
Rotations and the Euler angles

1 Rotations

Consider two right-handed systems of coordi-
nates, XY Z and x1x2x3, rotated arbitrarily
with respect to one another (see Fig. →). We
would like to be able to link easily the coor-
dinates of any vector ~A in the two frames of
reference. Let ~eX , ~eY , ~eZ be the unit vectors
for the axes of the first system, and ~e1, ~e2, ~e3

the unit vectors for the axes of the second
system. Then, by definition:

~A = AX~eX + AY ~eY + AZ~eZ

and
~A = A1~e1 + A2~e2 + A3~e3
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Fig 1. Projection of the same vector ~A onto two different right-

handed systems of coordinates.

Then, we can express one set of projections in terms of the other one:

A1 = ~e1 · ~A = (~e1 · ~eX)AX + (~e1 · ~eY )AY + (~e1 · ~eZ)AZ

A2 = ~e1 · ~A = (~e2 · ~eX)AX + (~e2 · ~eY )AY + (~e2 · ~eZ)AZ

A3 = ~e1 · ~A = (~e3 · ~eX)AX + (~e3 · ~eY )AY + (~e3 · ~eZ)AZ

or, in matrix form:






A1

A2

A3





 =







~e1 · ~eX ~e1 · ~eY ~e1 · ~eZ

~e2 · ~eX ~e2 · ~eY ~e2 · ~eZ

~e3 · ~eX ~e3 · ~eY ~e3 · ~eZ





 ·







AX

AY

AZ





 (1)

Let us analyze the elements of the 3 × 3 matrix. By definition ~e1 · ~eX = cos φ1X , where φ1X is the
angle between the two unit vectors ~e1 and ~eX . Similarly, all other elements of this matrix depend
only on the various angles between various sets of axes, but are independent of the projected vector
~A. It follows that for any other vector ~B, we will have automatically:







B1

B2

B3





 =







~e1 · ~eX ~e1 · ~eY ~e1 · ~eZ

~e2 · ~eX ~e2 · ~eY ~e2 · ~eZ

~e3 · ~eX ~e3 · ~eY ~e3 · ~eZ





 ·







BX

BY

BZ







In other words, if we know the 3 × 3 matrix, then we can find the components of any vector in one
of the systems, if we know them in the other.

Before continuing, let us introduce some simpler notation. We will denote






A1

A2

A3





 = ~Abody,







AX

AY

AZ





 = ~AXY Z and R̂ =







~e1 · ~eX ~e1 · ~eY ~e1 · ~eZ

~e2 · ~eX ~e2 · ~eY ~e2 · ~eZ

~e3 · ~eX ~e3 · ~eY ~e3 · ~eZ







and therefore we have ~Abody = R̂ · ~AXY Z . It then follows that:

~AXY Z = R̂−1 · ~Abody
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where R̂−1 is the inverse of matrix R̂, and it should be clear that its matrix elements are:

R̂−1 =







~eX · ~e1 ~eX · ~e2 ~eX · ~e3

~eY · ~e1 ~eY · ~e2 ~eY · ~e3

~eZ · ~e1 ~eZ · ~e3 ~eZ · ~e3







If it’s not clear, then derive them and check!
We can see that the matrix R̂−1 is just the transpose of matrix R̂ ( by definition, M is the transpose

of N , i.e. M = NT , if mij = nji for all i, j). This property is a consequence of the invariance of the
length of any vector under rotations. If we denote:

~AT
body =

(

A1 A2 A3

)

; ~AT
XY Z =

(

AX AY AZ

)

then
| ~A|2 = ~A · ~A = AXAX + AY AY + AZAZ = ~AT

XY Z · ~AXY Z = ~AT
body · ~Abody

(the vector has the same length in any system of coordinates). But ~Abody = R̂ · ~AXY Z → ~AT
body =

~AT
XY Z · R̂T (this last property can be checked easily using the definition of the transposed matrix),

and therefore:

~AT
body · ~Abody =

(

~AT
XY Z · R̂T

) (

R̂ · ~AXY Z

)

= ~AT
XY Z

(

R̂T · R̂
)

~AXY Z

which implies that R̂T · R̂ = 1 → R̂T = R̂−1.
This property is extremely useful, since it allows us to easily find the inverse of any rotation

matrix, by just taking its transpose.

2 Rotation about one axis

Let us derive the expression of R̂3 for the case where the axes
0Z and 0x3 are parallel, and the sets of axes XY and x1x2 are
rotated by an angle φ with respect to one another (see Fig).
In this case, we know (see, for instance, discussion of polar
coordinates) that the relationship between the unit vectors is:











~e1 = cos φ~eX + sin φ~eY

~e2 = − sin φ~eX + cos φeY

~e3 = ~eZ

We can now compute the various dot products; for instance
~e1 · ~eX = cos φ, etc, and we find

R̂3(φ) =







cos φ sin φ 0
− sin φ cos φ 0

0 0 1






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Fig 2. Rotation by an angle φ about the

axis Oz = Ox3.

You should check that R̂3(φ1)R̂3(φ2) = R̂3(φ1 + φ2) – meaning that if I rotate first by angle φ2

followed by a rotation by angle φ1 (about the same axis!) it’s as if I did a single rotation by angle
φ1 + φ2. Which is true.

2



The inverse matrix is then:

R̂−1

3
(φ) = R̂T

3
(φ) =







cos φ − sin φ 0
sin φ cos φ 0

0 0 1





 = R̂3(−φ)

This makes perfect sense as well; if system 123 is rotated with +φ with respect to system XY Z,
then system XY Z is rotated with −φ with respect to 123. As a result, the rotation matrices should
have the same form with φ → −φ, and that is precisely what we found.

In the same way, we can write down the matrices for rotations about any other axis. For instance,
if OX and 0x1 are kept parallel and we perform a rotation by an angle θ about them, we find

R̂1(θ) =







1 0 0
0 cos θ sin θ

0 − sin θ cos θ







We can now use the fact that any general 3D rotation can be decomposed into a product of 3
rotations about 3 different axes, to find the form of a general rotation matrix.

3 Euler’s angles

We characterize a general orientation of the “body” system x1x2x3 with respect to the inertial system
XY Z in terms of the following 3 rotations:

1. rotation by angle φ about the Zaxis;
2. rotation by angle θ about the new x′

1
axis, which we will call the line of nodes ;

3. rotation by angle ψ about the new x3 axis.
These rotations are illustrated in the following figure:
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We can now write the general rotation matrix that links ~Abody with ~AXY Z as the product of the
3 rotations about the corresponding axes:

R̂(φ, θ, ψ) = R̂3(ψ)·R̂1(θ)·R̂3(φ) =







cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1





·







1 0 0
0 cos θ sin θ

0 − sin θ cos θ





·







cos φ sin φ 0
− sin φ cos φ 0

0 0 1






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leading to the rather ugly general formula:

R̂(φ, θ, ψ) =







cos ψ cos φ − cos θ sin ψ sin φ − sin ψ cos φ − cos θ sin φ cos ψ sin θ sin φ

cos ψ sin φ + cos θ cos φ sin ψ − sin φ sin ψ + cos θ cos φ cos ψ − sin θ cos φ

sin θ sin ψ sin θ cos ψ cos θ







Fortunately, we will never need to use this matrix. All we really need is to be able to write the
components of the angular velocity ~Ω in both systems of coordinates. Since ~Ω describes precisely
how fast the angles vary in time, we have:

~Ω =
d~φ

dt
+

d~θ

dt
+

d~Ψ

dt
= φ̇~eZ + θ̇~e1′ + ψ̇~e3

since the three rotations are about these particular axes.
Let us analyze each contribution to ~Ω.

1. ~̇φ = ~eZ φ̇ (with respect to XY Z system). Following the rotations, we find that with respect to
123 system, we have:

~eZ = cos θ~e3 + sin θ~e2′′ = cos θ~e3 + sin θ(sin ψ~e1 + cos ψ~e2)

and therefore:
~̇φ = sin θ sin ψφ̇~e1 + sin θ cos ψφ̇~e2 + cos θφ̇~e3

2. ~̇θ = ~e1′ θ̇ = θ̇(cos φ~eX + sin φ~eY ) (with respect to XY Z), whereas

~e1′ = cos ψ~e1 − sin ψ~e2 → ~̇θ = cos ψθ̇~e1 − sin ψθ̇~e2

with respect to 123.

3. ~̇ψ = ~e3ψ̇ (with respect to 123), whereas

~e3 = cos θ~e3′ − sin θ~e2′ = cos θ~eZ − sin θ(− sin φ~eX + cos φ~eY ) →

~̇ψ = sin θ sin φψ̇~eX − sin θ cos φψ̇~eY + cos θψ̇~eZ

Adding all three components together, we find that, with respect to the body reference system,

~Ω = (sin θ sin ψφ̇ + cos ψθ̇)~e1 + (sin θ cos ψφ̇ − sin ψθ̇)~e2 + (cos θφ̇ + ψ̇)~e3 (2)

while with respect to the inertial reference system:

~Ω = (cos φθ̇ + sin θ sin φψ̇)~eX + (sin φθ̇ − sin θ cos φψ̇)~eY + (φ̇ + cos θψ̇)~eZ

So if we can solve the EL equations and find how these angles vary in time, we can figure out
what’s the angular speed in either of the two reference systems.

4 Kinetic energy in terms of Euler’s angles

Let us choose the CM as the reference point O, and we will choose the principal axes of inertia as
the body reference frame. The total kinetic energy of the object will be:

T =
1

2
M ~V 2

CM +
1

2
~Ω · ÎCM · ~Ω =

1

2
M ~V 2

CM +
1

2

(

I1Ω
2

1
+ I2Ω

3

2
+ I3Ω

2

3

)
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where Ω1 = sin θ sin ψφ̇ + cos ψθ̇ , etc [see Eq. (2)].
For an asymmetric top, the general formula is rather complicated, and we will not use it. For a

symmetric top with I1 = I2 6= I3, if you put the expressions for Ω1, Ω2 and Ω3 in and simplify a bit,
you find:

L =
1

2
M ~V 2

CM +
I1

2

(

θ̇2 + φ̇2 sin2 θ
)

+
I3

2

(

ψ̇ + φ̇ cos θ
)

2

− U(~RCM , φ, θ, ψ)

This is our Lagrangian in terms of our 6 generalized coordinates, namely ~RCM , θ, φ, ψ.
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