
 

 Introduction 

Fig.1 Diagram of a typical Wilberforce pendulum 

 

There exist many physical 

systems that are a combination of two 

separate states which interact with 

each other, thus modifying one state in 

a certain way will effect the other state. 

To clearly demonstrate the idea of 

coupled systems, it is easy to turn to 

coupled oscillators, since they undergo 

extremely visible changes in their 

oscillation patterns. One such coupled 

oscillator is the Wilberforce pendulum, 

which couples its longitudinal oscillation 

with its angular oscillation. The 

Wilberforce pendulum was named after 

its inventor Lionel Robert Wilberforce. 

Its basic construction is a long soft 

coiled spring  (meaning it’s longitudinal 

and angular spring coefficients are 

relatively small) with a mass hanging at 

the bottom that has a certain moment of 

inertia. 

 Usually these masses have adjustable 

moments of inertia so as to 

experimentally verify the theory behind 

the pendulum. The coupling exists on 

the pendulum due to the torsional strain 

during the longitudinal compression and 

decompression of the spring and the 

axial strain during the twisting.  

 

 Theory 

 

The kinetic energy of the pendulum is a 

combination of the longitudinal and 

angular kinetic energy. If k/2 is the 

 



 

longitudinal spring constant, δ/2 is the 

torsional spring constant, I is the 

moment of inertia, and m is the mass, 

the kinetic energy is therefore 

At this point we assume oscillatory motion 

in the system. This allows us to state  

 

z(t) = Aeiωt (6) 

  

is a solution to equation (4). It’s a safe 

assumption to state this since the 

Wilberforce pendulum does indeed 

have oscillatory motion, and eventually 

we shall see that ω is an average of the 

angular frequencies of the eigenstates. 

Substituting equation (6) into equation 

(4) we find a solution for θ(t).  

T = 1/2mz’2 + 1/2Iθ’2 (1) 

 

and the potential energy is 

 

V = kz2/2 + δθ2/2 + cθz (2) 

 

where c is the coupling constant. The 

Lagrangian is  

  

θ(t) = (mω2/c – k/c)Aeiωt (7) L = 1/2mz’2 + 1/2Iθ’2 - kz2/2 - δθ2/2 – cθz (3) 

  

The Lagrangian equations of motion 

become 

This equation makes the assumption 

that ω is approximately equal for both z 

and θ. While this may seem like a bad 

assumption to make, experimentally it 

holds within reason for this pendulum, 

and the calculations become extremely 

 

mz’’ + kz + cθ = 0 (4) 

 

Iθ’’ +δθ +cz = 0 (5) 

 unlikely outside of numerical analysis if 

it is not made. Later in the paper the 

 



 

true meaning of ω will become 

apparent. Substituting (7) back in to (5), 

we arrive at an equation for ω: 

 

-mω4Aeiωt/c + kω2Aeiωt/c  

+ δmω2Aeiωt/(Ic) + cAeiωt/I 

 - δkAeiωt/(Ic) = 0 (8) 

-  

Cleaning this equation up and 

substituting in k/m = ωz
2, δ/I = ωθ

2, we 

have 

 

ω4  - (ωz
2 + ωθ

2)ω2  

+ ωz
2 ωθ

2 – c2/(mI) = 0 (9) 

 

 

Note that the above substitutions are 

the relations that give the longitudinal 

and angular frequency for the given 

spring constants. At this point I would 

like to demonstrate the existence of 

normal modes in the pendulum. Normal 

modes exist as eigenstates to the 

actual system, and all transitional states 

are combinations of these modes. If the 

pendulum starts oscillating along a 

normal mode, the frequencies ωz
2 and 

ωθ
2 are equal, and the pendulum 

oscillates in simple harmonic motion. 

The calculations therefore become 

much simpler. Using the quadratic 

formula on equation (9) to discover a 

relation for ω2 we discover: 

 

ω2 = ωz
2 + ωθ

2 ±√(( ωz + ωθ) ( ωz - ωθ) 

+ 4c2/(mI))  (10) 

 

However, as stated before, ωz
2 = ωθ

2. 

Equation (10) therefore simplifies to 

 

ω2 = ωz
2 + ωθ

2 ±√( 4c2/(mI)) (11) 

 

To find the normal modes, we can 

make the substitution of ωz
2 + ωθ

2 = ω1
2 

+ ω2
2, where ω1

2 and ω2
2  are the 

angular frequencies of the normal 

modes. and we can therefore state the 

 



 

normal modes as eigenfunctions to the 

original system: 

 

ω1
2 = ω2 - √( 4c2/(mI)) (12) 

ω2
2 = ω2 + √( 4c2/(mI)) (13) 

 

We know that there can be only two 

normal modes, hence two frequencies 

to these modes, since there are only 

two degrees of freedom for the 

Wilberforce pendulum; however, there 

are an infinite amount of initial 

conditions that arrive to these two 

modes. Subtracting equation (12) from 

(13), we come across an interesting 

result: 

 

ω1
2 - ω2

2 = -2√( 4c2/(mI)) (14) 

 

Noting that ω1
2 - ω2

2 factors to  

(ω1 - ω2)(ω1 + ω2), where (ω1 - ω2) = 

ωb, the beat frequency of the transfer of 

energy between the two modes, and 

making the approximation  

ω = (ω1 + ω2) we can finally solve for 

the coupling constant. 

 

c = 2ωbω√(mI)/4 (15) 

 

Now that we have the coupling 

constant, we can solve the differential 

equations (4) and (5) listed above. After 

performing all the necessary 

substitutions, the end result for θ and z 

is 

Θ(t) = 
 
(2ω(ω1 – ω2))√(mI zo(cos(ω1t)) -cos(ω2t)) 

 
4I(ω1

2 – ω2
2) 

    (16) 
+ 
 

θ0((ω1
2 – ω2)cos(ω2t)  

– (ω2
2 – ω2)cos(ω1t) 
ω1

2 – ω2
2 

 
 
 

 



 

z(t) =  ω2 = 5.63, ω= 5.71, m = 0.266, 

 I = 5.05 x 10-5, θo = 0, zo = 0.1, which 

are approximate experimental values 

for these constants. 

zo((ω1
2 – ω2)cos(ω1t)  

- (ω2
2 – ω2)cos(ω2t)) 

 
ω1

2 – ω2
2 

 

    (17) 
- 
 

8Iθ0m(ω2
2 – ω2) ((ω1

2 – ω2) (cos(ω1t)  
- cos(ω2t)) 

√Im(ω(ω1 – ω2))( ω1
2 – ω2

2) 
 

Fig 3: θ(t) vs. t  

Plotting z versus time gives us the 

motion below 

These plots display the coupled 

oscillation, where one can see the 

points of complete energy transfer from 

one type of oscillation to another. 

These points are approximately 18, 37 

and 55 just by glancing at the plots.  

Finally, to find the normal modes, we 

must find where z(t) and θ(t) are zero. 

Substituting in we find that the normal 

modes are  

 
Fig. 2: z(t) vs. t 

And plotting θ versus time gives us the 

plot in fig. 3. The values for the 

constants used in these plots are as 

follows: ω1 = 5.80,  

zo = 4√(I/m)θo 

zo = -4√(I/m)θo 

 



 

 A plot of one of the normal modes 

shows the harmonic oscillation: 

 

 

 

 

 

 

 

 

 

 

 fig 4: Normal mode plot 

 Thus by using Langrange’s equations 

of motion the Wilberforce pendulum’s 

coupled oscillation is described, and it’s 

eigenstates are found. 
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