
Green’s functions

Consider the 2nd order linear inhomogeneous ODE

d2u

dt2
+ k(t)

du

dt
+ p(t)u(t) = f(t).

Of course, in practice we’ll only deal with the two particular types of 2nd order ODEs we discussed last week, but let
me keep the discussion more general, since it works for any 2nd order linear ODE. We want to find u(t) for all t > 0,
given the initial conditions u(t = 0) = u0,

du
dt |t=0 = v0.

Let us assume that the two linearly-independent solutions u1(t), u2(t) of the homogeneous equation are known
(we’ve discussed what these are for the special kinds of equations we will need to solve). Then, we know that the
general solution of the inhomogeneous equation is:

u(t) = C1u1(t) + C2u2(t) + up(t)

where up(t) is any particular solution of the inhomogeneous equation. After we find up(t), we can use the initial
conditions to find C1 and C2.

Two ways to find up(t) that we’ve discussed in class are guessing and the variation of parameters. There is nothing
wrong with either, except that every time a new f(t) is given, we have to try another guess or go into all the work
required by the variation of parameters – we have to redo the whole calculation again to get the new up. This becomes
quite difficult, especially if f(t) is not a simple function. The idea behind the Green’s function is to find a general
expression that tells us what up(t) is for any f(t) that we care to use. We still need to do is one calculation (to find
the Green’s function), but once we have it, we can find up(t) for any f(t) without much further work.

Before launching into how this works, let me point out that sometimes this solution is shown as a sort of math
“trick” related to a certain special way to do variation of parameters – for instance, this is how it’s presented in the
6th edition of the textbook, pages 20-23. I want to try to do a bit of a better job in explaining why this works, and
how should we think about the meaning of this solution, as physicists. This should help us figure out how to generalize
this idea, because we will use it later for PDEs.

The main idea is to “decompose” f(t) as a sum of simple functions, for which we know the particular solutions.
Remember that if f(t) = f1(t)+f2(t), then up(t) = up1(t)+up2(t), where up1(t) is the particular solution for f1(t), etc.
Of course, this would be true if we “broke” f(t) in any number of pieces, so long as we could find the corresponding
up(t) for each piece. Now, the way we do this “breaking” is with the Dirac function: remember that we can write:

f(t) =

∫ ∞
0

dτδ(t− τ)f(τ)

which means that f(t) is a sum of short “kicks” (described by the δ-function), and so that the kick applied at τ has
the strength f(τ). Of course, “sum” here is really an integral, because the time τ is a continuous variable. The reason
why the integral is from 0 to ∞ is that I am only interested in times t ≥ 0 – in this sorts of problems we don’t care
what happened in the past, the question is always what happens after the initial moment t = 0.

So, the idea is that if we can find the particular solution for a kick δ(t − τ), i.e. a kick applied at time τ , then
we’re done – we need only “sum” over the particular contributions from all the kicks that contributed to our f(t).

The Green’s function G(t, τ) is the solution of the inhomogeneous equation

d2G(t, τ)

dt2
+ k(t)

dG(t, τ)

dt
+ p(t)G(t, τ) = δ(t− τ) (1)

In other words, it tells us what is a particular solution is we apply a single kick of strength 1 at the time t = τ –
exactly what we need. It has two arguments because, of course, the solution will be different if we kick at different
times τ , so we need to keep track of τ as well.

Finally, G is not just any particular solution of this inhomogeneous equation, but we will ASK that it satisfies the
initial conditions G(t = 0, τ) = 0, dGdt |t=0 = 0. Note the very special form of these initial conditions – they look like
the ones for the general solution, but they are both HOMOGENEOUS (i.e., = 0)! The reason for this is that I don’t
want to have to recalculate the Green’s function every time I change the values of u0, v0 – as you’ll see below, the
homog. part of the solution can take care of u0 and v0.
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Once we have this particular solution, we know that for any arbitrary sequence of kicks that makes up f(t), the
particular solution must be:

up(t) =

∫ ∞
0

dτG(t, τ)f(τ)

(if you’re not quite sure about this, plug this up in the ODE and check that indeed it satisfies Eq. (??)).

Because of the initial conditions satisfied by G, it follows that up(0) = 0,
dup

dt |t=0 = 0. So the general solution of
our equation is:

u(t) = C1u1(t) + C2u2(t) +

∫ ∞
0

dτG(t, τ)f(τ)

where C1, C2 must be chosen such that:

u0 = u(t = 0) = C1u1(0) + C2u2(0) + up(0) = C1u1(0) + C2u2(0)

v0 =
du

dt
|t=0 = C1

du1
dt
|t=0 + C2

du2
dt
|t=0 +

dup
dt
|t=0 = C1

du1
dt
|t=0 + C2

du2
dt
|t=0

This explains why we chose those initial conditions for G(t, τ) – this way we can adjust C1 and C2 to take care of
the actual initial conditions, and we don’t need to recalculate G and therefore up if we change the initial conditions –
all that is needed is to adjust C1, C2 accordingly.

In summary, once we know G(t, τ), we only need to do the integral
∫∞
0
dτG(t, τ)f(τ) for the function f(t) of

interest, and also find C1 and C2, and we’re done. And this works for any f(t), all we need is to do one integral.

Before calculating G(t, τ), let’s see what general conditions it must satisfy.
1. G(t, τ) must be continuous at all t, because we expect u(t), and therefore up(t) to be continuous at all times.

For example, if this equation comes from applying Newton’s second law, then u describes the location of some object.
Clearly, then, it must change continuously in time. In particular, G(t, τ) must be continuous when we apply the kick:

G(t = τ−, τ) = G(t = τ+, τ)

where τ± are times infinitesimally close to τ (just before and just after).
2. However, since we apply this singular kick at t = τ , we expect something discontinuous to happen to G there.

Indeed, it turns out that the derivative is discontinuous:

dG

dt
|t=τ+ −

dG

dt
|t=τ− = 1 (2)

in other words, the derivative of G(t, τ) has a jump of precisely 1 at t = τ when the kick is applied. This comes
directly from Eq. (??) if we integrate it from τ − ε to τ + ε, and we let ε→ 0. What we get is:∫ τ+ε

τ−ε
dt

[
d2G(t, τ)

dt2
+ k(t)

dG(t, τ)

dt
+ p(t)G(t, τ)

]
=

∫ τ+ε

τ−ε
dtδ(t− τ) = 1

(the second equality is just the value of the integral on the rhs, see delta functions). On the lhs, we have three terms.
Let me take them from the end. When ε→ 0, ∫ τ+ε

τ−ε
dtp(t)G(t, τ)→ 0

because the integrand is a continuous function, and we’re shrinking the integration interval to zero. Similarly, after
integrating by parts, we find:∫ τ+ε

τ−ε
dtk(t)

dG(t, τ)

dt
= [k(t)G(t, τ)]

t=τ+ε
t=τ−ε −

∫ τ+ε

τ−ε
dt
dk

dt
G(t, τ) = 0

because again we’re dealing only with continuous functions in the limit where the integration interval goes to zero.
Finally: ∫ τ+ε

τ−ε
dt
d2G(t, τ)

dt2
=
dG

dt
|t=τ+εt=τ−ε =

dG

dt
|t=τ+ −

dG

dt
|t=τ−
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and Eq. (??) follows directly.
3. As I said, we ask for the simplest possible initial conditions G(t = 0, τ) = 0, dGdt |t=0 = 0. The reason for this is

that we do not want the Green’s function to depend on the initial conditions u0, v0 of the equation – if this was the
case, then anytime we changed the initial conditions we would have to recalculate G for the new initial conditions.
Asking that G(t = 0, τ) = 0, dGdt |t=0 = 0 means that G(t, τ) always has the same expression, and we let C1 and C2

adjust so as to take care of u0, v0.
So let’s find G(t, τ). Let us consider first the interval 0 < t < τ . Because in this interval δ(t − τ) = 0, here the

equation for G is:
d2G(t, τ)

dt2
+ k(t)

dG(t, τ)

dt
+ p(t)G(t, τ) = 0

in other words here G is a solution of the homogeneous equation, so it must be of the general form:

if 0 < t < τ , thenG(t, τ) = a1u1(t) + a2u2(t)

Similarly, for t > τ , again δ(t− τ) = 0 and the equation becomes homogeneous, so we must have:

if t > τ , thenG(t, τ) = b1u1(t) + b2u2(t)

All that is left is to find a1, a2, b1, b2 and we’re done. For this, we use the 4 conditions we have. Let’s start with the
initial conditions. The time t = 0 < τ , so we must have:

G(t = 0, τ) = a1u1(0) + a2u2(0) = 0

and
dG

dt
(t = 0, τ) = a1

du1
dt

(0) + a2
du2
dt

(0) = 0

Because u1, u2 are linearly independent solutions, their Wronskian W (t) = u1
du2

dt − u2
du1

dt 6= 0 for any time, therefore
also for t = 0. As a result, the only solution of those two equations is a1 = a2 = 0. Nice and simple. So we find that
G(t, τ) = 0 if t < τ . Now we use conditions 1 and 2 to find G(t, τ) for t > τ . First:

G(t = τ−, τ) = G(t = τ+, τ)→ 0 = b1u1(τ) + b2u2(τ)

because the functions u1, u2 are continuous. Also,

dG

dt
|t=τ+ −

dG

dt
|t=τ− = 1→ b1

du1
dt

(τ) + b2
du2
dt

(τ) = 1

Since the Wronskian is again guaranteed to be non-zero, the solution of this system of coupled equations is:

b1 = −u2(τ)

W (τ)
; b2 =

u1(τ)

W (τ)

So the conclusion is that the Green’s function for this problem is:

G(t, τ) =

{
0 if 0 < t < τ

u1(τ)u2(t)−u2(τ)u1(t)
W (τ) if τ < t

and we basically know it if we know u1 and u2 (which we need to calculate in any event).
Let me make some comments.
1. As I said, in the textbook this formula is derived as a special case of the “variation of parameters” solution,

and then is called a Green’s function. There is nothing wrong with that derivation as such, except it is not very clear
how to extend that procedure to equations with boundary conditions (which is what we will do next). The derivation
I have here is much more general and we will go through precisely the same steps to find the Green’s functions if we
are given boundary conditions, instead of initial conditions. Of course, in that case the solution for G will change, but
we can find it just as easily.

2. The formula we derived here is quite easy to understand if we think in physical terms. Suppose that u(t) is the
location of some object of mass m = 1, and the ODE is Newton’s second law: maybe there is some drag (the term
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proportional to du/dt) and maybe some elastic force (the term proportional to u) and so f(t) describes whatever other
external force is applied at time t. Then, as discussed, G(t, τ) will be the location of the object if it starts at the origin
and at rest (see initial conditions for G), and if we “kick” it with f(t)→ δ(t− τ) at the time τ . Obviously, before we
kick it the object will remain at rest at the origin, which explains why G(t, τ) = 0 if t < τ . After the kick, the object
will move as described by G(t, τ), t > τ . For t → τ+, i.e. just when it starts to move, it is still at the origin where it
was all the time until t = τ – that’s condition 1. But because it was kicked with this very short but intense force, its
speed jumps from 0 to 1 (that’s condition 2 – remember that applying a force changes the momentum of an object.
For this “unit” of kick-force we apply, the speed increases by one “unit” as well). What the method does, then, is to
say that any external force can be thought of as a sequence of kicks with various strengths. Because the equation is
linear, to find the whole solution we simply need to sum the contributions due to each kick (superposition principle).

We will spend some time practicing this in class, and comparing it against the other two methods.

After you’re comfortable with this, we will derive together the Green’s function for ODEs where we are given
boundary conditions – think variable x (space) instead of t (time), and that we’re interested in a finite region of space
a ≤ x ≤ b (for example, we might want to know the temperature of a rod which is located between a and b). Then,
we might be given the temperature at each end:

u(x = a) = TL, u(x = b) = TR.

Conditions like this, which specify the value of the unknown, are known as Dirichlet conditions.
Or we could be told what the derivatives of u are at the ends of the rod (as we’ll see in a bit, this derivative is

proportional to how much heat flows into/out of the rod, and maybe that’s what we control, not the temperatures as
such – for instance, for an isolated end, no heat can flow out and the derivative is zero). Such conditions are known
as von Neumann conditions:

du

dx
|x=a = hL,

du

dx
|x=b = hR.

Or we could have a mixed bag, where we know u at one end and du/dx at the other one. To each of these situations
will correspond a different Green’s function; but once we know that Green’s function, we can solve any inhomogeneous
ODE with that type of boundary conditions without any further trouble.
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