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Interferometry exploits interference effects to make measurements. Although interferometers are
traditionally optical, due to wave-particle duality they can just as well use matter waves, as in the
atom-based Ramsey-Bordé interferometer. A Bose-Einstein condensate of two-level bosons has an
effective nonlinear interaction, which can be used to create a nonlinear Ramsey-Bordé interferometer.
Recently, such nonlinear BEC interferometers have surpassed classical constraints on precision of
measurement.

I. INTRODUCTION

Interferometry has been an important tool for precision
measurements for a long time. Classically the effects of
interference have been studied and utilized on electromag-
netic waves. With the emergence of quantum mechanics
and de Broglie’s prediction of the wave-like nature
of matter, interest in matter-based interferometry arose
[11]. Due to their ease of use, the first kind of particles
studied in this manner were electrons. As techniques and
precision progressed, the race for ever shorter de Broglie
wavelengths began and the next step was the neutron in-
terferometer [22]. The latest milestone is the overcoming of
the classical limit (discussed below), leveraging nonlinear
atom interferometry [33].
This article will focus on an experimental realization

of nonlinear interferometry in the form of the nonlinear
atom interferometry, reviewing the theoretical background
and connection to metrology. Example applications for
nonlinear interferometers are provided, and we finish with
an outlook on the field.

II. ATOM INTERFEROMETRY

A. Basic setup

In quantum mechanics, particles also exhibit wave-like
properties. De Broglie found that by virtue of their
momentum, particles have a wavelength of

λdB =
h

mv
, (1)

where m denotes the particles mass, v its velocity and h
is Planck’s constant. Therefore atom waves show interfer-
ence and can be used for interferometry in principle.
Before progressing to atom interferometry, a few prin-

ciples from optical intereferometry will be stated. This
paragraph follows mainly [44].
a. Preparation of the initial beam. If the initial states

are localized in space, then the momentum uncertainty
will spread out [55]. Since interferometry actually occurs

in momentum space, therefore, it is better to keep mo-
mentum as a good quantum number. So the preparation
must be in the momentum space. Furthermore, to get
coherent atom waves with free atoms, we have to reduce
the momentum and its uncertainty. One way of doing
this is cooling the system down to low temperatures.
b. Manipulation. In optical interferometry, half-

silvered mirrors are often used as beam splitters, but
this does not work for atomic waves because the atoms
would be absorbed or scattered in the solid matter. Res-
onant stationary laser waves or light pulses can diffract
atom waves and can be used as a beam splitter instead.
In the case of the stationary laser wave, the atom

wave (orthogonal to the laser wave) would be split into
excited states with either p+~kph or p−~kph, where kph
denotes a laser photon’s momentum vector [66]. This is
a direct result of the momentum conservation, assuming
an elastic process with the resonant condition ~ωph =
Eex − Egs, where ωph is the angular frequency of the
photon, Eex the energy of the excited state, and Egs the
ground state [66]. When the photon energy is not equal to
this energy difference, there is an additional phase shift.
Furthermore, the atom wave does not experience a recoil
at the nodes of the standing wave. The Bragg condition
sin θ = λdB/(2λph) for the first maximum can only be
satisfied when λdB ≈ λph, but this is usually the case for
ultracold atoms or short optical wavelength [66].

In the second case where laser pulses are used as beam
splitters only one momentum p + ~kph can contribute to
the splitting. This results in the momentum split state [77]

ags |gs〉 ⊗ |p〉+ aex |ex〉 ⊗ |p + ~kp〉 . (2)

The coefficients ags and aex of the ground state and the
excited state depend mainly on the laser power and the
beam profile. An ideal beam splitter can be achieved when
the coefficients are equal |ags| = |aex|. This is satisfied
when the laser pulse is of duration T = π/(2ωph) [77].
Those π/2-pulsed optical beam splitters are also used in
the Ramsey-Bordé atom interferometer. A pulsed laser
beam also provides a way of performing time-domain
operations in interferometry [66].
c. Detection. After recombination of the two split

matter waves with the use of diffraction on optical light,
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the interference fringes and the phase difference φ can
be observed as an imbalance in atomic populations at
two output ports. The imbalance oscillates sinusoidally
depending on φ and is called a Ramsey fringe [44].

B. Ramsey-Bordé atom interferometer

The starting point of the development of the Ramsey-
Bordé atom interferometer is the separation of oscillating
field method, devised by Ramsey in 1950 [88]. With this
technique, Ramsey explained how the diffraction of matter
waves on optical light could be used for beam splitting.

C. Bordé improved Ramsey’s idea by using four
pulsed laser beams (see figure 11) [99]. The incoming coher-
ent matter wave in the ground state |a, 0〉 from the left
side will first be split by a π/2 laser pulse. The second and
the third laser beams are π-pulsed and act on the states
like a mirror, which means that the states are just flipped.
Finally, the last laser beam is again π/2-pulsed and re-
combines the two states. This geometrical configuration is
comparable to the optical Mach-Zehnder interferometer
[1010] and it is common to illustrate the experimental setup
this way.

In fact, two π/2-pulses would be enough for doing atom
interferometry, but Bordé’s four interaction zone method
offers the advantage that the interference maxima are
free of Doppler-shifts to linear order, so those interference
fringes do not wash out [1111]. A Ramsey-Bordé atom
interferometer as depicted in figure 11 only works if the
lifetime of the excited state |b,mb〉 is longer than the
transition time. Otherwise, the coherence of the matter
wave is destroyed [44].

III. BEATING THE CLASSICAL LIMIT

A. Quantum metrology

More broadly, interferometry is one strategy for perform-
ing measurement: preparation of a probe, interaction
with the system to be measured, and probe readout [1313].
The sensitivty scaling of a measurement scheme relates
the resources used in probe design and the size of the
measurement error. An atom interferometer measures
a phase difference φ, and the relevant probe resource is
the number of particles N in the coherent matter wave
[33, 1414]. The classical limit (also called the standard quan-
tum limit) is the scaling ∆φ ∝ 1/

√
N . This arises via

the central limit theorem when components of the matter
wave interact independently, and is the optimal scaling
for linear interferometry.

Improving on the classical limit requires entanglement,
many-body interactions, or both [1414], but the fundamental
constraint is Heisenberg’s uncertainity principle, leading
to the Heisenberg limit ∆φ ∝ 1/N [1313]. Experimentally,
the classical limit can be surpassed using a nonlinear

Figure 1: The principal configuration of a Ramsey-Bordé atom
interferometer [1212]. This is usually characterized by four laser
beams which influence the matter wave. The first and the last
one act like 50/50 beam splitter, because those are π/2-pulsed,
while the two other laser beams are π-pulsed and act like
mirrors. Here |a,ma〉 denotes the ground state and |b,mb〉
the excited state, where m represents the number of photon
recoils. The solid lines show the path of the high frequency
component of the interferometer, whereas the dashed lines
show the low frequency path.

Ramsey-Bordé atom interferometer made from ultra-cold
gas [33], which we will now discuss.

B. Bose-Einstein condensates

a. Gross-Pitaevskii equation. Consider a gas of
weakly interacting bosons in a confining potential. At
low temperatures, a sizeable fraction of particles condense
into the ground state, forming a Bose-Einstein condensate
(BEC) [1515]. A BEC can be described by a mean-field con-
densate wavefunction ψ(r) ≡

√
n(r) eiθ(r), where n(r) is

the average density and θ(r) the phase. The Schrödinger
equation governing ψ(r) (to leading order in N) is the
Gross-Pitaevskii equation (GPE):

(
− ~2

2m
∇2 + V (r) + gn(r)

)
ψ(r) = µψ(r) (3)

where V (r) is the trapping potential, µ is the chemical po-
tential, and g is a coupling related to the s-wave scattering
length a by g ≡ 4π~2a/m.

b. Josephson approximation. Suppose our BEC con-
sists of N two-level bosons, with hyperfine states |1〉 and
|2〉. In the Josephson approximation, the BEC wave-
function factorises into the condensate wavefunction Ψ(r)
and hyperfine occupation modes, with elastic (number-
conserving) transitions between the latter [1616]. The effec-
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tive Hamiltonian

Ĥ = NE0 +
1

2
η

2∑
α,β=1

gαβa
†
βa
†
αaαaβ , (4)

consists of the sum of (mean-field) single particle ener-
gies NE0, and two-body scattering, where a†i (ai) creates
(annihilates) a state in mode |i〉, gαβ is the coupling for
the transition process, and η is a normalization constant.
Rewriting equation (44) in terms of the (Schwinger) angu-
lar momentum operator [1717]

Ĵz =
1

2
(a†1a1 − a

†
2a2) , (5)

and ignoring constants, we obtain

Ĥ = γ1ηNĴz + γ2ηĴ
2
z , (6)

where γ1 ≡ (g11−g22)/2 and γ2 ≡ (g11+g22)/2−g12. We
can also apply microwave and radio-frequency pulses in
some direction n̂ in the x-y plane to the system to drive
Rabi oscillations with frequency Ω, effectively coupling
the hyperfine modes (at the single particle level). This
leads to a final Hamiltonian of the form

1

~
Ĥ = ∆ωĴz + χĴ2

z +Ω J · n̂ , (7)

where ∆ω ≡ γ1ηN/~ is a detuning resonance affecting
the relative phase acquired during free evolution, and
χ ≡ γ2η gives the size of the effective nonlinear interac-
tion. Note that g12, and hence χ, can be magnetically
tuned. This quadratic interaction allows us to perform
nonlinear interferometry; it is analogous to the the Kerr
nonlinearity in optics, where a material has a refractive
index proportional to the intensity of light, n ∝ |E|2 [1717].
c. Bloch sphere. The Bloch sphere is a convenient

way of representing a two-level system |1〉, |2〉 such as our
hyperfine states, pictured in figure 22(a). Any pure state
can be written as a superposition

|θ, φ〉 ≡ sin(θ/2) |2〉+ cos(θ/2) eiφ |1〉 , (8)

such that |θ, φ〉 is an eigenvector of Jn ≡ n̂|θ, φ〉 · J. This
can be generalized to coherent state of N two-level atoms
[1717]

|θ, φ〉 ≡ 1√
N !

(
sin(θ/2) â†2 + cos(θ/2) eiφ â†1

)N
|0〉 . (9)

We can implement nonlinear interferometry by running
the Josephson Hamiltonian equation (77) on a coherent
state, and controlling Ω and χ. In particular, the nonlin-
ear interaction generates squeezed states [1818], discussed
below.

C. Nonlinear interferometry and the precision limit

In 2010 Gross et al. surpassed the classical precision limit
with a Ramsey-Bordé atom interferometer using a Bose-
Einstein condensate of rubidium 87Rb and a nonlinear

Figure 2: Plane a) illustrates the Bloch sphere of a spin 1/2
particle with the spin axes Ĵx, Ĵy, and Ĵz. The linear and
nonlinear Ramsey–Bordé atom interferometers are presented
in b) and c), where those configurations are visualized in style
of the optical Match-Zehnder interferometer. Additionaly the
interaction of the different components to the state on the
Bloch sphere is illustrated. Figure adapted from [1717].

beam splitter [33, 1717]; similar results were obtained in [1616].
The hyperfine structure of the 52S1/2 state in 87Rb with
the Zeeman splitting is a suitable two-level system.

Due to the uncertainty principle (and the angular mo-
mentum commutation relations), it is impossible to mea-
sure the polar angle θ and azimuthal angle φ to arbitrary
precision. For a coherent and isotropic spin state the
angular uncertainty is given by ∆φ = ∆θ = 1/

√
N [1717].

The angular uncertainty for the linear (figure 22(b)) and
nonlinear (figure 22(c)) Ramsey-Bordé interferometer after
the different steps is visualized on the Bloch sphere. The
nonlinear beam splitter acts like a noise tomograph and
is responsible for creating spin-squeezed states.

Unlike coherent states, spin-squeezed states are entan-
gled, with anisotropic fluctuations of the spin vector ∆J⊥
perpendicular to the total mean spin J . This is surprising,
since each single spin fluctuation is still isotropic. In order
to comply with the Heisenberg uncertainty relation, reduc-
ing the variance in one perpendicular direction increases
the variance in the other. The squeezing parameter, which
quantifies the anisotropy, is defined as [1717]

ξ2 ≡ N∆Ĵ2
⊥

〈Ĵ〉2
= N

∆Ĵ2
z

〈Ĵx〉2
. (10)

A state is squeezed if ξ2 < 1.
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Figure 3: The population difference 〈Ĵz〉 of the Ramsey fringes
vs the phase for linear and nonlinear Ramsey-Bordé atom
interferometer are shown here. The maximum value of the
population differance is given by: 〈Ĵz〉 = NV/2, where N is
the number of atoms and V the visibility [33].

The interferometric procedure of figure 22(b) is as follows.
A coherent BEC state is produced by coupling modes via
pulses with Rabi frequency Ω. The nonlinear interaction
χĴ2

z is briefly “switched on” by magnetic tuning, and
acts as a beamsplitter, splitting the coherent states into
spin-squeezed states [1818]. The squeezed beams separately
evolve according to equation (77), with χ ≈ 0, acquiring
a relative phase φ which translates into an observable
mean population difference 〈Ĵz〉 when the beams are
recombined using the standard linear π/2-pulse [33]. The
squeezing leads to reduced noise in 〈Ĵz〉, which ultimately
lets us beat the classical limit. Put a different way, the
nonlinearity entangles the beams, and that entanglement
leads to super-classical precision.

Figure 33 illustrates the population difference 〈Ĵz〉 ver-
sus the phase φ for an ideal linear interferometer (grey)
and the experimentally realized nonlinear atom interfer-
ometer (black). The variance of the angle

∆φ−1 =

(
∆Ĵz

∂φ 〈Ĵz〉

)−1
(11)

depends on the variance of spin ∆Ĵz and the slope of the
Ramsey fringe ∂φ 〈Ĵz〉 [1717]. The sensitivity or variance of
the angle is maximal where the population of spin is zero.
In other words, the slope must be maximal to achieve
optimal sensitivity for the Ramsey-Bordé interferometer.
From figure 33, we can see that the nonlinear interferometer

is more sensitive than the ideal linear interferometer, with
Gross et al. reporting a 31 % improvement in phase
precision [1717]. Although the precise scaling would require
more experiments, the comparison to the ideal linear
interferometer is sufficient to show improvement on the
classical limit.

IV. APPLICATIONS

Since one of the main characteristics of nonlinear interfer-
ometry is its enhanced precision compared to the classical
case, it is very well suited for precision measurements.
A big area of application is the measurement of iner-

tial effects. These are often very small by nature and
therefore a high sensitivity is desirable. As matter-based
interferometers are very sensitive to inertial effects, they
are well suited for this kind of measurement [1919]. Various
groups have used nonlinear interferometers to measure the
gravitational acceleration g on the earth’s surface,[2020, 2121]
as well as Newton’s gravitational constant G [2222, 2323].
The interferometers of Ramsey type described in the

text above are especially well suited for this purpose
[1717]. Kasevich et al. describe a method to measure
gravitational acceleration to a precision of 10−10 g [2020].
Measurements of the earth’s rotation and the corre-

sponding Coriolis force have also been performed [1919, 2424].
Another utilization of the Ramsey scheme is the high

precision measurement of atomic oscillations. These are
then in turn used to define a time standard and build
highly accurate clocks. In 1999 Santarelli et al. were
able to improve the precision of their clock by a factor of
five utilizing Ramsey oscillations [2525].

V. SUMMARY

In this paper we provided a brief overview of nonlinear
atomic interferometry.

In section IIII, a brief review of classical interferometry is
provided and compared to matter based methods. Then
a experimental setup of a Ramsey-Bordé interferometer
is described as an illustration of an atom interferometer.
On this example the ability of a nonlinear interferometer
to surpass the classical limit is demonstrated. In this case
the precision was increased by about 31 % [33].
Section IIIIII first introduces the general principles of

measurements before progressing to a brief overview of
Bose-Einstein condensates. After that, the theory be-
hind nonlinear interferometry and why it can surpass the
classical limit is discussed.
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