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I. MOTIVATION

As humans, we like to “see” matter at atomic length
scales in order to better understand how things work.
The theory of scattering is a tool to construct a mate-
rial’s structure based on how other matter or radiation
bounces or scatters off it. Among these probes, neutrons
hold a special place: owing to the fact that they have zero
charge, neutrons do not interact with atoms via electric
forces and can penetrate to large depths in most mate-
rials, as compared to X-rays, for example. In addition,
because neutrons have a magnetic moment, they inter-
act with the unpaired electrons in magnetic atoms. This
can give us valuable information, for instance, about the
arrangement and density distribution of these electrons.

In the following sections, we introduce the fundamental
ideas that govern scattering and see how they are applied
to the experimental study of condensed matter systems.

II. NUCLEAR SCATTERING: CRYSTAL
STRUCTURE

In scattering, as with any physical process, the energy
and momentum of both the nuclei and neutron are al-
tered individually, but are conserved. Based on the mo-
mentum conservation, we define the momentum transfer,
by ~q = ~(k′−k) where, q is called the scattering vector
while k and k′ the initial and final wave vectors respec-
tively. An elastic process is easily distinguished from an
inelastic one because the energy of the neutron is un-
changed in former case.1

Generally speaking, the double differential cross sec-
tion that describes the scattering process has the form
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One of the corner stones in the theory of neutron scat-
tering is Fermi’s crucial observation that the neutron-
nucleus interaction can be replaced by a pseudo-potential

1Throughout the following discussion, we work with the assumption
that the neutron energy is too small to change the internal structure
of the nucleus. Also, note that the unprimed and primed quantities
correspond to initial and final neutron states, respectively.

that results in the same scattering while being probed
perturbatively via the Born approximation. In a crystal,
for ions located at rj , this is given by [5]

V (r) =
π~2

m

∑
j

bjδ(r− rj) (2)

where m is neutron mass and bjs correspond to the
scattering lengths and are a measure of the interaction
strength between the neutron and the jth nucleus.

Following this insight, Van Hove showed that the scat-
tering law can be written in terms of the time dependent
correlations between positions of pairs of atoms in the
sample. This, in other words, is the Fourier transform of
the probability distribution for finding two atoms sepa-
rated by some distance [14]:
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which relates the nucleus i at time zero with nucleus j
at time t. This is Van Hove’s general result for a typical
neutron scattering experiment. This is usually simplified
further by averaging over the scattering lengths, which
can be justified based on the fact that the spin of a nu-
cleus and its position in space are not correlated. This
gives us the expression [14]
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where Aij is the expectation value in Eq. 3 and b is the
average scattering length of all the nuclei in the system.
The assumption that there are no correlations between
the bis of different nuclei lead us to the above relation.

Plugging this into Eq. 3, the differential cross section
emerges as a sum of two components, each coming from
one of the terms in Eq. 4.

The first one depends on the correlations between dif-
ferent nuclei at different times and gives rise to interfer-
ence effects. In other words, it corresponds to coherent
scattering, wherein neutrons scattered from the ions in-
terfere. As this depends on the distances between atoms
(via the integral Aij), it encodes information about the
structure of the sample. While elastic coherent scattering
speaks of the equilibrium structure, the inelastic coun-
terpart probes the collective motions (phonons). This
aspect is further discussed in Sec. V.



2

FIG. 1. The idealized perovskite structure of SrTiO3. The
solid lines outline the primitive cubic unit cell [5].

The second term, on the other hand, depends only
on the correlation of a nucleus with itself at different
times and does not show interference. This represents
incoherent scattering. In this case, the elastic incoherent
scattering, being same in all directions, appears as noise.
The inelastic component, though, provides information
about atomic diffusion.

At this stage, it is illustrative to see how neutron scat-
tering is useful in determining the structure of crystalline
compounds. A perovskite crystal typically has the com-
position ABO3, where A and B are two different cations.
An ideal perovskite has a simple cubic structure (see
Fig.1). In reality, however, atoms, usually the oxygens,
are displaced from the ideal positions under the influence
of neighboring cations – this alters the physical proper-
ties of the crystal. In addition to the usual X-ray diffrac-
tion techniques, neutron scattering is typically employed
to structurally characterize these complex oxides because
the neutrons are sensitive to the oxygen atoms.

In the specific case of yttrium-doped barium cerates
BaCe1−xYxO3−δ (BCY), neutron scattering can give us
an idea of how the yittrium doping modifies the crystal
structure. We see this for two specific values in Fig. 2.
The peaks correspond to different ionic sites in the crys-
tal. Notice that there is a perceptible difference in the
number and position of some of these peaks.

After this basic introduction to the theory behind neu-
tron scattering, we shall now briefly describe ways in
which the neutrons needed for these experiments are ac-
tually generated and handled.

III. NEUTRON SOURCES

There are two ways for providing the neutrons for
scattering experiments. They can either be generated
through fission in reactors or in accelerator-based spalla-
tion sources, i.e. through ejecting particles from a target
due to impact. The resulting neutrons of both of these
processes have energies of order 1 MeV, but for most scat-
tering experiments only neutrons with energies of 1 eV or
less are needed. Therefore special devices called modera-
tors are used to slow them down.

In fission reactors, a fissile nucleus, like 235U captures a
neutron n and then splits into fission fragments or atoms

FIG. 2. Observed diffraction intensities for BCY at room tem-
perature, with δ = x/2. A difference curve between observed
and calculated intensity is shown below each profile [5].

of smaller atomic weight (X, Y) and in average 2.5 fast
neutrons per collision: 235U + n → X + Y + 2.5n. One
of these neutrons is needed to self-sustain the fission pro-
cess, around 0.5 are lost and one neutron can be used
externally for the scattering experiment. Both the ex-
periment and the fission reaction require less energy than
the generated 1-2 MeV. So, in moderators, the velocity of
the neutrons as well as the temperature of the system are
reduced by inelastic scattering with light elements, e.g.
H2O or D2O. Fast neutrons are scattered or reflected
back into the moderator material by reflectors being lo-
cated outside the moderator. The energy distribution as
well as the exact distribution of the background consist-
ing e.g. of fast or delayed neutrons and gammas, can be
varied by changing the reflector or moderator.

Spallation sources are often pulsed, in order to do
time-of-flight measurements of the neutron energy (see
Sec. IV C). So, for the acceleration of the particles, which
are used to generate the neutrons, a synchrotron or
an accumulator is used. The thereby accelerated high-
energy particles, usually protons with at least an en-
ergy of 1 GeV, impinge on heavy targets. Due to this
bombardment, high-energy neutrons, pions and spalled
nuclei appear, that themselves collide, generating inter-
nuclear cascades, that result in excited nuclei. Nuclei
relaxation back to the ground state provides the neu-
trons, whose spectrum also has an maximum at approxi-
matively 2 MeV. When generating neutrons with spalla-
tion sources, they also have to be slowed down by scat-
tering events in moderators. These moderators broaden
the pulses, which is especially a big problem for short-
pulse spallation sources. So, for ensuring that the pulse
is still sharp enough, special geometries and absorbing
materials are used. Placing absorbing materials around
the moderator in a strategic way prevents slow neutrons
from reentering in the moderator and through that from
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contributing to the pulse that is used for the experiment
[2].

IV. NEUTRON INSTRUMENTATION

Our discussion in previous sections focused on the fun-
damental idea behind neutron scattering, its domain of
applicability and general characteristics of neutrons scat-
tered by periodic arrays of ions, as well as on ways of
producing the neutrons for the experiments. In this sec-
tion we describe the actual experimental devices required
to measure various quantities derived earlier. As in any
scattering experiment, the measurements revolve around
three objects [11]:

• σtot(E), the total cross section as a function of in-
cident neutron energy E (for coherent elastic pro-
cesses);

• dσ
dΩ (q), the differential cross section for (for inco-
herent elastic processes);

• d2σ
dΩdE′ (q, ω), the phonon energy and momentum de-
pendent double differential cross section (for inelas-
tic processes).

The first two are mostly measured with diffractometers
and reflectometers, and the last one with spectrometers.
The main difference between the two is that diffractome-
ters do not analyze the outgoing beam, they simply de-
tect the neutrons at a given scattering angle (thus ob-
taining the total cross section). If scattering is almost
purely elastic, that is all that is needed, as energy and
momentum of detected neutrons are identical to those
of the incoming beam anyway and the only information
to be gathered is the scattering angle. Meanwhile spec-
trometers, dealing with inelastic scattering, have to ana-
lyze the outgoing beam for energy dependence, because
in general there will be multiple energy and momentum
“neutron groups” scattered at a given angle due to inter-
actions with various kinds of phonons.

Both of these types of devices are ultimately made up
of the same structural components. We split them into
three groups: (a) incident beam manipulation, (b) sam-
ple management, and (c) scattered beam measurement.

A. Incident beam manipulation

Control over the incoming neutron beam is key to a
successful scattering experiment. From ensuring suffi-
cient resolution, to filtering out thermal neutrons, to
monochromatizing the beam, there is no shortage of chal-
lenges. Over the years special tools have been developed
to address each of these in turn.

Whether one is looking at elastic Bragg diffraction,
or inelastic phonon production, it is often the case that
a monochromatic beam of neutrons is desired. This is

traditionally accomplished by using a crystal with pre-
determined Bragg scattering peaks of its own, preferably
with a small overall absorption cross section. According
to the Bragg formula λ = 2dM sin θM , from a mixed ini-
tial beam only certain neutrons will scatter efficiently
along a given angle θM : thus one effectively “filters”
the mixed beam. Moreover, adjusting the incidence an-
gle gives one exquisite control over the characteristics of
the new beam. Such a device is called, unsurprisingly, a
monochromator. Typical crystals to be used are pyrolytic
graphite, Si, Ge, and best of all, Be [11].

Although a monochromator allows for sharp neutron
energy selection, oftentimes the neutrons coming out of
the source are simply too fast and do not have the de-
sired energy in their mix to begin with. This is where
the moderator, already mentioned in Sec. III, comes in
handy, reducing neutron velocity to the desired range.

Even in the simplest neutron scattering setups, like
those in regular diffraction experiments, where the only
free parameter is the incidence angle, neutron beams have
to travel considerable distances between the source and
the target2 and any filters, monochromators, modera-
tors, and other devices in-between. As a consequence,
it is very important to main beam alignment and mini-
mize losses. One incredible commonplace device serving
this goal is the collimator : in its simplest iteration [14]
this is a pair of slits of converging width, which reduce
the spatial extent of the beam and also serve to narrow
its angular spread, making it more unidirectional (“colli-
mated”). As for reducing losses, a neutron guide can be
constructed out of special materials tuned to totally re-
flect neutron particles internally below a certain angle of
incidence. This effectively confines them to the guide and
eliminating the 1/r2 intensity loss common to any other
beam tube (just like in a regular waveguide familiar from
classical electrodynamics).

FIG. 3. 4-circle goniometer, to rotate the sample freely
about any axis [1].

2Typically in order to avoid stray unshielded radiation from the
source.
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B. Sample management

Typically neutron scattering experiments are con-
ducted on two types of samples: large single crystals,
or powders. The two naturally require different kinds
of sample holders. For instance, where the experimenter
might simply hold the large crystal in place with a holder,
in the case of a powder she is forced to use a container
of some sort, which is now necessarily in the way of the
beam. Usually the container is made out of a material
with a very low σcohel , such as vanadium [11], to avoid in-
troducing additional Bragg peaks. Whereas in a powder
the crystalline directions are randomized and thus rotat-
ing through a single angle is sufficient to obtain the cross
section, a single crystal is usually placed in a 4-circle go-
niometer (Fig. 3) to allow for studying as many crystal
planes as possible. The 4-circle arrangement allows for
rotating the sample freely about any axis. Finally at this
stage any additional environment effects may be intro-
duced: be it temperature control (usually a cryostat, to
cool the sample below room temperature), an electric or
magnetic field, or some other phenomenon whose effect
on the sample’s crystal and magnetic structure or phonon
spectrum is to be studied.

C. Scattered beam measurement

No scattering experiment is complete without the de-
tection of scattered particles and precise measurement of
their momenta and energies. In neutron scattering this
information is generally obtained one of two ways: insert-
ing an additional Bragg diffracting crystal, exactly like
for monochromatizing a beam (in this case the crystal is
called the analyzer), or using the so-called time-of-flight
technique. The latter allows one to determine the en-
ergy distribution of neutrons at a given scattering angle
by looking at their velocity distribution [5]: to figure out
their velocity at the time they hit the detector, one needs
a pulsed neutron source, instead of a steady one (see sec.
III). Given this pulse, a device called a chopper can be
used to allow only the neutrons with a given range of
velocities to pass through. In essence a chopper is sim-
ply a time-variable gate that could be opened and closed
at will: setting it to open and close sinusoidally selects
a given velocity range. Knowing the velocity range, as
well as the initial pulse production time and the neutron
detection time allows to determine the time of flight and
thus that neutron’s velocity.

Of course, no beam measurement would be complete
without actual particle detection. Typical strategies used
for, say, electrons or photons do not work, as neutrons
carry no charge and too little kinetic energy. The idea
is to use the neutron to initiate some sort of a nu-
clear reaction that has a charged particle or light as
a by-product, then use standard techniques to detect
those. A common reaction pathway is with helium,
n +3 He →3 H +1 H + 0.7 MeV [5]: the photon emit-

ted passes through a photo-multiplier until the signal is
sufficiently amplified and can be picked up by regular
instruments.

Having finished the discussion of general principles of
neutron scattering, we move on to demonstrate the utility
of the technique on some examples.

V. EXAMPLE A: LATTICE DYNAMICS

One definite advantage of neutrons over other kinds of
probes traditionally used in scattering experiments (X-
rays, electrons) is that their energies are on the same
order as that of phonon modes in most solids [10]. This
makes them ideally suited for mapping out the phonon
dispersion curves and density of states, which in turn
allow the determination (or independent confirmation) of
many macroscopic quantities of interest. Some examples
include3:

1. Speed of sound (slopes of acoustic branches);

2. Elastic constants for use in continuum stress-strain
equations (e.g. bulk modulus);

3. The lattice contribution to specific heat (which
gives the characteristic T 3 dependence in the in-
termediate to high temperature regimes);

4. Phonon lifetime (arising from higher-order correc-
tions to the harmonic approximation [6], that is,
from phonon-phonon scattering);

5. Thermal transport properties;

6. Debye frequency ωD, which is relevant for the BCS

formula kBTc = 1.13~ωDe−
1

N(µ)V .

Theoretically, phonon dispersion relations can be cal-
culated in the harmonic approximation using standard
methods of second quantization, i.e. by writing the ionic
displacements in terms of creation/annihilation opera-
tors, and only basic knowledge of crystal structure is re-
quired. Solutions may always be found analytically, as
only two-operator terms are kept in the lattice Hamil-
tonian. However, this requires the knowledge of force
constants ∂2V (ri − rj)/∂ri∂rj of the inter-ionic poten-
tial. If we had a way of obtaining the phonon dispersion
experimentally, we could determine the force constants
by a fit to the experimental results [8], thus constraining
the free parameters of our theoretical model. The model
can then subsequently be used for further calculations

3Note that while most of these require the knowledge of the phonon
dispersion (which necessitates, as remarked earlier, the use of a
relatively large single crystal), the density of states (which can
be calculated accurately even in the presence of many non-aligned
crystals and defects) will be able to supply some of that information
[7].
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FIG. 4. A diagram of a triple-axis spectrometer [11].

(transport, electron-phonon coupling, etc.). This (and
the list above) is certainly ample justification for finding
a way to measure phonon dispersion.

A brilliant methodology for experimentally measuring
phonon dispersion, due to B.N. Brockhouse [3], has blown
the field of inelastic neutron scattering wide open and

FIG. 5. (a) Neutron energy groups. (b) Corresponding loca-
tions on the phonon dispersion curve [4].

even earned him a Nobel prize in 1994. It involves a de-
vice known as a triple-axis spectrometer [14] — see Fig. 4.
Given a beam of neutrons (exiting a nuclear reactor via
a small opening), make it monochromatic by passing it
through a monochromator (first axis), as seen in fig. 1:
this gives one control over k, E of the incident beam.
The now monochromatic beam then hits the sample at
some other angle ψ (second axis): this allows to study
various orientations of the crystal relative to the incident
beam, similar to the rotating crystal technique. Finally,
the scattered neutrons k′, E′ exiting at all possible angles
φ are passed through analyzer (third axis) to study the
distribution of neutrons with energy at a given angle φ.

As neutrons are scattered by the sample, they interact
differently with the various phonon branches (assuming
the crystal orientation is such that the branches are non-
degenerate), thus exiting with different energies along the
same scattering angle φ. As a consequence we expect
to see a number of different “neutron energy groups” at
the same angle φ, based on which phonons they gener-
ated whilst in the sample: these will correspond to peaks
(Fig. 5) in the count-energy spectrum produced by the
analyzer. In general there will be both elastic and inelas-
tic, coherent and incoherent scattering (see Sec. II). The
elastic contribution to this cross section obeys k = k′,
E = E′ and thus can be readily eliminated from the
count-energy spectrum (simply subtract off the neutrons
with identical energy E′ identical to the original beam en-
ergy E at every angle φ). Assuming the incoherent con-
tribution to the differential cross-section is small4 com-
pared to the coherent one (which is the case for a good
number of systems [14], but not all [9]), one may use the
inelastic conservation equations

~2

2m
(k2 − k′2) = ~ωqs, k′ − k = q−G, (5)

on the peaks in the count-energy spectrum to backtrack
and determine the phonon energy and wavevector. The
peaks are discrete, because only select neutrons k′ satisfy
both conservation conditions above. Finally, by chang-
ing the angles θM and φ one can obtain the entire spec-
trum in this way: the match between theory and ex-
periment obtained in this way is often rather spectacular
(Fig. 5). The triple-axis spectrometer technique thus pro-
vides a handle on phonon dispersions, allowing to fix free
parameters in theoretical models and to independently
determine a variety of material characteristics from the
spectra.

4In the opposite regime, one measures the phonon density of states
instead, which gives similar information. Intermediate cases are
more difficult to resolve [3].
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VI. EXAMPLE B: MAGNETIC SCATTERING

As mentioned earlier, neutron’s magnetic moment
µn is used to probe the magnetic structure of matter,
through their interactions with the unpaired electrons.
While elastic neutron scattering is used to determine the
magnetic structure and the density distribution of the
unpaired electrons, inelastic scattering gives information
about magnetic excitations.

Eq. (1) shows, that the cross section depends on the
scattering potential. In the case of magnetic neutron
scattering, this is the magnetic potential

VM(r) = −µnB(r), (6)

which arises from the magnetic moment µn = −γµNσ of
the neutron and the magnetic field B created by an elec-
tron. µN = −γ e~

2mp
is the nuclear magneton, mp is the

mass of the proton, γ is a constant (γ = 1.913) and σ
is the Pauli spin operator for the neutron. B is a super-
position of a magnetic field originating from the spin of
the electron and one due to its orbital motion. Evaluat-
ing the resulting matrix element, for example, for elastic
scattering from magnetically ordered crystals, gives the
elastic cross section(

dσ

dΩ

)
el

= (γr0)2N

{
1

2
gF (q)

}2

e−2W

∑
αβ

(δαβ − q̂αq̂β)×
∑
l

eiq·l〈Sα0 〉〈S
β
l 〉. (7)

Here, (γr0)2 is the magnetic scattering length, which is
the magnetic counterpart to the scattering length b we
saw in Sec. II: the two are of similar magnitude. F (q) is
the magnetic form factor, which gives the spatial extend
of the spin density around the atoms. g is the Landé-
factor. The Debye-Waller factor e−2W is a measure of
thermal lattice vibrations and, therefore, describes the
temperature dependence of the intensity of the elasti-
cally scattered radiation at a crystal. The second sum
is the Fourier transformation of the spin pair correlation
function, where l labels the site in the lattice and α and
β label x, y, or z [14].

One of the most famous examples of magnetic neutron
scattering is a measurement of C. G. Shull, who won the
Nobel prize together with B. N. Brockhouse. He analyzed
the structure of MnO-crystals, which led to the confirma-
tion of antiferromagnetism [12, 13]. MnO has a conven-
tional cubic structure. The neutron diffraction pattern at
room temperature (see Fig. 6(a), bottom), as expected,
shows the regular Debye-Scherrer diffraction peaks for a
cubic crystalline structure at both, all-even and all-odd
lattice sites. However, when lowering the temperature
below the Néel-temperature of MnO, the nuclear scatter-
ing peaks remain, as shown in Fig. 6(a) (top), but there
also appear additional magnetic scattering peaks at new
positions. For explaining these, one cannot use the con-
ventional chemical unit cell of MnO. Instead, as now the

pattern only shows all-odd peaks ((111), (311), (331),
(511)) the new, magnetic unit cell must be doubled in
comparison to the chemical one, which indicates that
MnO has two sublattices with opposite electron spins
(Fig. 6(b)). Thus, the interaction of the magnetic mo-
ments of the scattered neutrons and the valence electrons
of the crystal clearly shows the antiferromagnetic struc-
ture of MnO.

FIG. 6. (a) Neutron diffraction patterns for MnO at 80 K and
at 300 K. At low temperature, four extra diffraction peaks
appear. (b) Chemical and magnetic unit cell of MnO [12].

VII. CONCLUSION

Charge neutrality and strong magnetic moment make
neutrons very suitable for use in scattering experiments
that probe structures on the scale of interatomic dis-
tances. Neutrons penetrate deep into the bulk of the ma-
terial, allowing to image the crystal structure more fully,
to investigate phonon modes, as well as magnetic struc-
tures or excitations. Depending on the imaging technique
of choice – say, time-of-flight method or the triple-axis
spectrometer – different neutron sources can be chosen
to accommodate the needs of the apparatus, be it the nu-
clear reactor produced steady beam or the pulsed beam
of spallation sources. Neutron scattering, described the-
oretically by the differential cross section, is thus a pow-
erful technique, that together with other experimental
methods like electron microscopy and nuclear magnetic
resonance to better characterize the properties of matter.
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