ = tintU01/h̄ has accumulated and the total state turns
into |Ψ〉 = (|0〉l |0〉l+1 + |0〉l |1〉l+2 + e−iφ |1〉l+1 |0〉l+1 +
|1〉l+1 + |1〉l+2)/2. By returning the lasers to their linear po-
larization state and applying a resonant electromagnetic pulse
to the qubits, the system state finally becomes |Ψ〉 = [(1 +
e−iφ) |1〉j |1〉j+1+(1−e−iφ) |B〉]/2, where |B〉 is a maximum
entangled state given by |B〉 = |0〉j |−〉j+1 + |1〉j |+〉j+1.
Full entanglement between the two qubits is achieved by
controlling the time tint such that φ = π.

3) Universal Quantum Simulation: With the single and
double qubit operations, a quantum computing system can
simulate any other many-body system whose Hamiltonian
consists of one-particle and two-particle terms. The idea here is
to decompose any Hamiltonian H into small Hamiltonians Hj ,
each of which acts on a small constant subspace, so that H =∑
j Hj . Then, the system evolution e−iHt can be represented

as a series of short evolutions e−iHjt according to Trotter
formula e−iHt = limm→∞(e−iH1t/me−iH2t/me−iH3t/m...)m.
Trapped atoms in optical lattices provide an example of such
quantum system that is capable of doing this series of single
and double qubit operations with high fidelity. [15]

V. CONCLUSIONS

We gave a brief summary of the use of optical lattices
to simulate quantum systems and a summary of selected
applications. It should go without saying that, beyond what
was covered in this this report, there are many more inter-
esting facets to this topic. For example, there are a plenty
advanced experimental techniques, such as the introduction of
lattice impurities [15] or frustrated systems [23]. Also other
methods are available for imaging. [24], [25] Many exciting
experimental applications have not been touched upon. Good
places to start reading are the reviews referenced below. [1],
[3], [13], [26]
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APPENDIX A
TRAPPING, THE AC STARK EFFECT

Consider a two level atom with a transition frequency
ω0 = Ee−0

h̄ in a classical electromagnetic field E(x, t) =
ε(x)e−iωt + ε∗(x)eiωt. The Hamiltonian of the atom in that
field can than be expressed in the basis of the excited |e〉 and
the ground state |g〉:

H = H0 +H ′ = H0 − d̂E (14)

= h̄ω0 |e〉 〈e| −
∑

α,α′=g,e

|α〉 〈α| d̂ |α′〉 〈α′|E (15)

Because a single atom doesn’t have a permanent dipole, the
dipole matrix elements are nonzero only for the off-diagonal
elements deg = 〈e| d̂ |g〉 and d∗eg = 〈g| d̂ |e〉. Transforming
to the rotating frame picture with U = e−iH0/h̄·t and defining
the Rabi frequency Ω = degε(x)/h̄, we get

U†H ′U = −h̄Ωe−i(ω−ω0)t |e〉 〈g| − h̄Ω∗ei(ω−ω0)t |g〉 〈e| .
(16)

Here we already applied the so called rotating wave approx-
imation, where we neglect fast oscillating terms ω + ω0.
This is justified if the light frequency ω is close to the
transition resonance frequency ω0. After transforming back in
the Schrödinger picture and inserting in the full Hamiltonian,
we get:

HRWA = H0 − h̄Ωe−iωt |e〉 〈g| − h̄Ω∗eiωt |g〉 〈e| . (17)

We can treat the effects of the light field as a perturbation in
second order perturbation theory and get an energy correction

E(2)
g =

| 〈g|H ′ |e〉 |2

Eg − Ee
=
h̄|Ω(x)|2

δ
(18)

for the ground state, and E
(2)
e = − h̄|Ω(x)|2

δ for the excited
state. We have Eg − Ee = h̄ωn − (h̄ω0 + h̄ω(n − 1)) =
h̄(ω − ω0) = h̄δ because the true ground state energy is that
of n photons and the excited state energy is the energy of
the excited state plus the energy of n − 1 photons, after one
photon has been absorbed. Assuming a standing wave pattern
of two counter-propagating electromagnetic waves ε0(x) =
ε0(eikr + e−ikr), each with amplitude ε0, gives the desired
lattice potential as the ground state energy correction:

Vg(x) =
|deg|2|2ε0|2

h̄δ
cos2(kr)

=
4|deg|2I
h̄δ

cos2(kr). (19)

APPENDIX B
IMAGING WITH SUDDEN RELEASE

The number density of particles is given by the absolute
square of the wave function. In terms of Wannier functions
w(x − R) and creation/annihilation operators which create
states in a Wannier orbital at site R, the creation/annihilation
operators for particles at position x are given by

ax =
∑
R

w(x−R)aR a†x =
∑
R

w∗(x−R)a†R. (20)
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The expected number density then becomes

〈n(x)〉 = 〈a†xax〉 =

∫∫
d3kd3k′ei(k−k

′)xw̃(k)w̃∗(k′)G(k,k′),

(21)

where we have defined the two site correlation function

G(k,k′) =
∑
RR′

e−ikR+ik′R′〈a†RaR′〉. (22)

After free evolution for a time t, the kth mode acquires a phase
of exp(−i h̄k

2

2m t) and equation (21) becomes

〈n(x, t)〉 =

∫∫
d3kd3k′ei(k−k

′)xe−i
h̄(k2−k′2)

2m

· w̃(k)w̃∗(k′)G(k,k′).

(23)

We can now shift k→ k + mx
h̄t and obtain

〈n(x, t)〉 =

∫∫
d3kd3k′e−i

h̄(k2−k′2)
2m w̃

(
k +

mx

h̄t

)
· w̃∗

(
k′ +

mx

h̄t

)
G
(
k +

mx

h̄t
,k′ +

mx

h̄t

) (24)

Finally, a saddle-point approximation yields

〈n(x, t)〉 =
(m
h̄t

)3 ∣∣∣w̃ (mx

h̄t

)∣∣∣2 G (mx

h̄t

)
. (25)

We see that the number density is basically the Fourier trans-
formation of the Wannier orbital multiplied by an interference
term which depends on the occupancy of different modes.

APPENDIX C
ADDRESSING INDIVIDUAL ATOMS

To address individual qubits in an optical lattice quantum
system, two modes of operation should be defined; storage
mode and computational mode. Assume that the |0〉 and |1〉
states of the qubit are the hyperfine ground sublevel states
F = 3 and F = 4, with mF = 0 for the storage mode
(|3, 0〉 and |4, 0〉 are storage basis), and mF = 1 for the
computational mode (|4, 1〉 and |3, 1〉 are computational basis).
All qubits are initially kept in the storage basis. When a
quantum operation is required to be done on a certain qubit,
only this (target) qubit is transfered from the storage to the

computational basis. This is done by applying two addressing
circularly polarized beams crossing at the target lattice site and
a static magnetic field in their plane, as shown in figure 5(a).
The role of the addressing beams is to change the resonant
frequency (the internal states) of the target atom only. The role
of the magnetic field is to split the magnetic internal states of
the target atom to create more than one resonant frequency.
Now, only the target atom has resonant transitions with ω1 that
corresponds to |3, 0〉 ⇔ |4, 1〉 or |4, 0〉 ⇔ |3, 1〉 transitions,
and ω2 that corresponds to |3, 1〉 ⇔ |4, 1〉 transition, as
illustrated in figure 5(b). Since the target atom is initially in the
storage basis, then it can be transfered to the computational
basis by applying a microwave pulse with frequency ω1 on
the lattice. The next step is to do the quantum operation
on the target qubit in the computational basis, which can
be realized by applying a second arbitrary microwave pulse
with frequency ω2 to control the superposition α |0〉 + β |1〉
of the qubit. Then, another microwave pulse with frequency
ω1 is applied to return the atom back to the storage basis and,
finally the addressing beams and the magnetic field are turned
off. [21]

Fig. 5. (a) Addressing individual atom in a 3D optical lattice. The addressing
beams cross at the target atom to change its resonance from other atoms
resonance. A magnetic field is applied in the same plane to split the magnetic
sublevels. (b) Atomic levels in storage and computational basis. The atom is
resonant with ω0 in storage basis, with ω2 in computational basis and with
ω1 at the transfer between the two bases. The graph is not to scale. [21]


