Hamiltonian Dynamics Problem Set #1

- 1. Write down the Lagrangian for a double pendulum restricted to move under gravity in a vertical plane. A mass m_1 is connected by a light rod of length l_1 to a fixed support and a mass m_2 is connected to m_1 with a rod of length l_2 . Use as generalized coordinates the angle θ_1 and θ_2 of the rods with the vertical. Find the generalized momenta associated with these coordinates.
- 2. A bead of mass m can slide without friction along a horizontal circular hoop of radius r

$$(x - x_0)^2 + y^2 = r^2$$

The x component of the center of the hoop undergoes forced harmonic motion

$$x_0 = a * sin(w * t)$$

Write down the equation of motion for the bead using the angle θ as generalized coordinate.

$$x - x_0 = r^* \cos \theta$$
; $y = r^* \sin \theta$

3. The principle of least action can be extended to "Lagrangians" that contain higher time derivatives than first of the generalized coordinate q_i. Show that, if

$$S = Int_a^b [dt L(q_i, q_i', q_i'')] = extremum$$

subject to fixed values of q_i at the ends, the corresponding Euler-Lagrange equation becomes

$$d^{2}/dt^{2}(\partial L/\partial q_{i}^{\prime \prime}) - d/dt(\partial L/\partial q_{i}^{\prime \prime}) + \partial L/\partial q_{i} = 0$$

Apply this to the equation of motion for

$$L = - mqq''/2 - q^2$$

- 4. A particle moves in the (x,y)-plane with speed proportional to the square of its distance from the origin. What is the minimum-time path between the points (1,1) and (0,2).
 - Hint 1: It might help to solve this problem using polar coordinates.
 - Hint 2: The construction of this problem is similar to that of the Brachristochrone.