The Dirac delta function – a quick introduction

The Dirac delta function, i.e. $\delta(x)$, is a very useful object. Strictly speaking, it is not a function but a distribution - but that won't make any difference to us.

One of the simplest ways to try to picture what $\delta(x)$ looks like is to consider what happens to the piece-wise function

$$f_{\eta}(x) = \begin{cases} \frac{1}{\eta} & \text{, if } -\frac{\eta}{2} \le x \le \frac{\eta}{2} \\ 0 & \text{, otherwise} \end{cases}$$

if you let $\eta \to 0$. In other words, $\delta(x) = \lim_{\eta \to 0} f_{\eta}(x)$. This function is plotted below. As η decreases, it becomes "narrower" and "taller". However, no matter what η is, the area below this curve is precisely 1 (since this rectangle has width η and height $1/\eta$). Since the area below a function equals the integral of that function, it follows that:

Figure 1: Sketch of $f_{\eta}(x)$. The function is zero everywhere except in a region of width η centered at 0, where it equals $1/\eta$. As a result, the integral of this function is 1. If η decreases, the function becomes more and more "pointy".

Putting these two facts together, we can basically say that

$$\delta(x) = \begin{cases} \infty & , \text{ if } x = 0 \\ 0 & , \text{ otherwise} \end{cases}$$

but such that

$$\int_{-\infty}^{\infty} dx \delta(x) = 1$$

This is by no means the only definition of $\delta(x)$. We can also get it as the limit of the continuous functions:

$$L_{\eta}(x) = \frac{1}{\pi} \frac{\eta}{x^2 + \eta^2}$$

or

$$G_{\eta}(x) = \frac{1}{\sqrt{2\pi\eta^2}} e^{-\frac{x^2}{2\eta^2}}$$

The first is a so-called Lorentzian, the second is called a Gaussian. Chances are you've met them before, in some lab doing error analysis. Both take the highest value when x = 0 and decrease to zero as $|x| \to \infty$. The constants in front are chosen such that $\int_{-\infty}^{\infty} dx L_{\eta}(x) = \int_{-\infty}^{\infty} dx G_{\eta}(x) = 1$ for any value of η , so again, the area under each of these curves is precisely 1. Moreover, if you plot them (use Maple to get quick plots) you will see that, again, as η decreases, they become pointier too – more narrow but taller. In the limit $\eta \to 0$, they also equal $\delta(x)$. There are many other such examples of ways to define $\delta(x)$.

One more interesting definition, which we'll come back to in a few weeks (when we will understand it as well) is:

$$\delta(x) = \int_{-\infty}^{\infty} \frac{dk}{2\pi} e^{ikx}$$

Why this is so, as I said, will be clear later on. Just for now, you can see that if x = 0, the integral is indeed infinite, so $\delta(x = 0) = \infty$ as required. If $x \neq 0$, you should be able to convince yourselves that the integral equals zero (rewrite $e^{ikx} = \cos(kx) + i\sin(kx)$, then use the fact that sin is an odd function so its integral vanishes. And then plot $\cos(kx)$ and consider what area is below this curve if you integrate over all real values). Of course, we'd also need to show that if we use this formula, $\int_{-\infty}^{\infty} dx \delta(x) = 1$ – this will come soon. For the moment, take this as a curiosity.

that if we use this formula, $\int_{-\infty}^{\infty} dx \delta(x) = 1$ – this will come soon. For the moment, take this as a curiosity. Why is this strange function of any use? Well, consider any continuous function g(x) and let's calculate what is $\int_{-\infty}^{\infty} dx g(x) \delta(x - x_0)$. We'll use the first definition of $\delta(x - x_0) = \lim_{\eta \to 0} f_{\eta}(x - x_0)$. Of course, $f_{\eta}(x - x_0)$ looks just like in Fig.1, except that now it is centered at x_0 , not at the origin as before. So then:

$$\int_{-\infty}^{\infty} dx g(x) f_{\eta}(x - x_0) = \int_{x_0 - \frac{\eta}{2}}^{x_0 + \frac{\eta}{2}} dx g(x) \frac{1}{\eta} = \frac{1}{\eta} \int_{x_0 - \frac{\eta}{2}}^{x_0 + \frac{\eta}{2}} dx g(x) \approx \frac{1}{\eta} \eta g(x_0) = g(x_0)$$

where the first equality is because $f_{\eta}(x - x_0)$ vanishes for all values outside $[x_0 - \frac{\eta}{2}, x_0 + \frac{\eta}{2}]$ and equals $\frac{1}{\eta}$ inside this region. The \approx sign becomes exact in the limit $\eta \to 0$. So since this is true for any small η , it follows that:

$$\int_{-\infty}^{\infty} dx g(x) \delta(x - x_0) = g(x_0)$$

You can think of the delta function like a "spike" that selects the value of g at its location. A graphic depiction of this is shown in the figure below.

Figure 2: Sketch of some g(x) (black curve), $f_{\eta}(x - x_0)$ (red curve, "spike" centered at x_0) and their product (blue dashed curve). The product is also a "spike" centered at x_0 , of width η and of height $g(x_0)/\eta$.

Finally, it should be now apparent that if we integrate only over a finite interval, then:

$$\int_{a}^{b} dx g(x) \delta(x - x_0) = \begin{cases} g(x_0) & \text{, if } a < x_0 < b \\ 0 & \text{, otherwise} \end{cases}$$

We will use this quite a bit. Note that you can think of $\int_{-\infty}^{\infty} dx \delta(x) = 1$ as being a particular case of this more general identity, when g(x) = 1.