Hamiltonian Dynamics
 Problem Set \#1

1. Write down the Lagrangian for a double pendulum restricted to move under gravity in a vertical plane. A mass m_{l} is connected by a light rod of length l_{l} to a fixed support and a mass m_{2} is connected to m_{1} with a rod of length l_{2}. Use as generalized coordinates the angle θ_{1} and θ_{2} of the rods with the vertical. Find the generalized momenta associated with these coordinates.
2. A bead of mass m can slide without friction along a horizontal circular hoop of radius r

$$
\left(x-x_{0}\right)^{2}+y^{2}=r^{2}
$$

The x component of the center of the hoop undergoes forced harmonic motion

$$
\mathrm{x}_{0}=\mathrm{a}^{*} \sin (\mathrm{w} * \mathrm{t})
$$

Write down the equation of motion for the bead using the angle θ as generalized coordinate.

$$
\mathrm{x}-\mathrm{x}_{0}=\mathrm{r}^{*} \cos \theta ; \mathrm{y}=\mathrm{r}^{*} \sin \theta
$$

3. The principle of least action can be extended to "Lagrangians" that contain higher time derivatives than first of the generalized coordinate q_{i}. Show that, if

$$
\mathrm{S}=\operatorname{Int}_{\mathrm{a}}{ }^{\mathrm{b}}\left[\mathrm{dt} \mathrm{~L}\left(\mathrm{q}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}^{\prime}, \mathrm{q}_{\mathrm{i}}{ }^{\prime \prime}\right)\right]=\text { extremum }
$$

subject to fixed values of q_{i} at the ends, the corresponding Euler-Lagrange equation becomes

$$
\mathrm{d}^{2} / \mathrm{dt}^{2}\left(\partial \mathrm{~L} / \partial \mathrm{q}_{\mathrm{i}}{ }^{\prime}{ }^{\prime}\right)-\mathrm{d} / \mathrm{dt}\left(\partial \mathrm{~L} / \partial \mathrm{q}_{\mathrm{i}}{ }^{\prime}\right)+\partial \mathrm{L} / \partial \mathrm{q}_{\mathrm{i}}=0
$$

Apply this to the equation of motion for

$$
\mathrm{L}=-\mathrm{mqq}{ }^{\prime \prime} / 2-\mathrm{q}^{2}
$$

4. A particle moves in the (x, y)-plane with speed proportional to the square of its distance from the origin. What is the minimum-time path between the points $(1,1)$ and $(0,2)$.

Hint 1: It might help to solve this problem using polar coordinates.
Hint 2: The construction of this problem is similar to that of the Brachristochrone.

