
Berciu Replies: The preceding Comment [1] makes a
valuable point about the meaning of the momentum aver-
age (MA) approximation in real space: Indeed, it replaces
all free propagators appearing in the proper self-energy
diagrams G0�i; j; !� n�� ! �i;j �g0�!� n��. In terms of
the continued fractions

 An�!� �
n �g0�!� n��

1� g2 �g0�!� n��An�1�!�
; (1)

the resulting MA self-energy is �MA�!� � g2A1�!�. As
shown in Refs. [2,3], this simple expression gives results in
very good agreement with numerical simulations over
most of the parameter space. This was explained in terms
of sum rules for the spectral weight, which MA satisfies
exactly for orders n � 5 and with high accuracy for all
higher orders. As pointed out in Ref. [3] and in the
Comment, there are also some failings: MA does not
show the expected continuum at EGS ��, and its accuracy
becomes worse as �! 0.

This real-space interpretation [1] offers an alternative
way to see why the MA approximation should be accurate
at least for low energies. The polaron ground state is below
the free-particle continuum EGS <�2dt. If !� n�<
�2dt, the free propagators G0�i; j; !� n�� decrease ex-
ponentially with the distance ji� jj. The decay is faster
the lower ! and the higher n are. Thus, for energies !�
EGS, keeping only the diagonal terms i � j is a good first-
order approximation, especially for larger coupling g
(lower EGS) and larger phonon frequency �.

Clearly, a systematic way to improve the MA approxi-
mation is to keep all free propagators with small n exactly.
Let us call MA�n� the approximation where, in all proper
self-energy diagrams, all free propagatorsG0�k;!�m��,
with m> n, are momentum averaged (because they decay
fastest with the distance ji� jj), whereas the ones with
m � n phonons are kept exactly. The resulting self-
energies can still be calculated exactly (details will be
presented elsewhere [4]). For example, for the Holstein
polaron we find

 �MA�1� �!� �
g2 �g0� ~!�

1� g2 �g0� ~!��A2�!� � A1�!���	
; (2)

where ~! � !����MA�!���. Since �g0�!� is imagi-
nary for �2dt � ! � 2dt, it follows that �MA�1� �!� first
acquires a finite imaginary part (i.e., it predicts a contin-
uum) when ~!>�2dt, i.e., at an energy EMA

GS ��. This is
slightly larger than EMA�1�

GS ��, because MA�1� is more
accurate than MA. For the MA�2� and higher levels, the
gap to the first continuum is �, as expected. This is shown
in Figs. 1(a) and 1(b). As argued in Ref. [3], within MA the
discrete states account for the continuum’s weight.

For the Holstein Hamiltonian, for n 
 2 the self-energy
�MA�n� �k;!� has explicit momentum dependence, since the
second-order diagrams, which are momentum-dependent,
are now summed exactly. The accuracy is systematically
improved with increasing n, as shown in Figs. 1(c) and 1(d)

for one dimension and � � 0:1t (here MA compared
worst against available numerics [3]). More results will
be shown elsewhere [4]. The improved accuracy is re-
flected by the sum rules as well. For example, MA�1�

satisfies exactly sum rules up to n � 7 and is more accurate
than MA for higher order sum rules, since the diagrams are
more accurate [3]. On the other hand, the evaluation of
these self-energies becomes more involved as n increases,
although MA�2� is still numerically trivial [4] (we do not
show the expressions here for lack of space).

Finally, the MA approximations can be generalized to
models with a phonon momentum-dependent coupling
g�q�. In this case, even �MA�k;!� is momentum-
dependent [4]. These results will hopefully end claims
that MA is just some ‘‘poor version’’ of dynamical mean-
field theory. In fact, the MAs are a hierarchy of simple
approximations that allow one to systematically improve
accuracy in obtaining dressed particles’ Green’s functions.
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FIG. 1 (color online). (a) Spectral weight A�0; !� in 1D, for
t � 1, � � 0:5t, � � 0:01t, and ��g2=�2dt��0:6. The curves
have been shifted for clarity. (b) Same as (a), for � � 1:1;
(c),(d) are polaron ground-state energy and quasiparticle weight
vs �, respectively, for t � 1, � � 0:1t. Quantum Monte Carlo
simulations (QMC) results shown as circles are from Ref. [5].
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