Periodic Table of Elements
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Figure 1: The periodic table, from www.ptable.com. There are other nice ones there, listing various other properties.

Part I: The elements

As we all know, all matter is made of atoms. The atoms themselves consist of a nucleus plus
electrons. The nucleus is very small, on the scale of 107%m, and contains protons and neutrons.
Different elements are labelled by their atomic number 7, which is the number of protons in the
nucleus. Of course, a neutral atom has Z electrons moving around the nucleus, in an electronic cloud
whose typical size is of the order of 1071%n = 1A. An atom with fewer/more electrons than its 7 is
called an ion, and is electrically charged.

There are around 100 stable elements, with Z = 1,23, ..... They have names such as hydrogen,
H, for Z = 1; helium, He, for Z = 2, etc. They are grouped in the periodic table according to their
properties. There are various ways to display this periodic table; one possible example is shown in
Fig. 1. For each element, the top left number is the atomic number Z. These increase monotonically
from left to right, and from top to bottom. The symbol of the element is also listed with the name
written underneath. The number below is the mass number, i.e. the total number of protons plus
neutrons in the nucleus (electrons are so much lighter than the nucleons, that their contribution
to the atom’s mass is negligible). The number of nucleons is an integer, of course, so you may be
surprised to see a non-integer value listed in most cases. The explanation is that many elements
come in several isotopes, each with a different number of neutrons. Some of these are stable, some
are unstable to nuclear reactions.

For example, for potassium °K, the mass number is 39.0938. According to Wikipedia (not
necessarily the most trustworthy source of information, but for something like this it will normally
do), K has 25 known isotopes, of which 3 occur naturally. Of these, the most abundant is 19K,



which therefore has 20 neutrons, and abundance of about 93.3%. }JK (22 neutrons) is also stable,
but with abundance of 6.7%. Finally, 3K, with 21 neutrons, is unstable, but only occurs in 0.012%
abundance. It can decay to either jSAr, or to 35Ca — you should be able to figure out how is that
possible, but in any event this explains why bananas are radioactive. The other unstable isotopes
do not occur naturally but can be created using cyclotrons (eg, TRIUMF has a program to create
radioactive isotopes with fairly short lifetimes, for medicinal purposes). In any event, you can see
why the mass number of K is just slightly over 39.

Finally, there are some numbers listed to the right, whose meaning we’ll discuss in a bit. Before
that, let me express my hope that you will spend a bit of time looking through the posted supplemen-
tary notes from N. Ingle, where he reviews nicely some of the history behind both establishing that
atoms have this structure, and understanding how to order them in the periodic table. At the very
least, I hope you know that proving that matter is made of atoms is actually a recent development,
on the order of 100y old only! Of course, some of the ancient Greeks speculated that this is how
things stand, but in modern physics we have to check any theory by experiments. Our microscopic
understanding of the structure of matter has come very far, indeed, in a very short time!

The last step is to understand what are the electrons doing. For this, we need to solve Schrodinger’s
equation, to find what energy levels are available to them. We know that if we can ignore interactions
between electrons, in the ground-state (the most stable state) the lowest available levels will be fully
occupied according to Pauli’s principle.

So let’s ignore interactions, to begin with, and I'll tell you a bit later how we can account for them
in an averaged fashion. Consider a nucleus with a given Z, meaning a positive charge of Ze, and a
single electron — so we can find its spectrum. Because of the spherical symmetry of the problem, it
is convenient to work with spherical coordinates r, 8, ¢. Schrodinger’s equation reads:
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] 6(r,9,6) = E6(r,0,0)

where I'll use the simpler notation k = 1/(4mep). Even though this is a quite complicated equation,
it can be solved exactly and has rather simple solutions. Let me first mention that it has eigenstates
for all energies E > 0 — these are states where the electron has sufficiently large kinetic energy that
it is not bound to the nucleus. Clearly, we're not interested in these states here.

There is no doubt that you will go through the math of this problem before completing a physics
degree, so let me just list the results here, for the bound states with £ < 0. Then, we’ll discuss
qualitatively what the wavefunctions look like.

It turns out that we need 4 quantum numbers to fully index all bound quantum states, 3 for the
spatial part (three integers n,l, m) and one for the spin (o =1, ]):

e n =1,2,... is known as the principal number. It controls the value of the energy:
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is a dimensionless constant known as the fine structure constant. Traditionally, people also used
to call levels with n = 1,2, ... as K, L, M, ..., but I will probably not do that much.

e/ =0,1,...,n—1is called the angular momentum. It defines the size of the total angular of
the electron — this value is actually hy/l(l + 1). Note that the maximum allowed value of [ depends
on n! It is traditional to call states with [ =0,1,2,3,... as s,p,d, f, ... and I will certainly do so.



To be more specific, if I say 1s, it means n = 1 and [ = 0; 3p means n = 3 and [ = 1, etc. The
integer tells you the value of n, and the letter gives the value of (.

em=—[,—[l+1,...,l —1,[ is another integer that can take 2] + 1 distinct values for a given value
of [. This is the projection of the angular momentum along an axis, which is also quantized
to the value mh. This should remind you of what I said about the spin and its allowed values for its
projection along an axis — the reason for the similarity is that the spin is an angular momentum so
it has the same types of quantization rules.

e the spin 0 =1, /, since the electrons are spin-1/2 fermions. So, going back to our example, there
are 2 distinct quantum states for an 1s orbital. Because [ = 0 — m = 0, but we still have 0 =1, |.
Same is true for 2s, 3s, ..., they all have | = 0,m =0 and ¢ =1, |.

For a 2p, 3p, ... orbital, we have [ = 1 therefore m = —1,0, 1 and o =T, |, so now we have 6 possible
combinations, therefore 6 distinct states in a p orbital (3 values of m, each of which can have either
spin). For a 3d,4d, ... orbital, we have [ = 2, therefore m = —2,—1,0, 1,2, and o =7, |, so 10 distinct
states in a d orbital. Etc, etc. So these are the quantum numbers.

As already stated, the eigenenergies depend only on n, so the levels are highly degenerate. The
degeneracy is 2 for n = 1 (only 1s levels possible); 2 +6 = 8 for n = 2 (both 2s and 2p levels
possible), 2 + 6 + 10 = 18 for n = 3 (3s, 3p, 3d levels possible), etc.

The [ and m help index all the different eigenfunctions corresponding to the same n. To see the
wavefunctions, their full formulae and various ways to represent their spatial structure, I suggest you
explore Orbitron at winter.group.shef.ac.uk/orbitron/ (if you find a better website, let me know). I
will list the main points, which is what [ want you to know. First, the spatial part of the wavefunction
factorizes into a part that depends only on r, and one that depends only the angles:
¢n,l,m(ra 0, ¢) = Ry (2Zr> Yim(a ¢)
napg

Here
~ 0.5A

ap —
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is known as the Bohr radius, and gives the typical size of the wavefunction. To be more precise, look
at the dimensionless combination Y
p=—r
nap
on which the radial part depends. For example, Rio(p) o< e /2 (I will not list the normalization
constants); Rag(p) oc (2 — p)e /2, Ry1(p) o< pe~?/?, etc. So these are very simple functions. They all
have an exponential so they decrease fast enough to be normalizable, times some simple polynomial.

I sketched some of these radial functions in Fig. 2, to show their qualitative features. The
important things to remember, regarding the shape of the radial parts, are:

(i) all s orbitals are finite at p = 0, whereas all p orbitals increase proportionally to p near the
origin, all d orbitals go like p? near origin, f orbitals go like p* near origin, i.e. R (p) ~ p! for p — 0.
They all decrease exponentially like e=#/2 as p — 0.

(ii) somewhere in between 0 and oo, an ns orbital has n — 1 nodes (i.e., finite values of p where
it vanishes); so: none for 1s, 1 for 2s, 2 for 3s etc. A np orbital has n — 2 nodes; so 2p (first allowed
p orbital) has no nodes, 3p has one, 4p has two, etc. A nd orbital has n — 3 nodes, so again, the
first allowed one, 3d, has none, 4d has one, etc. The same pattern holds for higher [ orbitals. More
nodes as n and [ increase is to be expected, since this means higher kinetic energy and leads to a
higher total energy. This node structure can be understood to be necessarily this way because of the
orthogonality between different eigenfunctions (maybe we’ll belabour this point a bit more in class).
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Figure 2: Sketch of the shape of the first few radial functions R,;(p).

(iii) for a given n, as [ increases orbitals spread farther out from the origin (not surprising, if
you remember that [ characterizes angular momentum, and you’d expect a state with more angular
momentum to be farther out). My hand-made sketch is not showing this very well, so have a look
at the better plots online.

So, the R, (p) tells us how the wavefunction decreases as you go away from the origin, in any
direction. But this is the p dependence, how about the r» dependence? Well, they are proportional,
but the proportionality constant depends on both Z and n. The trends are:

e for a fixed n, the larger Z is, the “smaller” is the orbital, and of course the more negative is the
energy F,. Not surprising, really, since larger Z means stronger attraction, so all else being equal
the electron should be closer to the nucleus and have lower energy (more strongly bound).

o for a fixed Z, the larger n is, the more spread-out is the orbital, and of course the less negative
is the energy F,. Not surprising, either. We know different orbitals are orthogonal, so if the ones
with low n occupy the space close to the nucleus, the ones with higher n are pushed further out. The
electron feels less attraction there, so its energy goes up.

The Y},,(0, ¢) part (these are spherical functions) tells us the angular dependence of the wave-
function, as you stay at any fixed r and move around the surface at that sphere. These are again
simple functions, which also split into a part depending only on é times a simple exponential e™™?.

More specifically, Yoo(6, ¢) = const, meaning that all s orbitals are spherically symmetric, looking
precisely the same in any and all direction. You can think of “s” as standing for “sphere”.



Figure 3: Sketch of angular dependence for s, p and d orbitals.

For [ = 1, we have, up to normalization constants: Y; 1(6,¢) o sinfe™;Y; (6, $) o< cosb;
Y141(0, ¢) o< sinfe’®. These are complex functions, obviously. Dealing with real functions is easier,
and since these functions are degenerate, we are free to make any linear combinations and they are
still eigenfunctions. Using e*® = cos ¢ & i sin ¢, we can make 3 orthogonal but real combinations:

(0, 0) = \}5 (Y1.-1(0,0) + Y141(0,¢)) o sinf cos ¢ = %
py(0,0) = \;5 (Y1-1(0,0) — Y1 41(0,¢)) x sinfsin¢ = %
pz(ea (b) = }/1,0((9, ¢) ox cosf = ;

These are the famous p orbitals, which you've probably encountered before. Clearly, p, is mostly
concentrated along the x axis, and is positive for x > 0 and negative for x < 0. It quickly vanishes
as you move off z-axis, and this is what the sketches above are trying to suggest. Similarly, p, and
p. look like “lobes” with opposite signs, oriented along their respective axes.

You can see right away that even if they have the same energy, electrons occupying different
orbitals can have very different spatial distributions. While an s electron is equally likely to be found
anywhere around the nucleus, a p, electron will be very likely along the x axis and very unlikely to
be found anywhere else, etc. This will have major consequences for chemistry, as we will see in a bit.

Before moving on, let me also comment on the d orbitals [ = 2. Again, you can easily find the
formulae for the Y5, functions, but instead of working with these complex functions, it is convenient



to make linear combinations which are real. These lead to the so-called d orbitals, whose names
basically tell you what their angular dependence is (so, no need to memorize):
dyy(0, P) x x—g = sin? @ sin ¢ cos ¢
r
d..(0,0) x = sin 0 cos 6 cos ¢

72

dy.(0, ¢) x U= _ sin 6 cos 0 sin ¢

r2

22 — g2

dy2_y2(0, ¢) = sin® f(cos® ¢ — sin® ¢) = sin® § cos(2¢)

-
2 _ 2
d3.2_,2(0,0) x ?)ZTQT =3cos?f —1

What do they look like? Well, consider d,,. It is clearly zero for both x = 0 and y = 0, and it is
maximum when both are as large as possible, i.e. along the 2 = +y diagonals (but the sign changes).
It also lies in the zy plane — if you go to large z while keeping r constant (remember, we are on the
surface of a sphere) then = and y decrease and d,, vanishes. Similar thinking should lead to figure
out the shapes of the other d orbitals, and see if you agree with my sketches on the previous page.

So, these are the eigenenergies and eigenfunctions of the one-electron case. H only has one electron
so it is perfectly described by this for Z = 1, therefore in the ground-state its electron goes in the
1s shell, either with spin-up or spin-down. The electronic configuration of H is, therefore 1s' (the
little upper script shows how many electrons are in that orbital). He has 2 electrons, so clearly its
electronic structure is 1s? (the second electron goes into the lowest orbital available to it).

What happens with Li, Z = 37 Clearly, the 3rd electrons must go into a n = 2 orbital. According
to what we just discussed, 2s and 2p should have equal energy so either 2s or 2p should be just as
good — however that was true only if there is a single electron in the system. Here, we already have
two electrons filling the 1s shell, basically putting themselves between the nucleus and this outer, 3rd
electron. This process is known as shielding, or screening. While calculating precisely its effect
is a very difficult enterprise, we can can infer the qualitative trend quite easily. First, the two inner
electrons fill a spherical shell, so the spherical symmetry of the problem remains (in some sense, it’s
as if the total attractive charge experienced by the 3rd outer electron has gone down to Z — 2). This
is why we should expect that the n = 2 orbitals should have similar shapes as in the single-electron
case. However, because s orbitals have a finite overlap with the nucleus, while the p orbitals are
pushed further out, it follows that s orbitals are somewhat less effectively screened (they feel more
attraction from the nucleus) and should have a lower energy. By contrast, the p orbitals will have
higher energy. This is true not just for n = 2 and not just for s and p orbitals, but in general. Inner
electrons partially shield the attraction for all electrons in a higher n level, but less so for s, more
for p, even more for d etc.

This is why because of electron-electron interactions, E,; < E,, < E,q < .... These energies
are sketched in Fig 4, where the spectrum of the one-electron ion is compared to that of the many-
electron atom. Note that the energy of 3d levels is pushed above that of 4s ones, and there are a few
other such cases where levels with low [ and high n lie below levels with lower n but higher [.

Now we know all we need to understand the periodic table. As already stated, H and He have
only n = 1 orbitals filled, hence they are on the first line (see leftmost index in the table).

The n = 2 orbitals start being filled when we start the second line. First is Li with 1s22s!, since
Ess < E5,, then Be with Z = 4, 1s?2s?, and then the next 6 elements which fill the 2p orbitals one
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Figure 4: Sketch of the spectrum of the single-electron ion (left) and of the many-electron atom (right). Some of the
degeneracies are lifted in the latter case because of electron-electron interactions.

by one. You can now see that the integers listed to the right of each element’s box are precisely these
occupation numbers, giving their electronic structure.

We then start the 3rd line with n = 3 orbitals being filled, first the 3s and then the 3p. However,
because F3q > FE,,, instead of continuing with 10 more elements on this line, with 3d levels being
filled, instead we start the 4th line, fill its 4s orbitals first, and then insert the 10 elements having
partially filled 3d shell. After which we finish with the 6 elements with 4p shell partially filled. This
explains the insertions of the 4 additional pieces in lines n = 4 — 7, to accommodate electrons in the
(n—1)d orbitals. Two more additional insertions occur for the 4f,5f orbitals, which also are located
out of their turn, since for eg Fgs < Eif < Fsq < Eap.

In case you're wondering what happens when a p or a d is partially filled, let’s look at N with
1s225*2p3. Tt turns out to have one electron each into of the 2p,, 2p, and 2p, orbitals, as opposed to
two in the same orbital but with opposite spins. This is so as to keep them away from each other
to limit their repulsions, which raise the energy (remember that each p orbital points in a different
direction). Turns out that these 3 electrons also have their spins parallel, either all up, or all down.
We can also understand this as a way to lower the repulsion. The wavefunction must be antisymmetric
when we exchange any two fermions. If all have the same spin, then the spin part of the wavefunction
is symmetric and the radial part must be antisymmetric. From (77,73, 73) = —(73,71,73) ete, it
follows that the wavefunction vanishes if /7 = 75 etc (Pauli’s principle, really — can’t have two
electrons with the same spin, at the same position). So they’re never too close together, meaning
that their repulsions are not too big. In contrast, if electrons had different spins they could go to the
same location and that would increase the repulsion; that can’t be the most favorable situation.

These rules about the order in which degenerate orbitals are filled are known as Hund’s rules.
What I just said is the main one (first fill different orbitals with the same spin). You’'ll learn the
remaining bits and pieces in a more advanced course.



All these facts have several interesting consequences. First, this explains why elements in the same
group (same column) have very similar chemical properties. For example, all elements in group 1
have a single valence electron in the last occupied ns shell, all elements in group 2 have 2 valence
electrons in the last occupied ns shell, etc — and since these are the outermost ones spatially, they
are the electrons that will determine how the element interacts with other elements. These outer
electrons are known as the valence electrons.

From these facts we can also infer the trends for the atomic radius of the atom, which basically
tells us roughly how far away from the nucleus are the valence electrons. As we go along a line in
the periodic table with a given n and put in atoms with increasing Z, this tells us that their atomic
radius must decrease steadily (see discussion for R, (r)). This is indeed true, as shown by table 2.9
in Nick’s notes, which lists these values. He also discusses a couple of special cases to this general
trend (basically, when we insert the elements with a different n, lower in the table). The atomic
radius also increases steadily as you move down in a column, simply because one has to put the
valence electrons in levels with higher n, which are more spread-out.

Next is the ionization energy, which is the minimum energy needed to remove one electron from
the atom. This is expected to increase as you move to right along each line, since to remove one of
the least expensive electrons, the valence electrons, you need to pay FE,; energy. For a fixed n,[ this
increases with Z, showing that it’s much harder to take an electron away from F than from O or any
other of the elements to its left. As you go down in a column, this ionization energy decreases because
of the shielding, as discussed — outer electrons are less difficult to remove (takes less energy). These
expectations are confirmed by table 2.10 in Nick’s notes, where the measured values for ionization
energies are listed. He also discusses a couple of exceptions to these rules.

There is also an electron affinity — this tells us by how much the energy of the atom is lowered
if you give it an extra electron to turn it into a negatively charged ion. These values are shown
in Table 2.11 of Nick’s notes. To understand this properly, let’s start with the noble gases which
occupy group 8 and have filled n shells. An extra electron would go in the (n + 1)s shell and would
lower the energy by E(,1)s; but it also experiences more repulsion from the other electrons than in
a neutral atom. Turns out the two nearly cancel out, which is why their affinity is zero — they don’t
really want an extra electron. This is what makes the elements of group 8 be known as “noble” :
they don’t want to accept extra electrons but it is very hard to remove one of the ones they have
(very high ionization energy) — so they basically don’t interact chemically with any other elements.

In contrast, elements from group 7 have high electron affinity, because for them it is energetically
very convenient to get one more electron to fill their outer shell to become very stable. The electron
affinity decreases as you move to the left, as you would expect. The decrease is not monotonic. The
affinity goes to zero (or very near) every time a subshell is also filled, and then increase again to the
left of that. If you're interested in more details, see Nick’s notes. For what we need in the following,
knowing these qualitative facts and trends should suffice.



