Part IV: Measuring crystals structures

So, how does one go about measuring what the crystal structure is, for a given material? The
answer is: look at it! The problem, of course, is that looking with visible light (i.e., the narrow
part of the em spectrum, with wavelengths between ~ 400 — 800nm, that can be detected by the
photoreceptors in our eyes) is not doing much good. I'm sure you've all seen crystals, and many of
them are very beautiful, and some are really expensive because of that beauty, like diamonds and
rubies, but we don’t see the atoms and how they are ordered. We’'ll actually discuss in the second
part of the course what is it that we see, i.e. why do various crystals have various colors.

But why can’t we see the atoms directly?

The answer is that in order to see something, it must be inhomogeneous on a lengthscale compa-
rable with the wavelength of the wave that we use to “look” at it (which, of course, doesn’t have to
be in the visible part of the spectrum). For example, consider the air around us. It’s full of atoms
and molecules, of course, but we can’t see it. This is because it is homogeneous on the lengthscale
of micrometers, i.e. the scale typical for the light in the visible spectrum. Because of this, there is
nothing (no region that is more dense, or less dense) for the visible light to scatter on more, or less,
so it travels straight and we “see” nothing. We can see, however, clouds in the sky or fog — what
happens then is that tiny water or ice droplets form, on the scale of ~ 0.5um, which is in the right
ballpark. Visible light scatters off of it and then we see that something is there. (Actually, visible
light does scatter off of atoms — all light does. In fact, that’s the very reason why our sky is blue,
because of light scattering off of the atoms in the atmosphere. But that is a low probability event,
not likely to happen much on the short distances accessible to my eyes).

Ok, so the point is, if we want to “see” something, we have to “look” at it with waves whose
wavelength is comparable to the typical scale for density fluctuations for this object. For a crystal,
this means that the wavelength must be in the few A neighbourhood — this is the typical size of
lattice constants, so this is the lengthscale for variations in density and other properties.

For light (i.e., em waves) this means that we must use Xrays — they are energetic enough to have
such small wavelengths. But of course, we could (and people do) look with other waves. For example,
neutrons. We know that particles with momentum p have a de Broglie wavelength A = h/p. So,
given the mass of the neutron, you can calculate what the energy E = p?/2m should be so that its
wavelength is A ~ 1A. The answer is around 0.08¢V, I think — in any event, quite comparable to
average thermal energy at room temperature, since kg1 = 25meV — this is why these are called
thermal neutrons. We could (and people do) look with electrons as well. These are much lighter so
they will need to have much larger energy, but that can be easily arranged. The problem is that
electrons are charged and therefore interact very strongly with the atoms so they can’t penetrate
very deep inside a material. Neutrons are neutral, thus much better suited for this purpose.

There are some variations on what one sees depending on what one uses to “look” at the crystal.
For simplicity, let’s consider Xrays. Again, if you go on to study cond-mat at a more advanced level,
you'll learn all about neutron scattering. The main result (seeing the Bragg peaks, see below) is the
same, but there are differences in details, as you’d expect.

So, suppose we have a point-source of Xrays, with some chosen wavelength A and some amplitude
Ag. Let’s place it at point S, and let’s ask what is the light’s amplitude at some distance R. This is
a spherical wave, so the answer is:
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hopefully this makes perfect sense to you. It only depends on the distance R from the source, but
not on the direction from which we look, and it decreases like R? because the same amount of energy
per unit time goes through each spherical shell. The further we are, the larger the area 47 R? is, so
the intensity (which is energy per unit time per unit area) must decrease accordingly.

Now suppose that we have the set-up as shown below. The source is at S, the crystal is around
O and the detector is at D. We'll assume that the crystal is much smaller than the SO and OD
distances (which is reasonable, most crystals are a few mm or so big, while those distances are on
the scale of meters).
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Figure 1: Set-up for a Xray scattering measurement.

As we just said, the amplitude of the light arriving at a point P located at a distance 7 (as
measured from O) inside the crystal is:
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since the total distance to the source is R 4+ 7. If |r| < |R|, we can Taylor expand and keep the
largest term, to find:
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where I;Z is parallel to R (see figure). You might recognize this as the formula for a planewave with
momentum l;i, which is precisely what it is. All it says is that very far from the source, on a short
lengthscale of order r, the curvature rate of the spherical wave is so small that it looks planar.

The probability of this wave of amplitude A(7) to scatter is proportional to the density p(7) of
the electrons at that location — they feel the electric field associated with the wave, can absorb it
and re-emit it in any other direction (electrons act like little antennae). In any event, if there are
no electrons at some point, there is nothing to scatter the light there. Once the light is absorbed by
the electrons at 7, they act as a new point source, scattering light in all directions equally. So, after
scattering, its amplitude at the detector, which is located at R’ — 7, will be:

A(T) = Ag

A A ki (B+7) ikl R =1
= FAy——— - p(7) - —=———
b /crystal 0 R p( ) |R/ — 77"]

The integral is simply because we must sum all the waves that scatter to D, to find the total amplitude
in the detector. If R’ > r, we can also simplify the last bit just like we did for the incident wave, so
we get:
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where l;f is parallel to R'. Of course, |k;| = |l§f| = 27/, i.e. the wave is simply re-directioned but its
energy is not changed (this is known as elastic scattering). In the second equality, I pulled out all the
terms that depend only on the general geometry out of the integral. This will contribute an overall
(boring) constant, which I'll ignore from now on. The important part is the remaining integral, since
this is what depends on the crystal structure, through the density of the electrons. The only external
quantity it depends on is the difference EZ — Ef, i.e. the wavelength used, which determines the size
of these vectors, and the angle between them.

For the integral, let’s remember that the density is periodic inside each unit cell. So we can split
it as a sum of integrals over individual unit cells. Let n index the unit cells, let R, be their lattice
vector, so that when inside unit cell n, 7 = R, + E, where E explores the volume of the unit cell.
Then, p(R, + &) = p(€), and we have:
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Let’s consider separately the two parts:

(i) The sum over unit cells:
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where NV is the number of unit cells in the sample, proportional to its volume. G are our good friends,
the reciprocal lattice vectors.

What this equality means, is that if there is a reciprocal lattice vector G so that k; — ];:f = é,
then the sum is maximum (each term contributes 1, so the total is ). If not, the sum is zero.

The first part is easy to check. We know that lattice vectors are of the general form R,
nid, + n2a2 + ngads, while recnprocal lattice vectors are of the general form: G = m1b1 + m2b2 + m3b3,
where a; - b = 27r5” As a result, R G = 27r(n1m1 + ngmgy + ngmg), i.e. a multiple integer of 2,

and therefore e/¢fin = 1. So indeed, if k; — kf = G all the scattered waves interfere constructively
since they are all in phase, and we get a peak. If not, the waves interfere destructively and we get
nothing (try this at home; maybe I'll give it as a homework problem, it’s just a bit of math. You
should prove it in 1D first, to simplify things).

Conclusion: It is only possible to see light scattered off the crystal at angles such that lgl—lg = G.
This is known as Laue’s condition.

If this condition is satisfied, the intensity of light scattered in this direction is:
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is known as the structure factor. At all other angles, the intensity of light is zero.

Let’s see how this works in practice. For simplicity, let’s consider a 2D rectangular lattice with
lattlce vectors a; = alx a2 = agy, see figure below. The reciprocal lattice vectors are, then, G =
m1b1 + mgbz, where b1 —1x bg = 2”3)

Let’s now draw all the remprocal lattice vectors, as I showed in the figure below. Each point in
that lattice corresponds to some G. We also know EZ — after all, we decide where to place the sample.
[ drew a particular choice, from the origin. Remember that the length of this vector is controlled by

the wavelength of the Xrays — so we can vary, at will, both its orientation and its length.



For the choice shown below, we now draw a circle of radius |k;|, centered at the tip of ki If a
reciprocal lattice point falls on this circle, that means that there is a l;f pointed in that direction,
where if we place the detector we see a peak. This is known as a Bragg peak. Of course that
the origin itself always works — but here Ef = El so this is light that is not scattered at all. We're
interested in finding other solutions, if they exist.

Depending on how we choose k; and what the lattice is, we might see none or one or many Braggs
peaks for it (my example shows only one non-trivial possible solution, but clearly things would change
is I adjusted either the length of k;, and/or its orientation).
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Figure 2: Laue construction: how to find for what k # (i.e., in what directions) we can see Bragg peaks, if we know the
lattice structure and E,

Of course, in practice things are the other way around. We choose a k; and then rotate the
detector around (thus varying the value of ky), and we see a picture sort of like below:
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Figure 3: Sketch of the intensity measured as function of detector angle.

Every time we find a peak, we know that that ki — Ef — @, so we found a vector in the reciprocal
lattice. Once we have enough of those, we should be able to identify the crystal (if we know several
G , we can infer what the reciprocal lattice vectors are, and from those find the values of aq, as etc.,
i.e. figure out the lattice in real space.) The tricky part is to try all possible crystal structures, and
see which one has peaks where the experiment finds them

At this point, you might ask: but how can we distinguish between a simple rectangular cell, and
a centered one? After all, they have the same unit cell and the same reciprocal lattice, so the Bragg



peaks will have the same locations! This can actually done quite easily. It is true that both predict
the same Bragg peaks, but remember that we have the structure factor that tells us the intensity of
each Bragg peak, so there is more information to be used.

Let’s calculate the structure factor first for a simple rectangular cell, and then for a centered one.
For the simple cell, there is a single atom in the unit cell (suppose, for instance, that we choose
the Wigner-Seitz unit cell, to make this easier). Let me make a pretty drastic approximation, and
assume that all Z electrons of that atoms are very close to it, not spread around through all the unit
cell. Then, the density p(g) is like a delta-function located where the atom is, let’s say at location d
(in most cases, we would choose d= 0, but as you'll see in a second, it doesn’t make any difference).
So then:
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and so the intensity of the peak is o [S(G)|? = Z2. In other words, all peaks have the same intensity,

which moreover will identify for us the atom we're looking at (if we can properly account for all the

other factors).

If we have two atoms in the unit cell, like in the centered case, let dﬁ, d; be their locations in the
unit cell. Then, with the same rather drastic approximation, we could split the integral into two
parts — one close to atom 1, where all its electrons are closely bunched near dz and one close to atom
2. There is no contribution from anywhere else, so we find:

S(G) ~ 7,610 4 7,102
and the intensity of the peaks is, now:
IS(G)? = Z} + Z3 + 221 Zs cos(G(dy — do))

So now different peaks have different intensities, which will allow us to figure not only what are the
two atoms, i.e. Z; and Z,, but also the distance between them inside the unit cell (we can always
choose one in the origin, so only the relative location is needed).

For example suppose we have the centered unit cell and both atoms are identical, Z, = Zy = Z.
Then d;, — dy = (@, + dz)/2, and we can see that if G = myb; + mgbg, then:
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In other words:
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so precisely half of the Bragg peaks that would be there for a simple rectangular lattice will disappear
for the centred rectangular lattice. This is because even though light scattered by each unit cell
interferes constructively, in the latter case the light scattered off the two atoms inside the unit cell
interferes destructively, so nothing comes out.

If the two atoms are not identical, then the “odd” peaks will have intensity proportional to
(Zy — Zy)*, while the even ones are proportional to (Z; + Z3)%. So we can still see easily that it’s a
centered lattice, and figure out what the two atoms are.

This should give you an idea of how things work. Of course, in practice one has good software
to sort out through all the possibilities and figure out what crystal works for a given pattern of
Bragg peaks, with their associated intensities. In practice, one also does a better job to calculate



the structure factors, since the densities are not necessarily quite so peaked as we assumed here, so
there are some corrections to this. But the general idea is correct, i.e. the bigger atoms, with larger
Z, scatter the light more, and with some care you can figure precisely what is the unit cell, and how
many atoms it has in the basis, and what are they.

Just to (try to) impress you, let me say that people now routinely use Xrays scattering to figure
out the folded structure of proteins, such as DNA. As you hopefully know, these proteins are very
complicated “molecules”, with thousand and thousand of atoms placed wherever they happen to
want to stay. Of course, one is shown the beautiful double helix, but in reality the proteins are
bundled up, else they wouldn’t fit inside the cells. It turns out that under appropriate conditions,
one can make a crystal of such proteins, i.e. these complicated “bundles” order spatially in a crystal.
One can use Xrays to find not only the crystal structure, but also the basis, i.e. where is each
atom inside the protein. That is quite amazing, and should tell you that there certainly isn’t much
difficulty in figuring out what’s the structure of the much simpler crystals we’re interested in.

Since I have a bit more space on this page, let me say that oftentimes, this condition for Bragg
peaks is presented as coming from scattering off of parallel planes of atoms inside the crystal, leading
to constructive/destructive interference, as I sketched below. It is quite easy to check that in this case,
the maxima correspond to angles 6 for which 2dsin# = n\ — this is known as Bragg’s condition.
With a bit of goodwill, one can show that this is precisely equivalent to the Laue condition that
we just discussed. It turns out that the distance d between parallel layers is related to length of
reciprocal lattice vectors which are perpendicular to the layers’ orientation, by G = 2w /d. So,
considering various ways to choose layers (I only showed one, but of course there are infinitely many
ways to group the atoms in parallel layers), you can find all the Bragg peaks.
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Figure 4: Sketch of the scattering off “planes” of atoms, leading to Bragg’s condition.

I prefer Laue’s formulation because it is more general, for instance it’s easier to understand what
happens if not all atoms are identical, or if the unit cell is not a nice symmetric one, and to find
the Bragg peaks more easily (in my opinion). In any event, if you want to learn more about Bragg’s
formulation, any elementary solid state book will go through all its details.



