Chapter 4

Crystallography

Atoms form bonds which attract them to one another. When you put many
atoms together and they form bonds amongst themselves, are there any rules
as to how they order themselves? Can we categorize all the possibilities of
how the atoms order themselves? If we do, does it help to understand other
properties of the materials that are formed?

4.1 The crystalline state

A fundamental property of the crystalline state is that it is possible to have
different values of a physical property in different directions. This anisotropy
can be seen clearly in a gypsum crystal (CaSO42H0, see Figure 4.1 if a face
of the crystal is covered with a thin layer of wax and a heated metal tip is
applied to it. The melting front of the wax layer will be ellipsoidal rather
than circular. This indicates that the thermal conductivity is different in the
two directions on the face of the crystal.

If the melting front had been circular, as it would be on a piece of glass,
it would imply that the thermal conductivity is the same in all directions,
called sotropy.

Anisotropy of physical properties is normal in crystals. It is, however,
not universal, as there are some crystals whose properties are isotropic. The
origin of a crystals anisotropy lies in the internal structure of the crystals. As
shown in Figure 4.2, there are three states of matter that can be described.

A gas adapts both the volume and shape of its container and is statisti-
cally homogeneous. The gas molecules move rapidly in space and thus have
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Figure 4.1: A crystal of gypsum (CaSO42H,0)

high kinetic energy. The attractive forces between molecules are negligible
in comparison to the kinetic energy. As the temperature is lowered, the ki-
netic energy decreases and at the boiling point the total kinetic energy will
be equal to the energy of attraction among the molecules. Further cooling
converts the gas into a liquid. The attractive forces cause the molecules to
touch. However, they do not maintain fixed positions, so only small regions
of order may be found. A liquid will take on the shape of its container, but
will maintain a fixed volume. If a large enough volume is considered, the
molecular arrangement will be statistically homogeneous.

At a low enough temperature the kinetic energy becomes so small that
molecules become permanently attached to each other. A three-dimensional
framework of attractive interactions forms among the molecules and the array
becomes a solid - it crystallizes. The result of these permanent interactions
is that the molecules have become regularly ordered. The distribution of
molecules is no longer statistical, but is periodically homogeneous.

All matter tends to crystallize, if the temperature is sufficiently low. How-
ever, some materials can not make it into a three-dimensional periodic order
rapidly enough as cooling occurs. When this happens a glassy solid is gener-
ated. Glasses have a higher energy content than the corresponding crystals
and can best be considered as a frozen, viscous liquid. They are amorphous
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or "form-less” bodies. It is possible to distinguish amorphous materials from
crystals by studying their melting behavior. A crystal has a shape melting
temperature T}, while an amorphous material has a temperature range where
softening occurs. More directly, it is possible to detect three-dimensional
ordering by seeing sharp interference phenomena (diffraction) from the in-
teraction of x-rays with a crystal. Amorphous bodies, as they do not have
underlying order, produce no such effect.
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Figure 4.2: Schematic representation of the states of matter, (a) gas, (b)
liquid, (c) crystal
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a) b)

Figure 4.3: (a) The three-dimensional periodic arrangement of the atoms in
a crystal of a polonium (b) and the space lattice of the crystal.

4.2 The lattice and its properties

If each atom in a-polonium is replaced by a point put at the center of mass
of the atom, what remains is a point or space lattice (see Figure 4.3). A point
or a space lattice is a three-dimensional periodic arrangement of points, and
it is a pure mathematical concept. We will develop the concept of a lattice
via the line lattice and the plane lattice.

4.2.1 Line and plane lattices

In Figure 4.4 we may consider moving from the point 0 along the vector a
to the point 1. By a similar movement of 2ad, we will reach point 2, etc.
By this movement, one point is brought into coincidence with another by
using a repetition operation called a lattice translation, and a line lattice
is generated. All points which may be brought into coincidence with one
another by a lattice translation are called identical points, or points equivalent
by translation. |d| = ao is called the lattice parameter, and this constant alone
completely defines the one-dimensional lattice.

If a lattice translation b (l; # a) is then allowed to operate on the line
lattice, the result is the plane lattice shown in Figure 4.4. The vectors @
and b define a unit mesh. The entire plane lattice may now be constructed
from the knowledge of three lattice parameters, |@| = ao, |b| = by and v, the
included angle. If any point is moved by an arbitrary lattice translation, it
will come into coincidence with another point.
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Figure 4.4: Line lattice with its lattice parameter |@| = ao, and the plane
lattice with the unit mesh defined by the vectors @ and b .

Figure 4.5: Space lattice with the unit cell defined by the vectors @, b and .

4.2.2 Space lattice

If yet another lattice translation ¢ is now introduced in a direction not copla-
nar with @ and I;, its action on the plane lattice generates the space lattice
shown in Figure 4.5. According to the arrangement of the vectors @, b and
¢, we may introduce an axial system with the crystallographic axes a, b, and
¢, normally chosen to be right-handed.

The vectors d, b and ¢ define a unit cell, which may be alternatively
described by six lattice parameters: |@| = ag, |b| = by, |&] = ¢ and interaxial
lattice angles o, §, and 7. The application of lattice translations to the
unit cell will produce the entire space lattice. The unit cell thus completely
defines the entire lattice.

Every unit cell has eight vertices and six faces. At all verticies there is an
identical point. Can all of these points be considered part of the unit cell?
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Figure 4.6: Designation of lattice points using the coordinates uwvw that
define the vector from the origin to the lattice point uvw, 7 = ud + vb + wc.
Also shown are the coordinates of the vertices of a unit cell.

The lattice point D in Figure 4.5 is not only part of the marked-out unit cell,
but part of all eight cells which meet at that point. In other words, only one
eighth of it may be attributed to the marked unit cell, and since 8 x % =1,
the unit cell contains only one lattice point. Such unit cells are called simple
or primitive, and are given the symbol P.

4.3 Designations of points, lines and planes

4.3.1 The lattice point uvw

Every lattice point is uniquely defined with respect to the origin of the lattice
by the vector 7 = ud@+vb+wé. The lengths of @, b and Care simply the lattice
parameters, so only the coordinates u, v and w need to be specified, and are
normally written as a triples uvw. In Figure 4.6, the vector 7 describes the
point 231. The coordinates u, v and w normally are integers. When they
have integral values, the points uvw are the coordinates of the points of a
P-lattice.
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Figure 4.7: Designation of lattice lines using the coordinates [uvw] that define

the vector from the origin to the given point 7 = ud@+vb+wé. (I : [231],11 :
[112])

4.3.2 Lattice lines [uvw]

A line may be specified mathematically in any coordinate system by two
points. The lattice line I in Figure 4.7 contains the points 000 and 231.
Since the lattice line passes through the origin, the other point on its own
describes the direction of the line in the lattice, and the coordinates of this
point thus define the line. for this purpose, they are placed in square brackets
[231], or in general [uvw], to show that they represent the direction of a line.

The lattice line I’ passes through the points 100 and 212. Line I7 is
parallel to this line, and passes through the origin as well as the point 112
and consequently both lines may be referred to by the symbol [112].

Figure 4.8 shows a projection of a space lattice along ¢ onto the a, b-plane.
The lattice line A intersects the points with coordinates 000, 210, 420, 210.
Note that minus signs are placed above the numbers to which they apply —
this applies to all crystallographic triples. Each point on the line has different
values of wvw, but the ratio u : v : w remains constant. In this case, the
smallest triple is used to define the lattice line. Lines parallel to @ or b are
thus identified as [001] or [010] respectively.
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Figure 4.8: Projection of a space lattice along ¢ onto the a, b-plane. The
lattice line A is defined by the triple [210], while B may be given as [130] or
[130].

4.3.3 Lattice planes (hkl)

Consider a plane in the lattice intersecting the axes a, b and ¢ at the points
m00, O0n0 and 00p. The coordinates of the three intercepts completely define
the position of a lattice plane, see Figure 4.9. Normally, however, the recipro-
cals of these coordinates are used rather than the coordinates themselves to
designate the plan: a-axis: h = %, b-axis: k = %, c-axis: [ = %}. The smallest
integral values are chosen for the reciprocal intercepts, they are written as
a triple (hkl) in round brackets, and called Miller indices. The lattice plane
show in Figure 4.9 has the intercepts m|n|p = 2|1|3 the reciprocals of these
are |1]3, leading to Miller indices (362). Note that the direction normal to
the (362) plane is [213], and that the designation (362) represents an infinite
set of parallel planes.

Two lattice planes (hy, k1,1;) and (hg, ko, l2) intersect in a line [uvw] (see
Figure 4.10), which can be identified by the solution of the equations:

hlu + kl’U + l1w =0
hQU + kQU + lgw =

There are two solutions, [uvw] and [uvw]. They represent the opposite di-
rections of the same line. In this context [uvw] is called a zone axis.
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Figure 4.9: The intercepts on the axes of a lattice plane with the Miller

indices (362).
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Figure 4.10: The lattice planes (hy, ki,l1) and (hg, ko, l3) intersect in the
lattice line [uvw].

4.4 Crystal structure

In order to progress from a lattice to a crystal, the points of the lattice must
be occupied by atoms, ions or molecules. Because the points are all identical,
the collections of objects occupying them must also be identical. In general,
crystals are not built up as simply as the crystal of a-polonium in Figure 4.3.

Let us consider the construction of a crystal by means of a hypothetical
example. Figure 4.11a shows a lattice with a rectangular unit cell projected
on the a, b-plane. We now place the molecule ABC in the unit cell of the
lattice in such a way that A lies at the origin and B and C within the chosen
cell (Fig. 4.11b). The position of B or C with respect to the origin may be
described by a vector 7 in terms of the lattice translations a, 5, C:

7= 2d+ yb+ 2C (See Fig. 4.12)
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Figure 4.11: Interrelationship of the lattice (a), the basis or the arrangement
of atoms in the unit cell (b) and the crystal structure (c), all shown as a
projection on the a, b-plane.

The coordinates are yet another triple: z,y, 2z where 0 < x,y, z < 1 for all
positions within the unit cell. In our example, the atoms have the following
coordinates: A=0,0,0; B=x1,vy1,21; C = x2,ys,25. This arrangement of
atoms within a unit cell is called a basis. Lattice translations reproduce the
atoms throughout the entire lattice (Fig. 4.11c), or lattice + basis = crystal
structure. It follows that not only the A-atoms, but also the B- and C-atoms
lie on the points of congruent lattices, which differ from on another by the
amount indicated in the basis. Every atoms in a crystal structure is repeated
throughout the crystal by the same lattice translations.
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Figure 4.12: Description of a point in a unit cell by the coordinate-triple
x,y, v defining the vector ¥ = zd + yb + z¢

Figure 4.13: (a) The Csl structure shown in a perspective drawing taking
account of the relative sixes of the ions, (b) with ions reduced to their centers
of gravity and (c) as a parallel projection on the (001).

An example of a simple crystal structure is cesium iodide. The unit cell
is a cube (a9 = by = ¢y = 4.57A,a = 3 = v = 90°). The basis is 17:0,0,0;
Cs*:%, %, % In Figure 4.13 a unit cell is shown as a perspective picture with
the relative sizes of the ions indicated. For more complex structures, this
method of illustration is less useful, as it prevents the positions of atoms
from being clearly seen. Consequently, it is more usual merely to indicate
the centers of gravity of the atoms, as in Figure 4.13b. Figure 4.13c shows
the same structure represented as a parallel projection on one cube face.

An important quantity for any structure is Z, the number of chemical
formula units per unit cell. For Csl, Z = 1 as there is only one Cs™ ion and
one I~ ion per cell. Using only structural data, it is thus possible to calculate
the density of materials.
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Figure 4.14: A general plane lattice (a) and its symmetry (b). Symmetry
elements marked with the same letter are equivalent to one another.

4.5 Principles of symmetry

Up to now, the only repetition operation that we have used formally has been
the lattice translation: the operation of three non-coplanar lattice transla-
tions on a point which gives rise to the space lattice.

In addition to lattice translations, there are other repetition operations,
such as rotations and reflections. In these cases, an object is brought into
a coincidence with itself by rotation about an axis or reflection in a plane.
When a symmetry operation has a locus, that is a point, a line, or a plane
that is left unchanged by the operation, this locus is referred to as the sym-
metry element. A mirror plane is the symmetry element of the symmetry
operation of reflection, a rotation axis is the symmetry element of the rota-
tion symmetry operation, and the inversion symmetry operation has a point
as the symmetry element called the inversion center.
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Figure 4.15: The arrays of points resulting from the operation on a point of
(a) 3-fold, (b), 4-fold and (c) 6-fold axes normal to the plane of the paper can
lead to lattice planes. o additional points produced by lattice translations.

4.5.1 Rotation axes

If you take a copy of the general plane lattice shown in Figure 4.14a and
rotate the copy until it can lay directly over the original it will require a
rotation of 180°. A further rotation of 180°, making a full 360° rotation,

returns the copy of the lattice to its original position.
360°

The order of a rotation axis is given by X where X = ==, and € is the
minimum angle (in degrees) required to reach a position indistinguishable
from the starting point. In the above case, X = 3% = 2 and the axis is

called a 2-fold rotation azxis. The symbol for this operation is simply the
digit 2. In a diagram, it is represented as §) if it is normal to the plane of
the paper, or as — if it is parallel to it.

Whenever a 2-fold axis passes through a point, such as A in Figure 4.14b,
a 2-fold axis must pass though all points equivalent by translation to A. 2-
fold axes normal to the lattice plane will also pass though all points B, C'
and D which lie on the midpoint of a translation vector.

Objects are said to be equivalent to one another if they can be brought
into coincidence by the application of a symmetry operation. If no symmetry
operation except lattice translation is involved to bring them into coincidence,
the objects are said to be equivalent by translation or identical. In Figure
4.14b, all rotation axes A are equivalent to on another, as are all axes B, C
and D. On the other hand, the axes A are not equivalent to B, and so forth.

[a] Threefold rotation axis: 3 (graphical symbol A). Figure 4.15a shows
a 3-fold rotation axis normal to the plane of the paper. By its operation,
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Figure 4.16: The arrays of points resulting from the operation on a point
of (a) 5-fold, (b) 7-fold and (c) 8-fold axes do not fulfill the conditions for
a lattice plane, in that parallel lines through equivalent points do not have
equal spacings. These rotation symmetries cannot occur in lattices.

a rotation of 120°, point I comes into coincidence with point I/, and, by a
second rotation of 120° with point /7. A further rotation of 120° returns
it to its original location. A lattice translation moves point I to point IV,
and the four points thus generated produce the unit mesh of a lattice plane.
Thus, 3-fold axes are compatible with space lattices.

[b] Fourfold rotation axis; 4 (graphical symbol B). Fourfold axes are also
compatible with space lattices. As shown in Figure 4.15b, the action of a
4-fold axis on a point results in a square of points which is also the unit mesh
of a lattice plane.

[c] Fivefold rotation axis: 5. The operation of this axis on a point results
in a regular pentagon of points, as shown in Figure 4.16a. The line through
points 111 and IV is parallel to that through I7 and V. If these are to be
lattice lines, the spacings of the two pairs of point must either be equal or
have an integral ratio. Since this is clearly not the case, the point in Figure
4.16a do not constitute a lattice plane, and we may conclude that 5-fold axes
are impossible in space lattices.

[d] Sizfold rotation axis: 6 (graphical symbol @®). This operation, applied
to a single point, results in a regular hexagon (Figure 4.15c). A lattice
translation places a lattice point on the axis itself, and the resulting array
meets the condition for a lattice plane. Inspection of Figure 4.15a and ¢ will
show that the lattices resulting from 6-fold and 3-fold axes are, in fact, equal.

[e] Rotation azes of order higher than 6. Figure 4.16b and c¢ shows the
effect of attempting to build up a lattice plane by applying 7-fold and 8-
fold axes to a point. The results are analogous to those for the 5-fold axis
described above. These arrays do not produce equal spacings of points in
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Figure 4.17: Operation of m on a lattice line: in (a) the lattice line is parallel
to m. The resultant plane lattice is primitive with a rectangular unit cell. in
(b), the lattice line is tilted with respect to m. The resultant plane lattice
again has a rectangular unit cell, but is now centered. o additional points
produced by lattice translations.

parallel lines and so cannot occur in lattices. The same result will occur for
any rotation axis with X > 6.

In space lattices, and consequently in crystals, only 1-, 2-, 3-, 4- and 6-fold
rotation axes can occur.

4.5.2 Mirror planes

The symmetry operation of reflection has a symmetry element called a plane
of symmetry or a mirror plane. It is given the symbol m and the graphical
symbol is a bold line for a plane perpendicular to the paper and a bold angle
for a plane parallel to the paper. Any point or object on one side of the
mirror plane is matched by the generation of an equivalent point or object
on the other side at the same distance from the plane along a line normal to
it.

Figure 4.17 shows the operation of a mirror plane on a lattice line A,
generating another lattice line A’. Whether the line A is parallel to the
mirror plane or not, the result is a rectangular unit mesh. The generation of
the lattice plane in Figure 4.17b requires that a lattice point lies on m; this
lattice contains two point per unit mesh and is called centered. A primitive
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Figure 4.18: The unit cell of a general lattice, showing the inversion at %, %, %
All lattices are centrosymmetric.

mesh is not chosen in this case since the rectangular cell (with the symmetry
plane parallel to the edge) is easier to work with.

4.5.3 The inversion center

The symmetry operation called inversion relates pairs of points or objects
which are equidistant from and on opposites sides of a central point (called
an inversion center). The symbol for this operation is 1. Every space lattice
has this operation (see Figure 4.18) and is thus centrosymmetric.

4.5.4 Compound symmetry operations

A compound symmetry operation is when two symmetry operations are per-
formed in sequence as a single event. This produces a new symmetry oper-
ation but the individual operations of which it is composed are lost. Figure
4.19 shows such an operation which consists of a rotation of 90°about an axis
followed by an inversion though a point on the axis. Successive applications
of this compound operation move a point at 1 to 2,3,4 and back to 1. Note
that the resulting array has neither an inversion center nor a 4-fold rotation
axis.

Compound symmetry operations are summarized in Figure 4.20, where
the names of the symmetry elements corresponding to the symmetry op-
erations are given in round brackets. Neither reflection plus inversion nor
translation plus inversion results in a new operation. Glide and screw oper-
ations are beyond the needs of the present discussion.
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Figure 4.19: The compound symmetry operation of a 4-fold rotation and an
inversion. The open circles represent auxiliary points occupied when only
one part of the compound operation has been applied.

Rotation Reflection Inversion Translation
Rotation X Roto- Roto- Screw
reflection inversion rotation
Reflection | (Roto- y 2-fold Glide
reflection axis) rotation reflection
. Roto- (2-fold
Inversion ( i . X i
inversion axis) rotation axis) X Inversion
Translation (Screw axis) (Glide plane) (Inversion y
centre)

Figure 4.20: Compound symmetry operations of simple operations. The

corresponding symmetry elements are given in round brackets.
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Rotoinversion axes

The compound symmetry operation of rotation and inversion is called rotoin-
version. Its symmetry elements are the rotoinversion axes, with the general
symbol X. There are only five possible rotation axes X : 1,2,3, 4,6, and five
corresponding rotoinversion axes X : 1,2,3,4, and 6.

1 implies a rotation of 360°followed by inversion though a point on the
1-fold rotoinversion axis (See Figure 4.21a). This operation is identical to
inversion though an inversion center. For this reason, 1 is used as a symbol for
the inversion center. As seen from Figure 4.21b, the operation 2 is identical
with m, a mirror plane.

The rotoinversion operation 3 (graphical symbol A) is shown in Figure
4.21c. Successive applications of the operation 3 move a point to altogether
six equivalent positions. In this case, both of the simple operations 3 and 1
are necessarily present.

Figure 4.19 shows the rotoinversion axis 4 (graphical symbol @). As can
be seen, 4 implies the presence of a parallel 2. The rotoinversion axis 6
(graphical symbol ®) is shown in Figure 4.21d. There are six equivalent
positions and 6 implies the presence of a parallel 3 and a perpendicular m.

Rotoreflection axes

Like the rotoinversion axes, rotoreflection axes Sy, Sa, S3, S, and Sg may
be defined. Rotoreflection implies the compound operation of rotation and
reflection in a plane normal to the axis. however, these axes represent nothing
new, since it is easy to demonstrate the correspondence S; = m; Sy = 1,
83:6, 54:41, andS6:3.

The axes X and X, including 1 and m, are called point-symmetry ele-
ments, since their operations always leave at least one point unmoved. For
1, this property applies to every point in space, for m to every point on the
plane, from 2, 3, 4, 6, to every point on the axis, and for 1, 3, 4, 6 to a single
point.
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o) A I=3+7

Figure 4.21: The operation of rotoinversion axes on a point 1: (a) 1 (b)
2=m (c)3=3+1,(d) 6 =3 L m. For 4 see Fig 4.19 . The unfilled circles
represent auxiliary points which are not occupied when the two operations
of which the compound operation is composed are not themselves present.
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4.6 The 14 Bravais lattices

The general space lattice, with no restrictions on the shape of the unit cell,
may be used to describe all crystals. In most cases, however, the lattices
which occur are special in that they have special features, such as unit cell
dimensions (lattice parameters) which are equal in two or three directions
or angles between cell edges with particular values, such as 60°, 90°or 120°.
The general lattice has no point symmetry elements except inversions centers.
The presence of rotation axes and mirror planes will restrict the cell param-
eters in some way, and give special lattices. These special lattices give rise
to simplifications in the description of physical properties, and are therefore
fundamental in the description and categorization of materials. For instance,
when lattice translations in two directions are equivalent, all physical prop-
erties are equal in these directions.

Before we consider special space lattices, it is useful to develop the con-
cepts by consideration of general and special plane lattices.

The general (oblique) plane lattice

If we take a point 1, and operate on it with a 2-fold axis, we will generate
an equivalent point 2 (Figure 4.22). The application of a lattice translation
@ to point 1 generates an identical point 3, and the 2-fold axis then relates
point 3 to point 4. We now have generated a unit mesh of the lattice. It has
the shape of an oblique parallelogram, where ag # by and v # 90°.

It is possible to vary ag, by and v in any way without losing the 2-fold
axis. Thus this lattice is the most general plane lattice possible.

1 1 7 b 4

o e ]

2 3 2 i 2
<)

a) b)

Figure 4.22: Development of the general plane lattice, with an oblique unit
mesh.
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Figure 4.23: (a) Development of the special plane lattice with a rectangular
unit mess and (b) its symmetry.

Special plane lattices

80

1.

Returning to Figure 4.22, point 3 could have been chosen so that the
point 1, 2 and 3 described a right triangle, with the right angle at point
3 (see Figure 4.23). The operation of the 2-fold axis now results in a
rectangular unit mesh, ag # by, 7 = 90°. The arrangement of the points
is now "special”, as further symmetry has been introduced, namely two
mutually perpendicular mirror planes, parallel to the 2-fold axis.

A further possibility in Figure 4.22 would be to choose the location of
point 3 so that point 1, 2 and 3 formed an isosceles triangle with the two
equal edges meeting at point 3. The unit mesh of the resulting lattice is
a thombus: ag = by, v # 60°,90°0r120°, see Figure 4.24. By extension
of the edges 1-4 and 1-3 a further unit translation on the other side of
1, an alternative choice of unit mesh arises. It is rectangular (af, # by,
~v = 90°), and is called centered because it has a point at its center
identical to those at the vertices. Consideration of the symmetry of
this cell shows that there are a pair of mirror planes, and several 2-fold
axes.

. Returning once more to figure 4.22, we choose the position of point

3 in such a way as to make the point 1,2 and 3 describe an isosceles
right triangle, with the right angle at 3. The resultant lattice now has
a square unit mesh: ag = by, v = 90°. As shown in Figure 4.25, there
are now a 4-fold axis and four mirror planes parallel to it in the cell.

Finally, let us choose the position of point 3 in Figure 4.22 such that the
points 1, 2 and 3 make an equilateral triangle (see Figure 4.26). The
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Figure 4.24: (a) Development of the special plane lattice with a rhombic unit
mesh, and (b) its alternative description by a centered rectangular mesh. (c)
Symmetry of the centered unit mesh.

7 B 4 . .
4
g 0
a) . . b)
3 2

Figure 4.25: (a) Development of the special plane lattice with a square unit
mesh, and (b) its symmetry.

unit mesh of the resulting hexagonal lattice is now a 120°rhombus, or
ag = by, v = 120°. In addition to the 2-fold axis, there is now 3- and
6-fold axes as well as several mirror planes.

We have now developed all four of the possible special lattice planes
(which were, in fact, introduced by considering possible rotations axes ear-
lier) from the general plane lattice. These plane lattices are summarized in
Figure 4.27 with their characteristic symmetry elements. The general lattice
possesses a 2-fold axes only, but the special lattices all have further symmetry
elements, which are shown on their diagrams in Figure 4.28a-d. It should be
noted that only point symmetry elements are shown here. There are com-
pound symmetry elements involving translation and glide planes (which we
will not cover explicitly in this text) that are not shown.
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Figure 4.26: (a) Development of the special hexagonal plane lattice, and (b)
its symmetry. The unit mesh is a 120°rhombus.

Shape of Lattice Characteristic
unit mesh parameters Symmetry
elements
General ag# by
plane lattices Parallelogram y#90° 2
Special Rectangle ag# by
plane lattice (primitive) y=90° m
Rectangle ag# by
(centred) y=90° m
ag=b
Square y0= 9000 4
120° Rhombus | 2750 6(3)
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Figure 4.27: Plane lattices
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Figure 4.28: Symmetry elements of the special lattice planes with a primitive
(a) and centered (b) rectangular unit mesh, and a square (c) and a hexagonal
(120°rhombus) (d) unit mesh.
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4.6.1 The primitive space lattices (P-lattices)

The relationships between lattices and symmetry elements in three dimen-
sions are similar to those in two. From the general plane lattice, several
special space lattices may be derived, in which congruent lattice planes are
stacked above one another. If the symmetry of the lattice planes is not
changed, the five spaced lattice with primitive unit cells (P-lattices) are pro-
duced. These are given in Figure 4.29.

Shape of unit mesh ) .
in stacked layers Interplanar spacing Lattice

Parallelo a

(ag #¢y) sram bg Monoclinic P
Rectangl

(ag# bf ) Co Orthorhombic P
Square

(2p="by) o #(a9=by) Tetragonal P
Square '

(ag=by) Co=(ao="by) Cubic P
120°-Rhomb

(ag=by) o Co Hexagonal P

Figure 4.29: P-lattices

Compare the stacking processes illustrated in Figures 4.30a-b,4.31a-b,
4.32a-b, 4.33a-b, 4.34a-b. Notice that the centered rectangular plane lattice
is not included because we are looking only at primitive lattices at present.
The square lattice maybe stacked with either ¢y # ag = by or ¢y = ag = by;
the former develops the tetragonal P-lattice, the latter the cubic P-lattice.
The cubic lattice is a special case of the tetragonal, since new, characteristic
symmetry elements appear (three-fold rotation axes along the body diago-
nals of the unit cell). The generation of the general or triclinic P-lattice by
stacking is shown in Figure 4.35a. All the primitive lattices are illustrated in
Figure 4.36.
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There is one important point to remember about primitive lattices: Z=1.
This means there is only one formula unit per unit cell. It also means that
this unit cell is the smallest unit cell that can be repeated to fill up space.
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Table 6.3. The 14 Bravais Lattices

Triclinic

Monoclinic

Orthorhombic

Tetragonal

Trigonal

Hexagonal

Cubic

Figure 4.36: The 14 Bravais lattices
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4.6.2 The symmetry of the Primitive lattices

Before considering the symmetry of the lattices, it is useful to learn two
rules governing the generation of a symmetry element by the combination of
two others. In the following two rules the presence of any two of the given
symmetry elements implies the presence of the third:

Rule 1 A rotation axis of even order (X, = 2,4 or 6), a mirror plane normal
to X., and an inversion centre at the point of intersection of X. and
m (Figure 4.37).

Rule 2 Two mutually perpendicular mirror planes and a 2-fold axis along
their line of intersection (Figure 4.38).

Every lattice is centrosymmetric and has inversion centers on the lattice
points and midway between any two of them. Thus, in a P-lattice, there are

inversion centers at 0,0,0; %,0,0; 0,0,%; %,%,O; %,O,%; 0,%,% and %,%,%.

e et

a) b} c}

Figure 4.37: Symmetry Rule 1: (a) 2 L m — 1 (at the intersection of 2 and
m); (b)1 on m — 2 (passing through 1 and normal to m); (¢) 1 on 2 — m
(passing through 1 and normal to 2).

Symmetry of the Triclinic P-Lattice. The only point symmetry elements
of the triclinic lattice are inversion centers (Fig. 4.35) at the coordinates
given above. A projection of the symmetry elements parallel to ¢ onto x, ¥, 0
is shown in Figure 4.39. The z-coordinates implied for the inversion centers
are 0 and %
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Figure 4.38: Symmetry Rule 2: (a) m’ L m” — 2 (along the intersection of
m’ and m”); (b) 2 on m” — m’,,» (with 2 as the line of intersection); (c) 2
onm’ — m”,, (with 2 as the line of intersection).

Figure 4.39: Triclinic P-lattice with the symmetry elements of space group
P1

Space Group : The complete set of symmetry operations in a lattice or a
crystal structure, or a group of symmetry operations including lattice
translations is called a space group

The space group of a primitive lattice which has only 1 is called P 1, and
the conditions for its unit cell parameters are ag # by # co; a # § # 7.

Symmetry of the Monoclinic P-Lattice. The set of lattice planes from
which we generated the monoclinic P-lattice (Fig. 4.30a) contain a set of
2-fold axes parallel to b. In addition, there are mirror planes normal to b
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at z,0, z and x, %, z as well as the inversion centers that were present in the

triclinic case. The location of the mirror planes follows from our first rule: (2
and 1 generate m L 2 at 1.) The array of symmetry elements of the lattice
is shown in Figure 4.30d in projections on the x,0, z and z,y,0.! Since the 2
is normal to the m, this combination is given the symbol 2/m, pronounced,
"two over m”. It is not necessary to represent the inversion center, since 2/m
implies 1, by Rule 1.

The space group of the monoclinic P-lattice is P 2/m, where it is con-
ventional to choose the b-axis parallel to 2 and normal to m. The b-axis is
called the symmetry direction.

Symmetry of the Orthorhombic P-Lattice. In addition to the symmetry
of the stacked planes (Fig. 4.31a), the orthorhombic P-lattice (Fig. 4.31b)
has mirror planes normal to ¢ at x,y,0 and x,y,% and inversion centers
(Fig. 4.31d). Further, the application of rule 1 (m +1 — 2 1 m) or rule 2
(m L m — 2) generates 2-fold axes at x,0,0; z,0, %; x, %,O; x, %, %; 0,v,0;
0,9,3; 5,4,0 and 3,, 5.

This set of symmetry elements can be given a symbol. The symmetry
elements are arranged in the order of the crystallographic axes: a,b, c. Each
axis has a 2-fold rotation axis parallel to it and mirror planes normal to it.
Thus, the symbol for this space group is: P 2/m 2/m 2/m, where the first
symmetry element goes with axis a, the second with b and the third with c.
The a,b and ¢ axes are all called symmetry directions. Figure 4.40 gives a
projection of all point symmetry elements of space group P 2/m 2/m 2/m,
and separate projections showing those elements related to the symmetry
directions a, b and c.

Symmetry of the Tetragonal P-Lattice. In addition to the symmetry of the
stacked planes (Fig. 4.32a), the tetragonal P-lattice (Fig. 4.32b) has mirror
planes | ¢ at x,y,0 and x, y,% and inversion centers (Fig. 4.32d). Further,
the application of Rule 1 (m+1 — 2 L m) or rule 2 (m L m — 2) generates
several 2-fold axes. It should be noted in passing that the projection of
the symmetry elements for this space group in Figure 4.32d is incomplete,
since there are also glide planes present. The same holds true for Figures
4.33, 4.34, which in addition contain screw axes. These symmetry elements
are essentially irrelevant to our present purpose, and will not be considered

further.

Ineed to add footnote about the L shaped object in the figure that indicates a mirror
plane in the plane of the page.
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Figure 4.40: (a) Space group P 2/m 2/m 2/m. In the other diagrams, only
the symmetry elements corresponding to the symmetry direction a, b, c are
shown.
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Figure 4.41: Symmetry elements of the space group P 4/m 2/m 2/m. The 2
along (110) and the inversion centers are not shown.

The unit cell of a tetragonal P-lattice has the shape of a tetragonal prism;
it is bounded by two lattice planes with square unit meshes and four planes
with rectangular meshes, the symmetries of which are show in Figure 4.41.

The 4-fold axes have the effect of making a and b equivalent, and they are
often denoted as a; and as, as in Fig. 4.32d. Similarly, the direction [110]
and [110] are equivalent to one another. We must now introduce a further
type of brackets, pointed brackets (). the symbol (uvvw) denotes the lattice
direction [uvw| and all directions equivalent to it. Similarly, (a) denotes the
a-axis and all equivalent axes. For the tetragonal lattice, (110) implies both
[110] and [110] directions, and (a) implies both the a- and b-axes.

In the space group symbol, the symmetry elements are given in the order;
¢, (a), diagonal of the (a)-axis (i.e. (110)), all of which are called symmetry
directions. Thus, equivalent symmetry operations are given only once. The
space group symbol is thus P 4/m 2/m 2/m. Figure 4.42 gives a projection
of all point symmetry elements of space group P 4/m2/m2/m, and separate
projections showing those elements related to the symmetry directions ¢, (a)
and (110).

Symmetry of the Hexagonal P-Lattice. In addition to the symmetry of the
stacked planes, the hexagonal P-lattice, like the orthorhombic and tetragonal
lattices, has mirror planes L c at x,y,0 and z, ¥, %, and inversion centers (Fig.
4.33d), so the application of Rule 1 (m+1 — 2 L m) or rule 2 (m L m — 2)
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Figure 4.42: (a) Space group P 4/m 2/m 2/m. In the other diagrams, only
the symmetry elements corresponding to the symmetry direction (a), (a),
(110) are shown.
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Figure 4.43: Hexagonal P-lattice projected along (001) emphasizing the sym-
metry directions (a) = ay, as, az and (210) = [210],[1,1,0] and [120]

generates several 2-fold axes.

Figure 4.43 shows the projection of a hexagonal P-lattice on (001). The 6-
fold axis makes a = b and a and b may also be written as a; and as. Another
direction, called the az-axis, may then be added, making an angle of 120°with
a; and as, and equivalent to both of them. Thus, (a) now represents ay, as, as.
The diagonals bisecting the (a)-axes are [210], [120] and [110]. As for the
tetragonal lattice, the symmetry elements are arranged in the space group
symbol in the order: ¢, (a), diagonal of the (a)-axis (i.e. (210)), all of which
are called symmetry directions.

The space group symbol is thus: P 6/m 2/m 2/m. Figure 4.44 gives a
projection of all the point-symmetry elements of space group P 6/m2/m2/m,
and separate diagrams showing those elements related to the symmetry di-
rections ¢, (a) and (210).

Symmetry of the Cubic P-Lattice. The symmetry of the stacking planes
is show in Fig. 4.34a. The stacking results in a lattice with a cubic unit cell
(ap = by = ¢p). This means that the lattice planes 0,y,z and x,0, z have
the same symmetry as x,y, 0, see Fig. 4.34d. This equivalence of the planes
generates four 3-fold axes along the body diagonals of the unit cell as well as
inversion centers, so these axes are represented as 3(— 3+1). Application of
Rule 1 (m+1— 2 1 m) orrule 2 (m L m — 2) generates 2-fold axes parallel
to [110] and equivalent directions. (These 2-fold axes are not included in Fig
4.34d).
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P&6/m2/m2/m
1l d
¢ {a) {210)

P ... 2im

d <270>

Figure 4.44: (a) Space group P 6/m 2/m 2/m. In the other diagrams, only
the symmetry elements corresponding to the symmetry direction c, (a), (210)
are shown.

100



Crystallography

In the space group symbol, the symmetry elements are given in the order:
(a), (111) = body diagonals of the unit cell, (110) = face diagonals of the unit
cell. The space group symbol for the cubic P-lattice is thus: P 4/m 3 2/m.
Figure 4.45 gives a projection of all the point-symmetry elements of space
group P 4/m 3 2/m, and separate diagrams showing those elements related
to the symmetry directions (a), (111), (110).

4.6.3 The centered lattices

Consideration of the primitive lattices we have so far generated raises the
question as to whether it is possible to import into the P-lattices one or
more further lattice planes without destroying the symmetry. Let us first
consider the monoclinic P-lattice.

Figure 4.46 shows the monoclinic P-lattice and its symmetry, P 2/m,
projected onto z,0, z. Each point of the lattice has 2/m symmetry, which
implies the presence of an inversion center in the point. Insertion of new
lattice planes parallel to (010) into the lattice is only possible if the lattice

points fall on a position which also has symmetry 2/m, i.e. on 0,0,0; 270 0;

0,2,0 0 0,;, 272,0, ;,O,;, 0,;,; nd 1 5 5 These possibilities must each be
considered.
a) Lattice Plane with Lattice Point at 3,%,0. (Fig 4.47). These new

lattice points center the a, b-face of the unit cell. This is called a C-face
centered lattice, or more simply a C-Lattice.

b) Lattice Plane with Lattice Point at 0,3, 1. (Fig 4.48). If the new plane
centers the b, c-face, the result will be an A-face centered lattice. Since,
however, in monoclinic cells, the a and ¢ axes may lie anywhere in the
mirror plane, they may be swapped, converting the A-lattice into a
C-lattice.

¢) Lattice Plane with Lattice Point at 3,0,3. (Fig 4.49). The result is
now a B-lattice, from which a smaller, primitive unit cell can be chosen
(outlined in bold) that still has monoclinic symmetry.

d) Lattice Plane with Lattice Point at 3, 5,%. (Fig 4.50). A lattice is
formed, with a lattice point at the body center of the unit cell. This
is called a body centered or I-lattice (from the German innenzentri-
ert). As with the A-lattice, choice of different axes convert this to a

monoclinic C-lattice.
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Figure 4.45: (a) Space group P 4/m 3 2/m. In the other diagrams, only

the symmetry elements corresponding to the symmetry direction (a), (111),
(110) are shown.

102



Crystallography

/
!

[

4
/
/
!

S

Figure 4.46: The monoclinic P-lattice and its symmetry elements projected
onto z,0, z ( O represents a lattice point with y = 0)

Figure 4.47: The monoclinic C-lattice and its symmetry elements projected
onto z,0, z ( the half-filled O represents a lattice point with y = 1)

e) Lattice Plane with Lattice Point at %, 0,0; 0, %, 0;0,0, % In any of these
cases, the result is simply to halve the cell; no new type of lattice is

formed.

f) It is also possible to introduce two lattice planes at the same time,
for example, as in both a) and b), giving additional lattice points at
%, %, 0 and 0, %, % (Fig 4.51a). Since it is necessary that all lattice points
have the same environment, and parallel lattice lines the same period
a further lattice point (shown with a dashed outline) must be added at
%, 0, % Thus, all the faces of the unit cell are now centered, giving an

all-face centered or F-lattice.

A general principle following from this is that a lattice centered on two
faces cannot exist because the requirement that all lattice points are identical
and parallel lattice lines have the same lattice period will convert it to an
all-face centered lattice.
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Figure 4.48: The monoclinic A-lattice (ag, by, ¢o) can, by interchanging a and
¢, be converted to a monoclinic C-lattice (ag, b, ¢)

Figure 4.49: The monoclinic B-lattice (aq, b, ¢o) can be converted to a smaller
monoclinic P-lattice (af, b, ¢))

Figure 4.50: The monoclinic I-lattice (ag, by, ¢p) can be converted to a mon-
oclinic C-lattice (ag, bp, ¢;)
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Figure 4.51: (a) The development of the monoclinic F-lattice. (b) The
monoclinic F-lattice (ayg,bg, cy) can be converted to a monoclinic C-lattice

(ag, by, o)

The monoclinic F-lattice can, in fact, be reduced to a C-lattice of half
the volume, as is shown in Fig. 4.51.

We have now considered all the possibilities for introducing extra lattice
planes into the monoclinic P-lattice, and have shown that all of these may
be represented either as P- or C-lattices (A, I, F —C; B —P). (see Figure
4.36)

The orthorhombic lattice may be developed in the same way, giving rise
to orthorhombic, A-, B-, C-, I- and F-lattices. The I- and F-lattices are now
not reducible as they were in the monoclinic case. The A-, B- and C-lattices
are alternative representations of the same lattice; the a-, b- and c-axes can
always be chosen so as to generate a C-lattice. (see Figure 4.36).

Similar considerations to those in the monoclinic case lead from the
tetragonal P-lattice to the tetragonal I-lattice, and from the cubic P-lattice
to the cubic I- and F-lattices. (see Figure 4.36)

An examination of the hexagonal P-lattice will show that the only point
with the same symmetry as 0,0,0 is 0,0, % The addition of a lattice plane
there will merely halve the size of the unit cell.

A six fold axis always contains a 3-fold axis. Staring from this fact, the
plane lattice with a 120°rhombus as unit mesh contains a 3-fold axis at 0, 0, z;
%, %, z and %, %, z (Fig. 4.52a). it is possible to add a second plane at a height
of %CO with a lattice point on the 3-fold axis at %, %, z and a third plane at
a height of %co with a lattice point on the 3-fold axis at %, %, z (Fig.4.52b).
The fourth plane will then come at a height of ¢y, directly above the first.
this new arrangement of lattice points reduces the 6-fold axis to 3-fold and
removes the mirror planes at x,0, z; 0,y,z and x,x, z as well as the 2-fold
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axes parallel to the c-axis. The resulting lattice has the shape of a hexagonal
lattice (ag = by # o, @« = B = 90°, v = 120°) but contains three lattice
points per unit cell (0,0,0; %, %, %; %, %, %)

It is possible, however, to describe this lattice by a primitive unit cell
(ay = by = ¢y, = ' =~'). If the first cell is used to describe the lattice,
it is called a trigonal R-lattice, if the second is used, the lattice is called
rhombohedral P (Fig. 4.52b). The unit cell of the rhombohedral P-lattice
has indeed the shape of the rhombohedron, with six rhombi as faces. Special
cases of the rhombohedral P-lattice are: (a) o/ = 90°gives the cubic P-lattice;
(b) o/=60°gives the cubic F-lattice and (c) a/=109.47°give the cubic I-lattice.

Centered lattices are not primitive, therefore Z > 1. You can define a
primitive cell for each of the centered cells. This primitive cell will have
Z =1, and be the smallest unit cell that will fill space. However, you will
not be able to see the important symmetry that is associated with the unit
cell clearly from the primitive cell. The reason we define centered, and other
non-primitive unit cells, is to highlight the symmetry relationships in the

lattice.
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4.6.4 The symmetry of the centered lattices

With the exception of the trigonal R-lattice, the derivation above of the
centered lattices always paid strict attention to retaining the full symmetry
of the corresponding P-lattice. All the symmetry elements of the P-lattice
remained, only the translation properties were altered. The centering does in-
deed introduce new symmetry elements, notably screw axes and glide planes
(which we will not be covering). In spite of this, the symbols for the space
groups of the centered lattices may easily be given, since the new symmetry
elements do not appear in them.

Now it is not difficult to derive the symbol for the trigonal R-lattice from
the reduced symmetry of the lattice planes. There are, in addition to the
normal ones, further inversion centers, which, by Rule 1 (m +1 — 2 L m),
generate a set of 2-fold axes parallel to aq,as, a3 (Fig. 4.52d). The 3-fold
axis becomes 3 since 3 + 1 — 3. The order of the symmetry directions here
is: ¢, {a), giving the symbol R 3 2/m.

The space group symbols of the 14 Bravais lattices are given in Figure
4.53 in the same order as in Figure 4.36. The Bravais lattices represent
the 14 and only ways in which it is possible to fill space by a
three-dimensional periodic array of points. All crystals are built up
on one of these lattices. Earlier we defined a crystal structure as a lattice plus
a basis. While the number of lattices is fixed at 14, there are infinitely many
possible ways of arranging atoms in a cell. Any crystal structure, however,
has only one Bravais lattice. The symmetry directions in the crystal systems
are summarised in Figure 4.54. The axial restrictions that accompany the
seven crystal systems of the 14 Bravias lattices are shown in Figure 4.55.

The number and coordinates of the lattice points in the unit cells of the
Bravais lattices is given in Figure 4.56.
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ﬁ_ P C I E
Triclinic Pl
Monoclinic P2/m C2/m
Orthorhombic | P2/m2/m2/m | C2/m2/m2/m | 12/m2/m2/m | F2/m2/m2/m
Tetragonal P4/m2/m2/m [4/m2/m2/m
Trigonal R32/m
P6/m2/m2/m
Hexagonal
Cubic P4/m32/m T4/m32/m F4/m32/m

Figure 4.53: The space group symbols for the 14 Bravais lattices.

Pasition in the international symbaol

Ist 2nd 3rd
Triclini¢ ! _
Monoclinic b
Orthorhombic a b C
Tetragonal c {a} {110}
Trigonal € {a} =
Hexagonal c {a) {2103
Cubic {ay {1101y {1103

Figure 4.54: Symmetry directions in the seven crystal systems
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. Equivalences of
Restrictions on the . .
Crystal system : Figure crystallographic
axial system )
axcs caused by:
Triclinic a#£b#c a#p+? 6.7c
Manoclinic atbAc a=y=9° f=90° 6.8¢
Ortherhombic aFb#c a=f=y=90° 6.9¢
) . a=b¥#c¢ a=p=y=90" =
Tetragonal (31=ay %) 6.10¢ 4,4/ /¢
Trigonal® 6.12¢c 3/
a-b#c n-fF-90° +=120°
(a=a,#¢) -
Hexagonal 6.12¢ 6,6//c
. a-b=c¢ a=fF=y=00° J—
Cubic (ar=ay=a5) 6.13¢c 377111

* As usual, the signs=and 7 are to be read as must be equivalent und need not be eguivaient
respectively as a consequence of symmetry.
" An alternative definition divides the hexagonal and trigonal systems differently, giving a
hexagonal and a rhombohedral system. The rhombohedral system (sce Fig, 6.11 b) has the
restrictions on its axial system: a"=b'=¢"y a’'=f"=7".

Figure 4.55: The seven crystal systems defined by their axial restrictions.

Lattice No. of lattice points Coordinates of lattice points
in unit cell in unit cell

P 1 0,0,0

A 2 0,0,0; 0,3,3

B 2 0,0,0; 1,0,1

C 2 0,0,0; 1,10

T 2 0,0,0; 111

F 4 0.0.0; 1,1,0; 10,5 0,14

Figure 4.56: Number and coordinates of the lattice points in the unit cells
of the 14 Bravais lattices
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4.7 The 230 space groups

The space group symbols for the 14 bravais lattices, given in Figure 4.53,
do not in general enumerate all the symmetry elements of the space group.
In particular, the space groups of centered lattices contain new symmetry
operations. These are compound symmetry operations which arise through
reflection and translation (a glide plane which are notated by a, b, c,n or d),
as well as rotation and translation (a screw azis, which is notated X,,, where
y can have a value between 1 and X-1, for instance 2; or 45). We will not
cover these specifically, but we need to be aware that they are present in
order to finish the categorization of crystals.

The space groups we determined for the 14 Bravais lattices represent the
highest symmetry possible in a given crystal system. If we simply put a
spherical object (an atom) at each lattice point in any of the crystal systems
we will generate the highest possible symmetry for that crystal system. How-
ever, if we add a basis of two or more atoms to each lattice point, we may
lower the symmetry that is possible for a given crystal system. The space
groups of highest symmetry contain the symmetry elements of one or more
space groups of lower symmetry, called subgroups. As an example we will
start with the two monoclinic space groups of highest symmetry; P 2/m and
C 2/m. As long as we maintain either the 2-fold rotation (2) or the mirror
plane (m), we will still have a monoclinic space group. If we lost both of
those we would drop down in symmetry to the triclinic space group (P 1). So
2/m can be replaced by either 2 or m (and 2; and ¢ when the screw axes and
glide planes are included). This allows 13 possible monoclinic space groups,
shown in Figure 4.57, as subgroups of P 2/m and C 2/m.

When all possible lower symmetry subgroups are determined form the 14
high symmetry space groups that define the 14 Bravais lattices, there are a
total of 230 possible space groups allowed. These are all listed in Figure 4.57.

So, where can atoms actually sit to maintain the symmetry of a space
group? Figure 4.58 gives the symmetry elements for the space group P mm2.
The application of the symmetry operations to a point x,y, 2z will generate
the points ., y, 2; T, vy, 2; T, ¥, 2z, as well as equivalent points such as x, 1 —y, z;
l—z,y,zand 1 —z,1—vy, 2. The number of equivalent points in the unit cell
is called its multiplicity. In Figure 4.58a, the position is "4-fold”, or said to
have a multiplicity of 4. This position has no restrictions on its movement;
it has three degrees of freedom, and, as long as it does not move onto a point
symmetry element, it continues to have a multiplicity of 4. Such a position
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112

Point

Crystal system group Space groups
teiclinic 1 P1
1 Pi
monoclinic 2 P2 P2, C2
m Pm Pc Cm Cc
2/m P2/m P2)/m C2/m P2/c
P2/c C2/c
orthoerhombic 222 P222 P222, P2,2,2 P2,2,2,
C222, €222 F222 1222
12,22,
mm2 Pmm2 Pmc2, Pec2 Pma2
Pca2, Pnc2 Pmn2, Pba2
Pna2, Pnn2 Cmm?2 Cmce2,
Cee2 Amm?2 Abm2 Ama2
Aba2 Fmm?2 Fdd2 Imm?2
Iba2 Ima2
mmm Pmmm Ponn Pcem Pban
Pmma Pnna Pmna Pcca
Pbam Pccn Pbcm Pnnm
Pmmn Pben © Pbea Pnma
Cmem Cmca Cmmm Ceem
Cmma Ceca Fmmm Fddd
Immm Ibam Ibca Imma
tetragonal 4 P4 P4, P4, P4,
~ 14 14,
4 P4 14
4/m Pd4/m P4,m P4/n P4,/n
14/m 14,/a
422 P422 P42,2 P4,22 P4;2,2
P4,22 P4,2,2 P4,22 P4:2,2
1422 14,22
4mm P4mm P4bm P4;cm P4;nm
Pdcc Pdnc P4;mc P4;bc
~ l4mm Tdem 14;md 14)cd
42m P42m Pa2c P42im VI
Pdm2 Pdc2 P4b2 Pan2
1dm2 14c2 142m 142d
4/mmm P4/mmm  Pd/mcc P4/nbm  P4/nnc
P4/mbm  Pd4/mnc  Pd/nmm  P4/ncc
P4;/mme  Pdr/mcm  Pdy/nbe P4;/nnm
P4;/mbc  P4/mnm  Pdy/amc  P4dy/nem
14/mmm  I[4/mcm  14,/amd  14,/acd
trigonal 3 P3 P3, - P3; R3
3 P3 R3
32 P312 P321 P3,12 P3,21
P3;12 P3;21 R32
3m P3ml P3lm P3cl P3lc
R3m R3c
3m P3lm Plc P3ml P3cl
R3m R3c
hexagonal 6 P6 PG, P6s Pé6,
Pé6, P,
6 P6
6/m P6/m P6:/m
622 P622 P6,22 P6522 P6,22
P6,22 P6;22
6mm P6mm Pécc P6iem P63mc
6m2 P6ém2 Péc2 P62m P62c
6/mmm P6/mmm P6/mcc Pé:;/mcm  P6y/mme
cubic 23 P23 F23 123 P23
] 23
m3 Pm3 Pn3 Fm3 Fd3
Im3 Pa3 a3
432 P432 P4,32 F432 F4,32
) 1432 P4;32 P4,32 14,32
43m P@Bm Fd3m 143m P43n
B Fd3c 143d
m3m Pm3m Pn3n Pm3n Pn3m
Fm3m Fm3c Fd3m Fd3c
Im3m 1a3d

Figure 4.57

: The 230 space groups.
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b) c)

Figure 4.58: Symmetry elements of space group P mm2 in projection on
x,y,0. (a) the general position z,y,z. (b) the special position %,y.z. (c)

The special position %, %, zZ.

is called a general position. A general position is a set of equivalent points
with a site symmetry of 1. It is asymmetric, and this is indicated in Figure
4.58 by the tail on the circle.

If the point in the general site x,y, z is moved on to the mirror plane
at %, y.z the point 1 — x,y.z comes into coincidence with it; the two points
coalesce at the mirror plane to a single point %, y.z. At the same time, the
points x, 1 —y, z and 1 —z, 1 —y, 2z coalesce to the single point %, 1—y,z (fig.
4.58a,b). From the 4-fold general position, we have obtained a 2-fold special
position. Special positions are not asymmetric; they possess site symmetry
higher than 1, and in figure 4.58b, the site symmetry is m (it is on a mirror
plane). This special position has two degrees of freedom. As long as the
point remains on the mirror plane, its multiplicity is unchanged.

If a point on %,y, z moves onto the 2-fold axis at %, %, z the two points
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%, Y, z and %, 1 —y, z coalesce to %, %, z. This special position retains only a

single degree of freedom. The point symmetry of the position rises to mm?2,
and the multiplicity falls to 1. Some space groups have special positions with
no degrees of freedom, an important case of this being a point on an inversion
center.

All space groups, and all their symmetries and special positions are listed
in the International Tables for Crystallography.

4.7.1 Space group and crystal structure

In Section 4.4 we defined a crystal structure as a lattice plus a basis. It is thus
possible to describe it as a geometrical arrangement of atoms. Figure 4.59
gives the lattice and the basis for the rutile (TiOg) structure. The perspective
drawings and the projection on the z,y,0 are derived from these data.

Every crystal structure can be similarly described by its space group and
the occupation of general or special positions by atoms. The crystal structure
of rutile is in space group P 45 /mnm (see Figure 4.60 for the full space group
description). The titanium atoms occupy the special position notated a, and
the oxygen atoms occupy the special positions f with z = 0.3. Substituting
0.3 in for x in the coordinates for the O-atoms gives the specific coordinates
listed for the basis. The description of a crystal structure in terms of the
space group is much simpler than that in terms of the basis when positions
of high multiplicity are involved. In addition, the space group shows clearly
which atoms are related to one another by the symmetry elements of the
space group. This relationship is particularly important for positions with
one or more degrees of freedom. Any movement in x alters the relationship of
all the related atoms; for example, an increase in x results in the movement
of the O-atoms indicated by the arrows in Figure 4.59.
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A B
Lattice Basis Space group Positions of the atoms
tetragonal P Ti:0,0,0 P 4;/mnm al Ti: 0,0,0
1
P13 >33
ag=4.59 A 0: 0.3,0.3,0 ay=4.59 A fl O xx0
_ -3 ‘ _ -3
=296 A 0.8,0.2,% =296 A %+x,%l—x,—% <=0.3
0.2, 0.8,2 2 x’i t X3
0.7,0.7,0 X X0
LY

' ®
- o0
2
- 7 ®
a) ®-=7i O=O B @

Figure 4.59: A description of the crystal structure of rutile TiOy (a) in per-
spective, and (b) in projection on the z,y, 0.
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) P4z/mnm i:: 4fmmm Tetragonal
No. 136 Pafm 2in 2fm
l : * S é
N t g/ I N O -
i 00 /TN - D
i i 3 ~
2 @ N
RO
E'GD'I?-%_
o ¥ e
&@- .@.
i -®+ ) —GD-»
@ o © @
(4) Origin at centre (mmm) at 2fm | 2{m
(5) Asymmetric unit  0<x<{; 0<y<}; 0<z<4; x<y

(6) Symmetry operations

(5)2(0*0) Lyt
y 1 0,0,0

(10) m x,y,0

22 00,2
{6) 2¢1,0,0) x,4,4 (M2 xx0

(3) 47(0,0,}) 0.4,z
an 4 1.0,z 1.0.4

(4) 440,0.4} 1,02

(4) y+i f+i z+4

X,z (8
(11) p+4 x+4.744 5:2] 9+i IH 7+

) ¥.X.2

X+ R+E 244

(13) r(4,0,4) x.i.z (14) n(0.4.4) t.y.z (15) m x,%z
(7) Positions
Muiplicily, Coordinales
Wyckoff lefter,
Site symmerty
6 & 1 (Iyxyz (2) 1.9.2 (3}?+§ x+thz+i
(5) T+ y+d. 744 () x+AF+i2+d (T yax
9 552 (10) x,y,7
(1) x+4.5+4,2+48 (14) lﬂyﬂ z+4 (15) §.%.2
8§ j ..m X.X.7 £.8,2 T+ x+dz+4
THix+i,2+4 x+b e+t xx2
8§ i m. x,y,0 250 FHixt+i}  y+ix+id
THiy+id x+bF+40 yx0 5.0
8 h 2 0z 04,241 1,02+ 107
0.4,2 0,4,2+¢ 402z+% 102
4 g m.2m xx0 Ex0D x+ix+il £+ xedd
4 f mZm xx0 XR0 F+rix+i} x+drebd
4 e 2.mm 00,z Liz+l LI+t 007
4 4 3. 044 047 104 104
4 ¢ 2Zm.. 040 04F 0,4 400
2 b m.umm 00 140
2 a m.amm 000 {44

Figure 4.60: Space group P 45/mmm, from the International Tables for

?lrézst allography.
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4.7.2 Space groups and physical properties
Piezoelectricity

Some crystals, when subjected to pressure or tension in certain directions
develop an electric charge; this property is called piezoelectricity. This effect
is clearly seen in plates of quartz (space group P 3;2), cut normal to the
a-axis and compressed or pulled along the a-axis. The a-axis in quartz has a
polar 2-fold rotation axis. Polar axes are those which have distinct physical
properties in the parallel and antiparallel directions. These directions must
thus not be themselves related by symmetry. It follows that within the
crystal there will be an asymmetric charge distribution along the polar axes.
The opposite faces, normal to the polar axis, develop electric charges within
a pressure is applied along the axis. The direction of this electric field is
reversed when the pressure is replace by tension.

Piezoelectricity is only observed in crystals which have polar axes. Polar
directions only exist in space groups without a center of symmetry (non-
centrosymmetric).

The piezoelectric effect is reversible. If an electric field is applied in the
direction of the polar axis of a quartz plate, the crystal will undergo com-
pression or expansion. The application of an alternating field will cause the
crystal to vibrate. Piezoelectricity has many technical applications, including
ultrasonic generators, amplifiers, microphones and quartz time-pieces.

Pyroelectricity

When a crystal of tourmaline is heated, the polar ends of the crystal develop
electric charges. Heating causes the positive end of the x-axis to become
positively charged relative to the negative end, and cooling has the opposite
effect. This effect results from the fact that tourmaline has a permanent
electric dipole. The charge which builds up is soon dissipated by conduction
into the surroundings. Changes in temperature change the size of the electric
dipole.

The dipole moment is a vector. Pyroelectricity can only arise when the
space group has no symmetry operations which alter the direction of this
dipole. The vector must remain unchanged by all the symmetry operations.

Knowledge of the symmetry allows one to quickly decide whether pyro-
electricity or piezoelectricity are not possible for a given material. It, how-
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ever, gives only a qualitative indication of the possible presence of pyroelec-
tricity or piezoelectricity.
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