
Heat equation in a 2D rectangle

This is the solution for the in-class activity regarding the temperature u(x, y, t) in a thin rectangle of dimensions
x ∈ [0, a], b ∈ [0, b], which is initially all held at temperature T0, so u(x, y, t = 0) = T0. Then, from t = 0 onwards, we
keep its x = 0 edge at temperature TL, and all other 3 edges at temperature 0, therefore u(x = 0, y, t) = TL, u(x =
a, y, t) = u(x, y = 0, t) = u(x, y = b, t) = 0.

The first part is to calculate the steady-state solution us(x, y) = limt→∞ u(x, y, t). It satisfies the heat equation,
since u satisfies it as well, however because there is no time-dependence, the time derivative vanishes and we’re left
with:

∂2us

∂x2
+

∂2us

∂y2
= 0

us also satisfies the same boundary conditions like u, so: us(x = 0, y) = TL, u(x = a, y) = 0, ∀y ∈ [0, b] while
u(x, y = 0) = u(x, y = b), ∀x ∈ [0, a].

We use separation of variables us(x, y) = X(x)Y (y). The PDE then becomes:

1

X

d2X

dx2
+

1

Y

d2Y

dy2
= 0 →

d2X

dx2
= AX,

d2Y

dx2
= −AY

We need to find the eigenvalues A. For this we need additional conditions – let’s see what we can get from the boundary
conditions. Note that we need to have hom. BC on two opposite sides to be able to solve this: we need to know
either 2 BC for X, or two BC for Y , otherwise we cannot find the allowed A. Here we are lucky, because from
us(x, y = 0) = us(x, y = b) = 0 for all x, we find that Y (0) = Y (b) = 0. So we do have the two needed conditions.

As an aside: for your homework (in conjunction with the pre-reading for today), if the boundary conditions are
not such that you have 0 on two opposite sides, then you have to split the problem into a sum of simpler problems,
each of which has hom. BC on a pair of opposite edges.

Back to our problem: we need to solve the eigenproblem d2Y
dx2 = −AY with Y (0) = Y (b) = 0. We know that

A = k2 > 0 so that the solution is Y (y) = α cos(ky) + β sin(ky) which has a chance to have two different zeroes (for
A < 0, the solution would be a sum of exponentials which can never satisfy these BC). Then, as usual, we find an
infinite number of eigenvalues An = (nπ/b)2, n = 1, 2, ..., so that Yn(y) = sin nπy

b
.

Now we can solve the ODE for X, and for each of these eigenvalues we find a possible solution Xn(x) = ane
nπ

b
x +

bne
−

nπ

b
x.

So far, we have found an infinite number of solutions Xn(x)Yn(y), each of which satisfies the PDE and the 2 BC
for y. However, none of these solutions can satisfy the inhom. BC at x = 0: us(x = 0, y) = TL since each depends in
some nontrivial fashion on y.

So then we try to find a general solution that combines all of these solutions, and hopefully with such coefficients
that we can satisfy the remaining BC:

us(x, y) =

∞
∑

n=1

(ane
nπ

b
x + bne

−
nπ

b
x) sin

nπy

b

At x = 0, we have:

TL =

∞
∑

n=1

(an + bn) sin
nπy

b
, ∀y ∈ [0, b]

which means that we can find an + bn from the odd periodic extension of TL, which has period L = 2b, and which
leads to:

an + bn = ... =
2

b

∫ b

0

dyTL sin
nπy

b
→

an + bn =
2TL

nπ
[1− (−1)n]

Finally, we also need to satisfy the BC at x = a:

0 =

∞
∑

n=1

(ane
nπ

b
a + bne

−
nπ

b
a) sin

nπy

b
, ∀y ∈ [0, b]
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from which we find:
ane

nπ

b
a + bne

−
nπ

b
a = 0

(it’s like replacing TL → 0 in the above expressions).
So for each n, we have two equations with wo unknowns:

{

an + bn = 2TL

nπ
[1− (−1)n]

ane
nπ

b
a + bne

−
nπ

b
a = 0

→ ... →

{

an = − TL

nπ sinh nπa

b

[1− (−1)n]e−
nπa

b

bn = + TL

nπ sinh nπa

b

[1− (−1)n]e
nπa

b

where sin(x) = (ex− e−x)/2 is just a shorthand notation. With this and after rearranging things a little bit, we finally
get:

us(x, y) =

∞
∑

n=1

2TL[1− (−1)n]

nπ sin nπa
b

sinh
nπ(a− x)

b
sin

nπy

b

which indeed is a linear combination of the allowed solutions, and can be seen to vanish at y = 0, b and x = a, while
it has the TL value at x = 0. So this part is done.

Now we move on to the transient solution ut(x, y, t) = u(x, y, t)− us(x, y). This also satisfies the full PDE, like u
and us. However, it has only homogeneous BC:

ut(x = 0, y, t) = u(x = 0, y, t)− us(x = 0, y) = TL − TL = 0

and similarly ut(x = a, y, t) = ut(x, y = 0, t) = ut(x, y = b, t) = 0 at all times.
So we try again separation of variables. Because we have 3 variables, we try ut(x, y, t) = X(x)Y (y)T (t). After

putting this into the PDE we arrive at:
1

X

d2X

dx2
+

1

Y

d2Y

dy2
=

1

κ

1

T

dT

dt

which means that we must solve the eigenequations:

1

X

d2X

dx2
= A;

1

Y

d2Y

dy2
= B,

1

κ

1

T

dT

dt
= A+B

So we need first to find the eigenvalues A and B so that:

d2X

dx2
= AX;

d2Y

dy2
= BY

Note that we can only achieve this is we have 2 BC for X (to find A) and two BC for Y (to find B). This is why here
we need ALL BC to be homogeneous, so that we can rewrite them as X(0) = X(a) = 0;Y (0) = Y (b) = 0.

It is important to convince yourselves that if we did not do the trick with the steady-state solution first, there
would be no way to deal with the inhomog. BC at x = 0 directly – we cannot split it in an equation for only X or
only Y , so we could not find eigenvalues and there would be no way forward.

But because we made sure that for the transient problem all BC are homog, we can solve for both sets of eigenvalues.

d2X

dx2
= AX,X(0) = X(a) = 0 → An = −

(nπ

a

)2

, Xn(x) = sin
nπx

a
, n = 1, 2, ....

while
d2Y

dy2
= BY, Y (0) = Y (b) = 0 → Bm = −

(mπ

b

)2

, Ym(y) = sin
mπy

b
,m = 1, 2, ....

I explicitly use a different integer for Y than for X because there is absolutely nothing that requires these two to be
equal!!! For each pair of integers n,m, then I can solve for the time dependence:

dT

dt
= κ (An +Bm)T = −κ

(

(nπ

a

)2

+
(mπ

b

)2
)

T → Tn,m(t) = cn,me
−κ

(

(nπ

a )
2

+((mπ

b )
2
)

t

At it should, T (t → ∞) → 0 (this is part of the transient solution, which dies off at long times).
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So, at this moment we have, for any pair of n,m integers, the solutions

Xn(x)Ym(y)Tn,m(t) = cn,m sin
nπx

a
sin

mπy

b
e
−κ

(

(nπ

a )
2

+((mπ

b )
2
)

t

which satisfy the PDE and all 4 BC. However, none of these satisfies the initial condition:

ut(x, y, t = 0) = T0 − us(x, y), ∀x, y

So again, we put together a combination from all of them, and hope that if we choose the constants cn,m appro-
priately, we might be able to satisfy this initial condition as well:

ut(x, y, t) =

∞
∑

n=1

∞
∑

m=1

cn,m sin
nπx

a
sin

mπy

b
e
−κ

(

(nπ

a )
2

+((mπ

b )
2
)

t

where we must have:

T0 − us(x, y) =

∞
∑

n=1

∞
∑

m=1

cn,m sin
nπx

a
sin

mπy

b
, ∀x, y

So this looks like some sort of “double” Fourier series. We can make it look more standard if we introduce the
additional functions:

gn(y) =
∞
∑

m=1

cn,m sin
mπy

b

in terms of which we find:

T0 − us(x, y) =

∞
∑

n=1

gn(y) sin
nπx

a
, ∀x ∈ [0, a]

This last equality looks very familiar (if we treat the g as some coefficients) and leads to:

gn(y) =
2

a

∫ a

0

dx[T0 − us(x, y)] sin
nπx

a

But once we know these functions, we can use the equality above:

gn(y) =

∞
∑

m=1

cn,m sin
mπy

b
, ∀y ∈ [0, b]

to find:

cn,m =
2

b

∫ b

0

dygn(y) sin
mπy

b

and so combining the two, we find:

cn,m =
2

a

∫ a

0

dx sin
nπx

a

2

b

∫ b

0

dy sin
mπy

b
[T0 − us(x, y)]

Note that the final result is not too bad, because us is already written as a product of terms depending only on x and
only on y, so one can separate easily into a product of two integrals, none of which is too hard. The end result is still
quite complicated, but then we didn’t really expect a simple solution to this complicated problem, did we?

Let me make one more comment on a different way to extract the cn,m coefficients. This will make sense once we
discuss the Sturm-Liouville problem next week.

We are trying to get:

T0 − us(x, y) =
∞
∑

n=1

∞
∑

m=1

cn,mXn(x)Ym(y), ∀x, y

We know that each of the sets Xn(x) and Ym(y) are orthogonal, because each comes from a Sturm-Liouville equation,
and for example

∫ a

0
dxXn(x)Xn′(x) = 0 of n 6= n′. And so we have:

[T0 − us(x, y)]Xn′(x)Ym′(y) =
∞
∑

n=1

∞
∑

m=1

cn,mXn(x)Ym(y)Xn′(x)Ym′(y)
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and after integrating on both sides:

∫ a

0

dx

∫ b

0

dy [T0 − us(x, y)]Xn′(x)Ym′(y) =
∞
∑

n=1

∞
∑

m=1

cn,m

∫ a

0

dxXn(x)Xn′(x)

∫ b

0

dyYm(y)Ym′(y)

On the rhs, the first integral is zero unless n = n′ and the second is zero unless m = m′, so only one term survives
from the double sum:

cn′,m′ =

∫ a

0
dx

∫ b

0
dy [T0 − us(x, y)]Xn′(x)Ym′(y)

∫ a

0
dx[Xn′(x)]2

∫ b

0
dy[Ym′(y)]2

For the functions Xn(x) and Ym(y) that we have here (simple sine) its immediate to find:

∫ a

0

dx[Xn′(x)]2 =
a

2

and
∫ b

0

dy[Ym′(y)]2 =
b

2

and so we again find:

cn′,m′ =
4

ab

∫ a

0

dx

∫ b

0

dy [T0 − us(x, y)]Xn′(x)Ym′(y)

which is precisely the same formula as before.
This second approach is more general, because it works for any eigenfunctions Xn, Ym, whereas the Fourier trick

only works for simple sin nπx
a

etc. However, if the functions are more complicated, the integrals on the bottom will be
different from a/2, b/2, so one would have to see whatever they are equal to.
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