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We report the results of a Monte Carlo study of a modelltfMn)V diluted magnetic semiconductors
which uses an impurity band description of carriers coupled to localized Mn spins and is applicable for carrier
densities below and around the metal-insulator transition. In agreement with mean-field studies, we find a
transition to a ferromagnetic phase at low temperatures. We compare our results for the magnetic properties
with the mean-field approximation, as well as with experiments, and find favorable qualitative agreement with
the latter. The local Mn magnetization below the Curie temperature is found to be spatially inhomogeneous,
and strongly correlated with the local carrier charge density at the Mn sites. The model contains fermions and
classical spins, and hence we introduce a perturbative Monte Carlo scheme to increase the speed of our

simulations.
DOI: 10.1103/PhysRevB.66.045207 PACS nuni®er75.50.Pp, 02.70.Uu, 05.10.Ln
[. INTRODUCTION prehensively at the mean-field level, and the magnetic prop-

erties were observed to have a number of surprising

l1I-V diluted magnetic semiconducto®MS’s) have be-  properties.® The mean-field magnetization curves have very
come a very active area of research due to their interestingnusual, concave upward shapes, unlike the magnetization
magnetic and transport propertlesThus far Ga_,Mn,As  curves of conventional ferromagnets. Some of these features
has received the greatest amount of attention, due to the obhave been seen in experimental measurements, especially for
servation that it becomes ferromagnetic with a Curie temsamples with a low carrier density and a high degree of
perature as high as 110 K, wher: 0.053%% More recently, compensatioi’ This unusual shape of the magnetization
ferromagnetism above room temperature has been observedrves was identified to be a direct effect of positional dis-
in (Ga,MnN.>® order of the Mn ion$.

The observed ferromagnetism is widely accepted to be The mean-field calculation suggested that there is consid-
due to a charge-carrier-mediated coupling between the Merable inhomogeneity in the magnetization of individual Mn
spins. Several models have been proposed to explain the dspins at temperatures beldWy, particularly for small values
tailed phenomenology of these compoufd¥.In particular,  of x. Experimentally, disorder appears to be relevant even in
we have initiated an effort to understand the effects of disorthe metallic phase—Barkhausen jumps were observed in a
der in Mn positions on the properties of thesesample withx=0.04732indicating the presence of frozen-in
compound<:22°-2" An additional source of disorder is the magnetic disorder. Theoretically, disorder has also been cred-
large degree of compensation seen in these materials, whidted as leading to an instability in collinear Mn ground states
has been attributed to As antisite deféCtbecause of which  in the metallic phas&"??via spin waves, which can lead to a
the carrier density isignificantlyless than the Mn density. reduction in the saturation magnetization at low temperatures

To this end, we study the low Mn concentration regimeas observed in annealed samples with0.05%
near and below the metal-insulator transitigviT) at x Increased disorder was also shown to lead to an increased
=0.035, where disorder effects would be expected to be thealue of the critical temperatufE; in the mean-field study.
most pronounced. In this limit, we model the charge carrierdt is well known that the mean-field approximation underes-
in terms of an impurity band comprised of states around eactimates the effect of thermal fluctuations and therefore over-
Mn acceptor, which is taken to be the source of charge carestimates the value of the critical temperature. As a result, it
riers mediating ferromagnetism. Evidence of the relevance a important to check the mean-field results against Monte
an impurity band has been provided by a number of recenCarlo simulations which properly account for thermal fluc-
experiments, such as scanning tunneling microscope %tudytuations, to test to what extent the phenomenology found in
which showed the existence of an impurity band(®a, the mean-field study is maintained when these fluctuations
Mn)As samples withk=0.005-0.06. Angle-resolved photo- are included.
emission spectroscopy in a sample witkr 0.035 has also In this paper, we report the results of such a Monte Carlo
revealed a well-formed impurity band, and confirmed thatstudy. We find that the magnetization curves retain their un-
the Fermi energy lies in its vicinit? usual shape even when thermal fluctuations are included and

A complete, detailed description of the impurity band in that, as expected, the critical temperature is lowered from the
the presence of compensating defects is an extremely diffmean-field value. The extent of this decrease is most pro-
cult enterprisé® hence we have proposed a simple effectivenounced for low values of and for high compensation. The
Hamiltonian that capture@t least qualitativelythe relevant  observation that disorder can lead to a higher critical tem-
impurity band physics. This Hamiltonian was studied com-perature than a purely ordered cage also confirmed, al-
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though the change is more modest than in the mean-fieldlectron formalism for the charge carriecg, is the creation
study. The spatial inhomogeneity observed in the mean-fieldperator for a carrier with spier in the bound state associ-
studie§ is confirmed and found to be little changed by ther-ated with theith impurity. The hopping matrix is given by
mal fluctuations. A correlation between regions of larger lo-t;; =t(|R;~R;[), where t(r)=2(1+r/ag)e ""2Ry*® and
cal charge density and larger local magnetization is also eshe RydbergRYy) is the binding energy of a hole. We assume
tablished. that the Mn spins are strongly localized and hence the ex-
This paper is organized in the following manner: in Sec. llchange integral is given by;; =J0|¢ij|2=30e*2lRi*Rj|/aB,
we describe the model Hamiltonian and the values chosewhich is proportional to the charge density at tkie Mn site
for various parameters of the system. We also discuss the ugg the carrier in the hydrogenic wave function around jttre
of finite-size scaling to determine the ferromagnetic transivin site. The external magnetic field is given by, the
tion and describe the quantities that we calculate. In Sec. “'Land'eg factors for the Mn spins and carriers ajand g*
we introduce a perturbative scheme to speed up the Montgsspectively, angg is the Bohr magneton. Our simulations
Carlo simulations, describe our implementation, and discusgre for a zero magnetic field.
testing on a toy model for which we can compare with exact \we consider finite-size cubic samples withcubic unit
results. We present the results of our Monte Carlo simulagells of the GaAs structure per side, with periodic boundary
tions for the impurity band model of DMS's in Secs. IV and ¢onditions, andNy Mn impurities. Thusx is given by
V. Section VI summarizes our conclusions, and discusses tth/(4|_3), and is related to the concentration of Mn impuri-
implications of our results for experiments and modelling Oftiesn,,, throughny,,= 4x/a3, wherea=5.65 A is the GaAs
l1l-V DMS’s. lattice constant. The number of carriersNg=pNy, with p
between 0.1 and 0.3, as indicated by experimental studies of
Il. MODEL samples grown by molecular-beam epitdky® As men-
tioned previously, these low values pfare due to compen-
sation processes, in which As antisites are believed to play an
When manganese is introduced into GaAs, the Mn impuimportant role'®
rities have been shown to substitute on the Ga fcc sublattice The only difference between our model and that in Refs. 7
of the zinc-blende structure of the undoped semiconductoand 8 is that instead of studying spinMn spins, we treat
for small values ofx.**% However, at larger values of the Mn spins as classical Heisenberg vector spins. This
(=0.07), Mn ions can form MnAs clusters, which have ashould be a reasonable approximation siBee5/2 is a large
NiAs structurel*~*® Based on these experimental findings, spin and a quantum Monte Carlo calculation would not gain
we assume a zinc-blende structure and Mn substituting onlyhuch due to the uncertainties in the materials parameters.
on Ga sites for the low Mn concetrations we study. Each Mr{At the mean-field level, this approximation has the effect of
impurity has a spirg from its half-filled 3d shell. The nomi-  |owering T, by a factor of L+ (1/S) relative to theT, for
nal valence Il of Mn implies that, when it substitutes for the quantum sping.One quantity which differs significantly with
valence-lll Ga, it acts as an acceptor. Thus an isolated Meglassical spins is the specific heat at low temperatt}&s,
can bind a hole in an impurity level that we characterize by ayhich we have not studied.
hydrogenic orbital with a Bohr radiusg, with wave func- The values we use for numerical parameters age
tion ¢;(r)~exd —|r —Rj|/ag]. In Mn-doped GaAs there are =7.8 A, 1 Ry= 112.4 meV, and,=15 meV, as discussed
substantial central cell correctiofisvhich we phenomeno- in Ref. 8. With these parameters we have an impurity band
logically incorporate by adjusting the Bohr radiag. whose bottom lies around 200—300 m&~3 Ry) below the
While the true carriers in this system are holes with spinhost conduction band and the Fermi energy varies from
3, we consider the case of electron doping, so the carrier spiground 13-55 me\{depending orx and p) above the bot-
is 3. This leads to some differencésin particular, the frus-  tom of the impurity band for the parameter range considered.
tration effects recently claimed for hole dopffigire absent These values are of the same order of magnitude as the ob-
in our mode). However, the effects of disorder and impurity served splitting and bandwidth of the impurity band in angle
potentials, which are our main focus here, should not beesolved photoemission experimeft©ur goal in this work
qualitatively changed?® The carriers(electrons are then in  is partly to understand the deviations from mean-field theory
an impurity band below the conduction band minimum of thein the model of Eq.(1); therefore, we also perform mean-

A. Hamiltonian

host semiconductor. field calculations using Langevin functions to represent the
We study the model introduced by Berciu and BR&ttor  polarization of classical spinén the quantum case one uses
which the Hamiltonian is Brillouin functions, with which we compare our Monte

Carlo results.

1
H=2 tijcl,Cjpt 2 JiJS'(CJTaE‘TaﬁCJB> . .
b b B. Method of simulation

. i1 Consider a system with classical spin degrees of freedom
-9 “BH‘Z Ciai"aﬁciﬁ_gf“BH'Z S. () and fermionic degrees of freedom, such as described by
Hamiltonian (1). The assumption of classical spins means

The random positions of the Mn impurities are labeled bythat one can parametrize the spin at each site by dsm-

R;, and the spin of the Mn impurity aR; is S;. In the  ponent and azimuthal angle, i.&=(S/,¢;), and
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z2

S‘=S/1— 2_2003¢i , (2
S

§=S\/1- gsin ;. (3)

For any given configuration of classical spig§}={S?, ¢},
Hamiltonian(1) can be diagonalized to give

H({S,al,anb:; E.({S% ¢}ala,, (4)

where the states are a diagonal basis and

=2 dnoli)Cly =2 di,)c, ()

are linear combinations of the, andc;, operators. Here
Une(1) is the eigenfunction for thath energy level at sité

for spin o. Using the grand-canonical ensemble, the partition

function is

Nd

z

i oo

X S S e B ElSH-wn ()

n;=0,1 nNO:O,l

wheren,=0,1 is the occupation number of levelthere are
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f(En)= (11)

efEn—m) 4 1

is the Fermi distribution function an.) is the expectation
value for the number of carriers.

Equations(8) and(9) imply that we can use Monte Carlo
techniques to evaluate various thermodynamic quantities, ex-
cept that we must use the carrier free energy rather than the
internal energy in the Metropolis algorithm. An important
point to note is that since the calculation is in the grand
canonical ensemble, both the temperature and chemical po-
tential must be kept fixeduring the simulation. This differs
from a recent Monte Carlo stufin which N, was held
constant at each Monte Carlo step by varymgather than
holding it constant, in our simulations we hgbdand n fixed
for each run and then we average over disorder using
samples with equalN,), since we wish to average samples
which have the same andp.

C. Magnetic and thermodynamic quantities

Our Monte Carlo simulations allow us to compute various
magnetic and thermodynamic quantities after equilibration.
We perform equilibrium thermal averagdidicated by
(...)) for each sampldrealization of disordered Hamil-
tonian and then average over many different realizations of
disorder.(The disorder average is indicated by an overbar

--). We collect data for both globdbulk) and local quan-
tities. We first consider the global quantities we study. We
compute the moments of the average magnetization per Mn

No=2Ngq levels, and=1/(kgT) is the inverse temperature. spin, M9, and the average magnetization per carmeft, at
Summing over fermion degrees of freedom leads to the resuiach Monte Carlo step, where thth moments are given by

Nd
Z:

f dszf d(f’l [T (1+e AlEUS oD —uly,
(7

VI sl

This can be cast in a similar form to that used for a spin-only

system
Ng

1L [ a5, 0s

where the carrier free energ¥.({S% ¢}) for a given con-
figuration of classical spins is

Z: e ch({sz ‘/5}) (8)

No
F({S o)) =— E 21 log(1+ e—ﬁ[En({SZ,aﬁ})—M]). (9)

The chemical potentigk is determined from the condition

<Nc>: logZ,

a
«9(/3 )

f dazf d¢.}2 f(Ep)e ATelSien,

(10

where

T
M SN , (12
[ q
1 |i§a:,8 CiTaO-aBCiB| 2
a—=\ — '
m 5 N, . (13

In the above equatioB= 3. The average spin per My, ,
and the average fermion spis, are thus

=(M),

Note that with our definitionSy, is normalized, i.e., for a
fully polarized spin state y3,=1. The negative sign for the
fermion magnetization is due to the antiferromagnetic inter-
actions between Mn spins and carriers which leads to oppo-
sitely oriented polarizations. The Mn susceptibility is given

by

s.=—(m). (14)

= BL(MZ)—=(M)?], (15
while the carrier susceptibility is
xn=BL(m?)—(m)?]. (16)
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For each measured quantity, we calculate the statistical erroms a similar spirit to the HMC algorithm that we describe

in the conventional manner from the variance. One of thebelow.

limitations of studying a magnetic model on small lattices, as We select a spin, at siieand allow it to perform a small

we are forced to do here, is that it is not easy to identify therotation:

position of a thermodynamic transition from considering ;2 .

guantities such as the magnetization. However, from finite- S—S+4S, (20

size scaling theory, quantities that are dimensionless are par-

ticularly useful to identify the transition temperature. One bi— bit o, @D

such quantity, known as the Binder cumulant, is given by where §S'e[—\/2\/2] and 8¢;e[—\mw,\7] are re-
stricted to a small region on the surface of the unit sphere
(A<1), in a way that leads to uniform sampling. We use

. (17 perturbation theory to compute the change in the carrier
eigenenergies due to the rotation of the spin atisite

G(L,T), which measures the ratio of the fourth moment to z z

the square of the second moment of the magnetization for a En{S', ¢ —EaiS" d1) + OB, 22
finite system, is defined such that in the paramagnetic phasghere

G(L,T) decreases with, and tends to zero ds—c, while 1

in the ferromagrjetl_c phase it increases Wl_th_lncreasmglsme 5En=§ 5S- Z Jij > Wk o) G apthng(i). (23

and tends to unity in the thermodynamic limit. Near the tran- ] ap

sition temperatureT;, being dimensionless, has the finite- pq 54 result,5E,~O()), and therefore perturbation theory is
size scaling formG(L,T)=G[LY(T—T,)],*****where v essentially exact 850,

is the exponent of the diverging spin-spin .co.rrelation length  \we now use Eq(9) to compute the change in the carrier
¢~(T—-Tc) " Consequently, al,G(L,T,) is independent  free energy associated with the spin rotation, and the Me-
of L;T. can be identified by a simultaneous crossing ofiropolis criterion to decide whether to accept the spin rota-
G(L,T) vs T curves for different.. BecauseS is dimension-  tion, We perform such an update for each spin in the system
less, and depends only on the ratit¢, rather than bot. ysing the perturbation scheme. After a complete sweep
and{, this method is found to be more reliable in determin-tnrough the system, we compute the eigenenergiesind

ing T, than analysis of the onset of magnetization, or peakgjgenfunctionsy, (i) corresponding to the new spin configu-

(M%)
(m2)?

1
G(L,T)= 5{5—3

in the magnetic susceptibility in finite sized samples. _ration using exact diagonalization, and start a new Monte
Local quantities we calculate are the local charge density:ario sweep. We found that this approach was quicker than if
at each Mn site, we diagonalized after every spin flip, generally by a factor of
3-4.
_ 2/t
pi_jZ(, |1 1%(C/oCi)s (18) A. Chemical potential

and the local magnetization, which we define to be the aver- One important issue is the choice of the chemical poten-

age projection of the spin at siteon the total magnetization tial p for the deswe_d average ngmber of gharge carriers,
M- (N¢)=Np. To determine the chemical potential we consider

two replicas of the system, one starting from a fully polar-
Mlocal— (5 ). (19 ized (ferromagnetit configuration, the other a purely ran-
: dom (paramagnetic configuration. After every few Monte
We are interested in the individual distributio®p;) and  Carlo(MC) steps(in practice five MC steps worked wglve

P(MP and the joint distributiorP;(p; ,M'° to charac- USe the condition
terize the local environment at different Mn sites. 1

Ny= (24)

n eB(Enfﬂ)_Fl’

Ill. PERTURBATIVE MONTE CARLO (PMC) METHOD

o . . to update the value ok for each replica. When the magne-
n pr”?c'p'e’ to perform qute Carlo simulations on a tization M and chemical potential of each replica agree to

model with fermion and classical degrees of freedom, on ithin 2%, we continue to calculate the chemical potential

needs to d‘!ag_ona_llz"e the fermpn part Of. the H_am_lltonlanror each replica after every five Monte Carlo steps, but their
after each “spin flip” (more precisely a spin rotatigni.e., ics are determined by the mean chemical potem_itial

another choice of the classical variable. This leads to eigerynami

values which are used to compute the change in the carrigfiS @verage chemical potential is free to vary up until some
free energyF.({S% ¢}). This is computationally time con- eqwl@ratlon time, and then the chemical potential is fixed as
suming, and hence one would prefer a quicker, approximate = () Where the average is over the time during the equili-
method which is still reasonably accurate. One such apbration period for whichw is used to calculate the carrier
proach is the hybrid Monte CarltHMC) algorithm used free energy. The equilibration time used depended on the
recently on the DMS problertf and also on the double ex- temperaturex andp, but was generally between 20000 and
change modéel? We have developed an algorithm that works 40000 Monte Carlo steps(The magnetization generally

045207-4



MONTE CARLO SIMULATIONS OF AN IMPURITY-BAND.. .. PHYSICAL REVIEW B66, 045207 (2002

equilibrated within 2000 Monte Carlo steps, while the re- I T T
mainder of the equilibration was required to obtain an accu- : e Monte Carlo
rate value of the chemical potentjal’he fixed chemical po- : — Exact Solution
tential is used for the remainder of the run, during which data
is collected. We typically use 20000—40000 Monte Carlo
steps to collect data. This procedure was found to obtain
chemical potential that yielded values(®.) for the sample . [
that were generally within 2% dfl, (not surprisingly it was %0-6:‘
found to be more effective in larger samples where the rela-
tive sizes of the fluctuations are correspondingly smaller

In several other studies of models with fermions coupled ,f
to sping>*®**the electron occupation numbers have been |
taken to be those correspondingTe-0 (i.e., the Fermi dis-
tribution is replaced by a Heaviside distributjorin our ;
simulations, we allow the filling to change as a function of 02——ggr ——————* 1
temperature(i.e., we do not assume degenerate elecjrons ™
We_do, however, ftruncate the n_umber of states we include— FIG. 1. Comparison of the exact resdine) and Monte Carlo
their number varies as a function of temperature, such thar‘ésults(points} for the magnetization of the toy model, for=J,

States of high energ_y Whi(_;h_ have T0or lower filling are N=20 andN,=3. 40000 Monte Carlo steps were used to generate
discardedthe cutoff is sufficiently small that the results are he Mc results.

not sensitive to its valye

tribution to the systematic error from our approach, but we
choose\ to be small(generallya <0.03), so that this error

B. Testing the PMC algorithm :
g 9 has little effect on our results.

We tested our perturbative Monte Carlo PMC algorithm
on a simple model of fermions coupled to classical spins
which admits an exact solution. The Hamiltonian, shown be- IV. RESULTS: GLOBAL QUANTITIES
low in Eq. (25), corresponds to fermions hopping along a  fqyr different values ok and p were chosen for the
one-dimensional chain wit sites and periodic boundary \onte Carlo study, representative of the concentrations and

conditions. At every lattice sitg there is a classical sp,  compensation seen in the experimental materials. These were
and the fermions are equally strongly coupled to all spins 0% =0.01,p=0.1; x=0.01,p=0.3; x=0.03,p=0.1; and x
the chain. The model Hamiltonian is thus =0.03,p=0.3. Note that using Mott's criterion as in Ref. 8,

thex=0.01,p=0.1 sample is in the insulating phase, while
3 1 the remainder of the cases considered are somewhere on the
H=t el cigt = , ¢l o4 (25 metallic side of the MIT. In the case of the most metallic
<i%a 7N EI 3 i%ﬁ Jag T apIp samplex=0.03,p=0.3 it may be inappropriate to neglect
the host band states for a quantitative description of the mag-

. . . netic properties, but we have also included this within the
where energy is measured in unitstef1 and only nearest-

neighbor hopping is allowed. Note that the exchange scales
as J/N to ensure an extensive energy. The eigenvalues fol
this model can be calculated exactly as discussed in the Ap
pendix. Exact results for any number of classical sphs,
andN,, fermions can be calculated, particularly for the mag- , o.1f
netization per spinS the Binder cumulantG(L) and the i
fermion magnetizatios, . A comparison of the exact results
for S(T) and those calculated using the PMC algorithm are
shown in Fig. 1 fort=J, N=20, N,=3 and using 40 000
Monte Carlo steps.

In Fig. 2 we plot the relative error in the fermion magne-
tization against the number of Monte Carlo stépsfor the
same parameters used for Fig. 1Td)=0.0064 where the
magnetization is about 0.5. At long times the convergence L L L
is of the formt~'2 wheret is the number of Monte Carlo 1000 19000 Le+05 1e+06

. . o. of Monte Carlo steps
steps, as expected for Monte Carlo simulations. We have also
made a comparison between the PMC method and diagonal- FIG. 2. Convergence of the fermion magnetization for a toy
ization after every spin rotation for the model of DMS'’s that model with the same parameters as in Fig. 1, at termperaitie
we are really interested {iEq. (1)], which gave agreement to =0.0064. The straight line has a\t/dependence, whetteis the
within the 2% statistical error bars. There is also some conaumber of Monte Carlo steps.

Relative error in s

0011
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TABLE |. Sample sizes considered for different values xof o7 T T T T 1
andp.
X p L Ny Np, Case 0.1
0.01 0.1 11 53 5 Al
12 69 7 A2 021
14 110 1 A3 e
0.01 0.3 1 53 16 B1 R
12 69 21 B2 '
0.03 0.1 7 41 4 C1 A—AX=8'8},P=8~; 1
v—vx=001,p=03] |
8 61 6 c2 041 Gc—ox=0.03p=0.1
0.03 0.3 7 41 12 D1 o—ex=003,p=03|
8 61 18 D2 Za s
-0.5% 8 L s | s | L | L 1 L 1
0 0.1 02 0.3 0.4 0.5 0.6 0.7
7

context of an impurity band model for comparison with the
other cases.

We carried out simulations on lattices of linear size be—caieo'gg x:g.gl, p_do'l)’ Cgi;_BOZS(; ofé’sp_o's)’ case C2
tweenL=7 and 14, which contained between 40 and 110X~ 0-03,p=0.1), and case D2(=0.03,p=0.3).
Mn spins and between 4 and 21 carriers. The sizes that wefgx have similar numerical values, although the curve xor
considered and their labels are tabulated in Table I. We av=0.01, p=0.3 appears to have a low&. The most impor-
eraged up to 700 samples per data point, depending on thant feature is the unusual shape of the magnetization curves.
size and temperature. Typically at least 30—40 samples werehe magnetization decreases rapidly from full polarization at
averaged for each data point. In this section we present our=Q, leading to linear or concave upward shapes, similar to
results for global quantities such as the magnetization, théhose found in the mean field approximati§rand for insu-
Binder cumulan{to determin€T) and the magnetic suscep- |ating II-VI DMS’s,*®*! and very unlike the strongly convex
tibility. We also present our results comparing ordered andjpward magnetization curves seen in conventional ferromag-
disordered samples. We focus on local quantities in Sec. Vnets such as irof(.

The carrier magnetizations,(T) for the same sizes
A. Magnetization shown in Fig. 3 are shown in Fig. 4. The curves mirror the

In Fig. 3 we plot the average magnetization per Mn Spinfeature of the Mn magnetizations that increastrandp lead

: . 'to greater polarization at higher temperatures—there is also a
Sun(T), as a function of temperature for all four combina- A
.M”( ) . P Oclearer distinction between curves for B2 and C2, where

=0.01,p=0.3 polarizes at noticeably lower temperatures
thanx=0.03,p=0.1. One major difference from the results
of the mean field study is that the curves for the carrier
cmagnetizations appear to be much more like the Mn magne-
tization curves, whereas in the mean-field sfiftipe carrier
— curves _remained glmost fully polarized unTHyvas closg to

2 Ax=00L,p=01] | Tc. This feature is in closer agreement with experiments
v—vx=00Lp=03 than the mean-field resufts.

6—©x=0.03,p=0.1
o0x=003,p=03 |

FIG. 4. Carrier magnetization as a function of temperature for

Mn spins in each casghus finite size effects are similar in
all four curves. Clearly, the critical temperaturel, in-

creases with increasing and p. The magnetization curves
for cases B2 and C2, which have the same hole concentrati

B. Critical temperature

We use the Binder cumulant curvegL,T) [see Eq(17)]
to identify the critical temperaturé&, for each carrier and
Mn concentration. As described in Sec. Il G, is indicated
by the simultaneous intersection @{L,T) curves for suffi-
ciently large sizesl.. Figure 5 shows th&(L,T) curve for
x=0.03 andp=0.3 for both sample size®1 and D2 of
Table |) over a wide temperature rang€/J=0.02-0.6). As
expecteds(L,T) decreases with increasing sizet high, T
whereas the reverse is true at IGwAt the transition tem-

0 0.1 0.2 03 0 04 05 0.6 0.7 peratureT.,G(L,T) is expected to be independent bf
which is indicated by the crossing point of the two curves,
FIG. 3. Mn magnetization as a function of temperatimermal-  implying T./J=0.45. The solid curves are spline fits to the
ized to saturation for case A2 §=0.01, p=0.1), case B2 X data appropriately weighted by the error bars.
=0.01, p=0.3), case C2 X=0.03, p=0.1), and case D2x( Figures 6—8 show th&(L,T) data for the other three
=0.03,p=0.3). concentrations studied, each in the vicinity of the crossing

045207-6



MONTE CARLO SIMULATIONS OF AN IMPURITY-BAND.. .. PHYSICAL REVIEW B66, 045207 (2002

1 L A B — T 0.8 ' ' ' ' ]
0ol maN, =41 N, =12] | o N,=4,N,=4
ol e-oN, =61, N, = 18] ; 07 e N,=61,N =6
0.7 — 0.6
0.6 — .
= o5t
- 0.5 - =
S ]
0.4 — 0.4
03 .
- 03|
02| —
0.1 . 02|
I . | . I . I . I . I . I ] E L 1 L 1 | . '
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FIG. 5. Binder cumulant as a function of temperature for FIG. 7. Binder cumulant as a function of temperature Xor
=0.03, p=0.3. The data shown are for cases D44€41, N,  =0.03,p=0.1. The data shown are for CN¢=41, N,=4) and
=12) and D2 Ny=61, N,=18). C2 (Ng=61,N,=6). The curves for each size are obtained from a

nonlinear curve fit using the entire temperature range. Up to 700

. samples were averaged for the data shown.
point. Several hundred samples were generally averaged for P g

each data point as indicated in the figure captidiee solid

curves are spline fits to the data over the entire temperaturd his, in turn, necessitates calculation®@(L,T) to high pre-
range studiedtypically T/T.=0-3). For the one case where Ccision, which requires long runs and averaging over many
we studied more than two system sizes=0.01,p=0.1), samples. Despite these drawbacks, we f8({d.,T) to be a
which we exhibit in Fig. 6, all curves are consistent with amore reliable estimator df than, e.g., peaks i(T) for the
single intersection point, although a small size dependend@rgest size studied. Based on Figs. 5-8, we estimatas
cannot be ruled odf Such a dependence would representshown in Table II.

corrections to finite-size scaling, arising from the relatively In Table Il we compare the Curie temperatdig as de-
small sizes of the samples studi€d@ihe effective linear size termined in the Monte Carlo simulations here with the results
of the spin system i8l}3, which varies from 3.4 to 5 The  of the mean-field approximation using Langevin functions
small sizes, necessitated by the need to repeatedly diagon&®r classical vector spins. As expected, the mean-field ap-
ize the fermion Hamiltonian, also limited the dynamic rangeProximation overestimate$.. While the reduction due to
available in our study. Because of this, the curves for thdluctuations is only about 20% for the largesindp studied,

sizes studied do not splay out very dramatically arolipd it can be much more significarta factor of 5 or morgat
densities at and below the metal-insulator transition density.

: : : , : ,
o N,=53,N, =5 [ ' ' ' ' ' ' ' ]
081 A N;=69,N =7 |7] o N,=53,N, =16
e N;=110,N,=11] | 08l o N,=69,N, =21|-
07\
~ 0.6}
’J o~~~
6/0.6 - g
2
6]
0.5 0.4
0.4
- | | . 02}
0.02 0.03 0.04 0.05 0.06 . . | |
iy 0.1 015 0.2 025

T3
FIG. 6. Binder cumulant as a function of temperature Xor

=0.01, p=0.1. The data shown are for cases Al E53, N, FIG. 8. Binder cumulant as a function of temperature Xor
=5),A2 (Ng=69,N,,=7) and A3 Nq=110,N,=14). The curves =0.01, p=0.3. The data shown are foty3=53, N,=16 andNy

for each size are obtained from a nonlinear curve fit using the entire= 69, N,,=21. The curves for each size are obtained from a nonlin-
temperature range. ear curve fit using the entire temperature range.
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TABLE II. Comparison of T, determined using Monte Carlo

0.01F -
(T™C) and mean-field TMF), methods. A—Ax=001,p=0.1
w—vx=0.01,p=0.3] 1
MC MC/—MF / G—ox=0.03,p=0.1
X p T3 Te 1T . 0.008 ] o—0x=003,p=03|]
0.01 0.1 0.03%0.004 0.14 3_“5
0.01 0.3 0.120.04 0.48 £.0.006 -
0.03 0.1 0.16:0.02 0.37 §
0.03 0.3 0.4%0.03 0.82 E 0,004 |
&
(We mention in passing that results in the mean-field ap- ooz}
proximation for quantum spins using Brillouin functions are
higher than for classical spins by 60—80.%
Since there are many models for DMS'’s which are solved 0 0.1 0.2 03 0.4 0.5 0.6
at the mean-field level, having an understanding of the be- T

havior of these models when fluctuations are considered is g\ 10. carrier susceptibility per carrier as a function of tem-
very important if one wants to make quantitative fits to dataperature for for case A2x=0.01, p=0.1), case B2 X=0.01,
For a model where Mn ions interact with carriers in an un-p—0.3), case C2 x=0.03, p=0.1), and case D2 xE0.03,
perturbed host band, a similar reductionTigwas found in  p=0.3).
Monte Carlo simulation$®> One important difference be-

tween the results here and those found in Ref. 13, however,

is that here mean-field theory becomes more accurate with ~
increasing carrier concentration at a givenwhereas the X n(gug)?S?
opposite appears to be the case in that model.

The Monte Carlo simulations show clearly a strong de-for classical spingthe factor ofS? is replaced byS(S+1)
crease ofT, at low carrier density [§x), in agreement with ~ for quantum spins We have investigated the behavior of the
experiment, and rectify the unphysically larfigobtained in  inverse susceptibility in the temperature rangé
the position dependent mean-field treatment in this limit.=2T.—6T., and found that the effective spirS
From Table Il it appears clear that the main dependende of =(1.6—1.7)5, which suggests spin clustefgolarons exist
comes from the carrier densitpx), with a relatively weaker in the system well abové. Fitting data close td (T, to
dependence orx(p). 2T.), [Eq. (26)] give S;~2S, implying a significant en-
hancement of the Curie constant over the highalue. An
even larger enhancement has been sedGaMnP:C*®

T

1 3kgT ( 0)
(26)

C. Magnetic susceptibility

The Mn and carrier susceptibilitig€qgs. (15 and (16)]
are shown in Figs. 9 and 10 respectively, as a function of
temperature, for the same sizes and dopings that were used One of the major results of the mean-field study was that
for Mn and carrier magnetizations in Figs. 3 and 4. At highsamples with maximal disorder in the position of Mn spins
temperatures, well abovE,, one expects were found to have a highef. than those with less
disorder’ This was explained as being due to carriers being
L L able to lower their total energy more in regions with higher

D. Effects of disorder

0.1 AAx=001,p=0.1|- Mn density, by polarizing Mn spins and then hopping be-
v—vx=00Lp=03 |  tween these sites. However, it is expected that the mean-field
oosh G.:.o’;zgzgg’gzgé | factorization, which assumes that the carrier spin is either
o ] ’ directed parallel or antiparallel to the overall magnetization,
% tends to align “islands” that might not otherwise be aligned
E,0.06 until lower temperatures. This would be more likely to lead
3 to a larger decrease i, for disordered samples when ther-
20'04 mal fluctuations are considered, since the global magnetiza-

tion aroundT . is more likely to be destroyed than in ordered
samples.

We have tested whether the finding of disorder enhancing
T. is robust, by investigating two different cases. The first is
for x=0.01,p=0.1, where we compared the weakly disor-
dered case and fully disordered case, and the second is for
x=0.03,p=0.3, where we compared the fully ordered case

FIG. 9. Mn susceptibility per Mn spin as a function of tempera- and the fully disordered case.
ture for for case A2X=0.01,p=0.1), case B2X=0.01,p=0.3), In both cases we observed that the more ordered sample
case C2%=0.03,p=0.1), and case D2x=0.03,p=0.3). had a lowerT;. However, the enhancement is much smaller

0.02
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1 | . | . T . T . 0.06 —— T T
09k o Ny=64,N, =7 | | | — Monte Carlo
I e N,=125N, =13| 1 0.05F | - Mean field _
0.8 .
0.7f T in disordered case -
I ¢ 0.04 .
0.6_— — ,.\9:
= osk . 20.03F 4
5051 E
041 . & ;
I 0.02 | i
031 . HE
02r ] 001} \ 4
0.1 - L ;)
I 1 o L 1 ! LIE\
L L L L L 1 . 1 . BEZ dapiry Ll11l 1 L1 11111 1 L1 11111 L1111 o | 1
% 0.02 0.04 0.06 0.08 0.1 o0 0.001 0.01 . 01 1
T/J Local charge density (p))
FIG. 11. Binder cumulant fox=0.01, p=0.1 for the mildly FIG. 13. Histogram of local charge densities calculated using

disordered case, shown fbly=64, N,=7 andN4= 125, N,=13. the Monte Carlo method fok=0.01, p=0.1, Nyj=110, andN,
=11 (solid line), and the corresponding distribution calculated us-
uipg mean-field theory and Brillouin functioriRef. 8. The tempera-

than obtained within the mean-field treatment, as the arg :
ture isT/J=0.01 (T./J=0.037)).

ments given above would suggest.

For x=0.01,p=0.1, we determined the value df./J ,
~0.037 for the fully disordered case. We define mild disor-th€ completely ordered case witdy=64, Ny=19. Thex
der to correspond to the situation where Mn spins are chose®dp value were chosen since they give the largesand it
to be displaced from a fully ordered Mn lattice to one of thewas hoped that the effects would be more noticeable. It is
12 nearest_neighbor Sites on the fCC Sub'attice_ We Considllear that even When thel’ma| f|uctuati0ns are inCIUded, the
ered Nyg=64,N,=7 andN4=125,N,=13, and then used More ordered sample has a lower valueTpf (The magne-

the Binder cumulant to estimafe, . tization at highT is a finite-size effec}.
Note that the number of Mn spins in our simulations are
slightly different from those used for other cases, since an V. RESULTS: LOCAL QUANTITIES

ordered lattice of Mn needs to be commensurate with the
underlying lattice. While we do not have a particularly accu-
rate determination of ., it is clear in Fig. 11 that th&(L)
curves cross at a temperature well below Theof the dis-
ordered caseT(./J=0.037).

In Fig. 12 we compare the magnetization calculated for
x=0.03,p=0.3 with the completely random case D2 and In Fig. 13 we show a histogram of the local carrier charge
densitiesp; [see EQg.(18)] at all Mn sitesi, for x=0.01,
p=0.1 (case A3 and averaged over 89 samples at the tem-
peratureT/J=0.01, compared with the corresponding distri-
bution for x=0.0093,p=0.1 obtained using the mean-field
approximation with Brillouin functions close ta=02
Clearly the two distributions agree very well overall. The
two peaks of the histogram suggest two populations of Mn
sites. The peak agb;=0.7 is from sites which have a high
probability of trapping a carrier, while the broader peak at
much lower values op; is due to sites which have very little
probability of having a carrier on them. For these sit@s,
comes mainly through tailing from nearby sites that have a
high charge carrier densifysee Eq.(18)]. This shows that
the charge carriers reside primarily on sites where there is a
higher than average local Mn concentration, due to the
0 N strong interactions with these Mn spins. Because of the in-

0 0.1 02 %% 04 05 06 homogeneous charge distribution, spins of Mn atoms on sites
devoid of charge carriers have very small antiferromagnetic

FIG. 12. Magnetization fok=0.03, p=0.3 for the completely ~couplings to the charge carriers, and therefore remain essen-
disordered case, shown for DN{=61, N,=18) and the fully tially free down to low temperatures. This explains the un-
ordered cas®y=64, N,=19. usual shape of the magnetization curves.

We now discuss our results for various local quantities
such as the local magnetization and local charge densities for
various Mn and carrier concentrations.

A. Charge densities

@—a Disordered, Nd =61, Nll =18 |1
o Ordered, Nd =64, Nh =19

0.8~

0.6

Sy

04

021
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0.03 ——— ———
0.04 .
0.025| .
0.02 . 0.03 _
£0.015 . =
& & oot _
& -1
0.01f e
0.011 e
0.005| e
L 0wl L Ll ey S R A | 1 1 1 Uy e
0 0.01 0.1 0 0.1
Local charge density (p,) Local charge density (p,)
FIG. 14. Histogram of local charge densities for0.01, p FIG. 15. Histogram of local charge densities for=0.03, p
=0.3, Ny=69, andN,=21. The temperature i$/J=0.1 (T./J =0.1, Ng=41, andN,=4. The temperature i§/J=0.14 (T./J
~0.12). =0.16).

. . B. Local magnetizations
If we compare the histograms for the charge densities gnetizat

with the data obtained in the mean-field model, we notice We now consider the local magnetizations. In Fig. 17 we
two important features. First, the histogram is much less temshow a histogram of the local magnetizatioi§® [see Eq.
perature dependent fat<T,. This is probably because we (19)] at all Mn sitesi, for x=0.01,p=0.1,N4=110, and

are generally looking at lower-temperature scales than in thBlh=11 at three temperatures, one well beldw, one
mean-field case. Second, these distributions have larg&foundT /2 and one around /2. The number of samples
widths typical of highly disordered systems. This large widthto generate the histogram was 10T&=0.0053, 188 at
was first found in the mean-field case, and is the motivatiorf /J=0.02, and 58 aﬂ'/J:|0.0|6. At the lowest temperature,
for a simplified phenomenological model for DMS’s, basedthere is a peak at arourd***=0.7, and then a very broad
on a two-component pictufé.In this simplified model, one tail that stretches to Io_cal magnetizations th_at are antiparallel
can divide the Mn spins into strongly and weakly interactingto the overall magnetization. For intermediate temperatures

components depending on the temperature. This simplifief! =0-02J=Tc/2), there is evidence of two populations of

model has been shown to be adequate to reproduce the |Jf\él_n spins illustrated by the two peaks in the histogram, while

sults of the full distribution at the mean field level, and can or high temperaturesaboveT,), there is a peak centered

also explain experimental results on a qualitative b&sis. very close to zero Ipca! magnetization W'.th some weight for
.small local magnetizations. This is consistent with the two

In Fig. 14 we show a histogram of the total charge denS"(:omponent picture described in the section on the local
ties p; at all Mn sitesi, for x=0.01,p=0.3,Ny4=69, and
N,=21, and averaged over 41 samples at temperaflde 0.06
=0.1. The most noticeable change as the temperature is val
ied is that the height of the peak at largedecreases, cor-
responding to carriers becoming less localized at higher
temperatures.

In Fig. 15 and 16 we show the histogram of the total 004
electron charge densitigg at each Mn sitd, for x=0.03, -
p=0.1,Ny=41, andN,,=4 at a temperaturé/J=0.14, av-
eraged over 315 samples, and fo+ 0.03,p=0.3, Ny=41,
and N,=12 at a temperatur@/J=0.4, averaged over 76
samples(In both cases the temperatures are around 90% o
T..) Unlike the case of lowex, these distributions have only
one peak, however similarly to the lowrrcase, the distri- 0.01- T
bution is virtually independent of below T. -

Besides the change in the shape of the distribution, the Py S . s
width of the distribution is also significantly smaller at the 01 Local charge density (p) |
higher hole concentration. This is consistent with the obser- !
vation that the eigenstates at the Fermi energy are found to FIG. 16. Histogram of local charge densities for0.03, p
be delocalized ax=0.03, while they appear to be localized =0.3, Ny=41, andN,=12. The temperature i$/J=0.4 (T./J
atx=0.01’ ~0.45).

0.05- -

P(log,, (p)
(=3
3
T
|

0.02- -
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FIG. 17. Histogram of local magnetizations fer=0.01, p FIG. 19. Histogram of local magnetizations for=0.03, p
=0.1, Ng=110, andN,=11 at temperature§/J=0.0053, 0.02, =0.1,Ny=41, andN,=4 at temperature$/J=0.01, 0.033, 0.08,
and 0.06 T,/J=0.04). and 0.14 T./J=0.18).

charge distribution—at temperatures well beldwmost of  the former, with T./J=0.18 the data are foff/J=0.01,
the Mn spins are strongly coupled, leading to a peak and thep.033, 0.08, and 0.14, averaged over 49, 48, 48, and 334
to a tail of more weakly coupled spins. At intermediate tem-samples respectively, while for the latteF (J=0.45) we
peratures there are two comparable populations of weaklghow data fofT/J=0.04, 0.08, 0.19 and 0.40 averaged over
and strongly coupled Mn spins, while at high temperatureg 6, 22, 26, and 75, samples respectively.
the local magnetizations are all small and there is no long- At each temperature there is typically a peak with some
range magnetic order. breadth, but unlike the two cases witk=0.01, there is no
Figure 18 shows a similar histogram of the local magnedouble-peak structure seen. This can be understood as in-
tizationsM{°*@, for x=0.01,p=0.3,N4=69, andN,=21 at  creasingx leading to smaller relative density variations for
temperature§/J=0.01, 0.033, 0.06, and 0.08 averaged overthe Mn spins, and hence smaller fluctuations in the range of
12, 20, 70, and 106 samples respectively. The feature of twibcal environments, resulting in narrower distributions for
populations of Mn spins also appears to be present in thikbcal charge and magnetization.
case, forT/J between 0.03 and 0.06¢/J=0.12).
Figures 19 and 20 show the temperature evolution of

the corresponding histograms for=0.03,p=0.1, (Ng C. Correlation of charge and magnetization
=41,N,=4) and x=0.03,p=0.3 (Ny=41,N,=12) for Large local magnetization of the local Mn spins are cor-
temperatures ranging from well below to just beldw. For  related with large local charge densities of the carriers at the
_""'I""'I""'"""""I""‘"'_ 03— T T
e T=0.01] b I or T=0.04] ;
— T=00337J N 025 — T=0087J g1
01 | — T=0.067J ; i R I T=0.19] ]
— T=008J i — T=0407
02 7 .
5 - Sroasr A
& P SO
005 Pk ’
4 0.1 i
I ro 0.05F i
%2 0 i) 04 06 08 0= “
Milocal
FIG. 18. Histogram of local magnetizations far=0.01, p FIG. 20. Histogram of local magnetizations fear=0.03, p
=0.3,Ny4=69, andN,=21 at temperatures/J=0.01, 0.033, 0.06, =0.3,Ny=41, andN,,=12 at temperature$/J=0.04, 0.08, 0.19,
and 0.08 T./J=0.12). and 0.40 T./J=0.45).

045207-11



MALCOLM P. KENNETT, MONA BERCIU, AND R. N. BHATT PHYSICAL REVIEW B66, 045207 (2002
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FIG. 23. Joint distribution function of local magnetization and
charge density fok=0.03,p=0.1,Nyg=41, andN,,=4 at tempera-
ture T=0.06J=T_./3.

FIG. 21. Sites with large local magnetization and charge density V1. DISCUSSION AND CONCLUSIONS
in a sample with 110 Mn spins and 11 carriers at a temperdture '
=0.01J~0.25T. In this study we have performed a Monte Carlo study of

an impurity band model for IlI-V DMS’s. In order to do this
Mn site. To illustrate this point, in Fig. 21 we show the e simulate a model of fermions coupled to classical degrees

correlation of large local magnetizations and charge densitiSPiNg, and this requires a diagonalization of the fermion

in a single sample with 110 Mn spins and 11 carriers at £roblem for every classicgl spin configuration. This is very
temperaturel = 0.01)=0.25T.. Open circles correspond to time consuming computationally. To speed up the procedure,

sites with a low charge densify<0.1 and a low magneti- W& introdgce a quantum-mechanical .perturbation theory
zation M:ocal<0'4. Solid filled circles correspond to sites coupled with a Monte Carlo method, which we call the PMC

with p;>0.1 andM!°°a'>0.4. Sites withp;<0.1 butM!oca' scheme. The method and tests are described in detail in Sec.

| . 1. O odel restricts ch iers to i ity band
>0.4 or withp;>0.1 andM !Oca'< 0.4 are shown as half-filled urm restricts charge carriers to an impurnity ban

. . . L formed from the isolated acceptor impurity states introduced
0, - . . . . . .
circles. Less than 14% of the sites are half-filled indicating &, the Mn ions, interacting via antiferromagnetic exchange
strong correlation betweep, and M;>.

i - TV . with Mn spins, which we treat classically. This model is
F|gur_e 2_2 shows the joint dlstr|but_|on function for local pased on the picture for the low doping limit of localized
magnetization and local charge density for 0.01,p=0.1.  capriers. Experimental evidence suggests that such an impu-

The data inhabit a narrow band with the peak correspondingty hand exists in the vicinity of the metal-insulator transi-
to localized carriers also corresponding to Mn spins Wwithjo (MIT).829The advantage of this type of model in com-
large local magnetizations. _ parison to other models that have been suggested for Ill-V
In Fig. 23 we plot the joint distribution function for local p\s's which start from a valence band point of view for the
magnetization and local charge density for0.03,p=0.1.  carriers, is that it naturally incorporates the physics associ-
The distribution is similar to the previous case in that there isyteq with the MIT, which may be important even in the me-
also a strong correlation between charge density and locg}jic region. We have considered parameters appropriate for
magnetization. However, the data occupy a smaller region O(fGa,Mn)As, although qualitative features of the results may
the (M{**?, p;) plane(which is not surprising since both dis- \ell apply for other I1I-V DMS's,
tributions are narrower than in the insulating gase The impurity band model was previously studied using a
mean-field approximatioh® in which it was found that the
magnetic properties are very unlike those of a conventional
ferromagnet. The magnetization cun®g,(T) were found
to be concave upward for a significant portion of the tem-
peratures belowT., unlike conventional convex upward
curves, and it was predicted that the magnetization should be
inhomogeneous. The role of disorder in the material was also
examined by comparing the magnetization curves for or-
dered arrays of dopants and impurities placed with varying
degrees of randomness. It was found that randomly placed
< impurities led to a higheT . than that found for an ordered
log;o(py) lattice of impurities. However, in the mean-field solution, the
electron spin is chosen to be either parallel or antiparallel to
the total magnetization. Further, mean-field approximations
FIG. 22. Joint distribution function of local magnetization and neglect temporal fluctuations, and are known to overestimate
charge density fox=0.01,p=0.1, Ny=110, andN,=11 at tem-  T.. These overestimations could be significantly different in
peratureT=0.01J=T_/4. the ordered and disordered cases.
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The results of the Monte Carlo simulations confirm sev-
eral of the results of the mean-field study, while differing on
some others. First, the shapes of the magnetization versu
temperature curvesy,,(T) are found to be unusual, as in
the mean-field study, but more linearTrcompared with the
strongly concave upward curves in the mean-field approxi-
mation. Further, the carrier and Mn spin magnetization fol- —
low each other more closely, unlike in the mean-field study, =
where the carriers remain polarized to much higher tempera 0.1}
tures than the Mn spins. We believe this difference is a direct
consequence of the neglect of temporal fluctuations in the
mean-field approximation. The Monte Carlo data appear to
be much more in accord with experimental results, which
suggest that both Mn and carrier spins depolarize with
roughly the same temperature dependefckn fact, the ' ] R R

L e L 1e-07 1e-06 1e-05
magnetization curves observed in this study bear a striking x(px)™®
resemblence to those obtained with magnetic circular dichro-
ism results in Ref. 31. While magnetic susceptibilities were F|G. 24. T, as a function of carrier concentration and Mn con-
not considered in the mean-field study, in a Monte Carlocentration for the four cases considered here. The line has $lope
study applicable to II-VI semiconductors, a peak was found ) ]
in the ordered phase, well bela¥y, in addition to the sin- Iatlo_n between higher charge density and large local magne-
gularity at T..“%** Our susceptibility data show a single tization. o
peak: however, the peak is at a temperature significantly be;, On€ Of the main aims of the Monte Carlo study was to
low the T, obtained from theG(L,T) curves. This is ex- d|§gover how important ﬂu_ctuatlons are in deter_mmmg the
pected, since our sample sizes are small and the two peaﬁgncal temperaturd . at variousx andp. As shown in Table

are not separated as a result. The relative proximity of th mean-field theory appears to be more precise in this
P ' P Y O g odel for increasing the hole concentration, which is in con-
low T peak toT., compared to the 1I-VI case, makes this

o . trast with Monte Carlo simulations on a valence-band model
more difficult to resolve. Nevertheless, the explanation thaf, hare the opposite trend was observtf,

the peak is due to free or partially free spins that are outside A second item of interest is the quantification of the de-
the percolating magnetic cluster appears to be viable in bOtBendence off, on the Mn concentratiox and the carrier

cases. densitypx. For individual Mn coupled to free carriers, sev-

~To study the inhomogeneities in the magnetic behaviogral models exist involving a combination of Fermi energy
identified in the mean-field StUdy, we have studied dlStrIbU-EF~(px)2/3 and exchange energye,~ JX. The generic de-

tions of local quantities—charge density and magnetizationgendence ofT, is found to be of the formT.~x“(px)~”,

We have considered their joint distribution as well, to inves-where mean-field estimatés!*give o= 1, with 8 varying
tigate the correlation between the two. The calculations obetween; and 1, while an analysis involving collective spin
the local charge density at low temperatures for the lowesivave excitations with Ruderman-Kittel-Kasuya-Yosida
density k=0.01,p=0.1), which appears to be insulating, (RKKY ) interactions yieldsr=2, 8= — 3 for weak coupling
are in very close accord with those obtained previously at théE.,<Eg) and a=—3,8=1 for strong coupling E.,
mean-field levef. The generic feature that appears to be>Eg). That such a dependence exists for an impurity band is
present is that the local charge density has significant dispenot clear; nevertheless in the range of Mn and carrier con-
sion. Forx=0.01 we find a two-peaked structure in the local centrations studiedxE 0.01-0.03px = 0.001-0.009), our
charge density distribution, corresponding to some sites havF, can be fit by an expression of the foifg~x*(px)# with

ing quasilocalized carriers and others having very low charger=0.5=0.15, 3=0.85=0.15. As can be seen in Fig. 24, a
density, while forx=0.03 there is still a broad distribution of double logarithmic plot ofT./J versusx(px)®? yields a
charge densities, but there appears to be only one peakiraight line with a slope of. Since the dynamic range in
rather than two, indicating that the carriers are in generatarrier concentration is larger, the data restrict the range of
delocalized. The distributions of local magnetizations appeaallowed 8 more thana. It is interesting that both the depen-
to reflect the same physical picture—fo+0.01 at tempera- dence on carrier density for a fixed Mn concentratic, (
tures approximately /2, there are two peaks, which appearsT.~p? and on Mn concentration for fixed degree of com-
to correspond to two populations of Mn spins—one which ispensation p), T.~x%"#, yield exponents8=2,a+ 8=1%,

still strongly magnetized, and one which is very slightly which lie within the range predicted by various treatments
magnetized, whereas for=0.03 this double-peaked struc- for free carriers, for which3 varies from—3 to 1 anda

ture is not observed. The=0.01 behavior was previously + 8 from % to 2. Determination of the separate dependences
predicted from mean field calculatiof$> and formed the on carrier and Mn concentration in experiment would be
basis for a phenomenological model that has been shown taseful in clarifying the applicability of various theoretical
have the capacity to describe experimental magnetizatiomodels.

curves? Finally, the joint distribution of local charge density ~ Experimental magnetization measurements also suggest
and local magnetization indicate that there is a strong correthat there is some degree of variation of local environment
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here, since they sample all Mn spins. However, the Hall ef-

fect measurements are made in transport and give curves that 5 5= npix: EXACT SOLUTION FOR THE TOY MODEL

look quite conventional. It has been suggeStéidat this can

be understood by the fact that the carriers that are measured Consider the Hamiltonian of E¢25),

in transport preferentially interact with the Mn spins that are

strongly coupled to carriers, so that the magnetic properties

of only one population of Mn spins are sampled in transport.

The correlation between local charge density and magnetiza-

tion seen here supports this scenario. where
There are still many experimental questions that remain N

unresolved about the nature of the magnetic behavior in S=E S

(Ga,MnAs. A more systematic understanding of the depen- i=1

dence ofT . onx andp wiII. help dgtermine which mo<_1e|s are .. ihe total spin of the system. We parametri&

more appropriate for which regions of the phase diagram. In_ S(sin 6cose,sinfsin ¢,cosf) and perform the canonical

particular, more accurate determinationspofippear to be ’ '

. . . ) transformations
one of the most important ingredients. Recent steps in this

N
J 1
H=—tD, ¢l c,+ =S > ¢l —o,4c, (Al
% 7N 121 jag%anCipr (AL

direction where the carrier concentration has been controlled 0 6

with electron doping are a stdft,but this may introduce dm:CO%CiﬁSinze*'d’Cu,
other complications due to dopant centers being spatially dis-

tinct from the spins, unlike the case for Mn, where the two 0 0
are in the same place. Local probes of the material like du=—sin§e'¢cm+co§cu.

nuclear magnetic resonance will also help to uncover to what
extent the magnetic environment is inhomogeneous, and hoW is then straightforward to show that
this depends op andx.
Despite the qualitative agreements with experimental + s T N
data, there are a number of effects that are left out in the H=—t2>, df,d,+ N 2, (dfidi;—df d;)).
treatment of DMS’s by our modé&{?’ Within the mean-field D =
approximation, a number of hopping integrals have beems a result, we can diagonalize the Hamiltoniarkispace,
considered within a tight-binding description of the impurity
band® and it appears that the most important feature in de- "
termining T, is the density of states at the Fermi enétgy. H:; Eka(S)dis ke - (A2)
Other effects that have been left out in this model are carrier-
carrier interactions, valence band states, spin-orbit effectsyhere
and direct Mn-Mn interactions which could lead to
frustration?® While the direct Mn-Mn exchange should not
be important for thes values considered here, since there are Eko(S)=—2t coska+ 553,50, (A3)
relatively few Mn spins that are close enough for their anti-
ferromagnetic exchange to be important, they may becom@ith o==1 and the cyclic boundary conditions imply that
significantly more important at higha=0.1, and affect,. ~ ka=2#n/N, with n=0,1, ... N—1. There is a single low-
In conclusion, we have performed Monte Carlo simula-€st eigenvalue corresponding ke=0, and then degenerate
tions on an impurity band model for 11l-V DMS. We have eigenvalues corresponding to left- and right-moving modes.
confirmed many of the features that were seen at the level of Thus the grand-canonical partition function [see
mean-field simulations—unusual magnetization curves an&g. (6)]
inhomogeneous magnetization and charge density b&low N
The unusual magnetization curves are also in qualitative
agreement with many experiments. We have made a com- ZN:iHl
parison ofT. determined using each method, and found that
for larger values of Mn concentration and carrier concentrawhere  we use the simplified notation [dQ;
tion, the mean-field determination @ become more accu- = [{sin 9id0if§”d¢i for the integral over the solid angle. One
rate. We also find a power-law relation betweéknand car- can avoid the ® multiple integrals over individual spin
rier concentration and Mn concentration, that could beangles, and replace them by an expression of the general
compared with experiments. form

jdﬂim (1+e PE®-m)  (A4)
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27 w _ N which can be obtained through direct integration from
zN:f dd)J dasmeJ dSSF\(S,0,¢) Eq. (AB).
0 0 0 From the recurrence relatigieq. (A9)], one can deter-
mine the general solution for the weight functibg(x) for

Xlk_[ (1+e AEE =), (A5)  any intege. This is a piecewise function, given by
where 6, ¢ define the orientation of the total sp8) and we 1 m
use the fact that the magnitude of the total s@nyaries N = > (—1)*CK(N—2k—x)N~2
between 0 andN. Comparing Egs(A4) and (A5), the defi- 27 H(N=2)!x k=0

nition of the “weight” Fy(S) is on the subintervaN—2(m+ 1)<x<N-2m of the support

N N interval [O,N], with m an integer Bm<N/2 and where
FnS=11 jdﬂi}é( S->, S), (A6)  CK=N!/(kI(N—K)!) is the appropriate binomial coeffi-
=1 =1 cient.

from which it is straightforward to derive the recurrence re-  The partition function is thus
lation

ZN:(47T)NdeS§fN(S)H (1+ e AlEko(9~al)
FN(S):J dOnFN-1(S—SYON-1-|S—S]), o L1

where the Heaviside functiof insures that the argument of Where the chemical potential is fixed from the condition
Fn_1 cannot have a magnitude larger tHdr 1. It is appar-  fOF the average number of fermions,
ent that, in factFy(S) =Fn(S). This can easily be seen from

definition (A6) as well, since one can choose to define the TT (1+e AEwW(®-m)
angles(); with respect to the system of coordinates in which N ko
S=S0Q=Sz, and the result cannot depend on the particular <nc>:f dSSf(S9) X Nnga Z ,
orientation #,¢ of the total spinS. Using the variabley 0 da N (A11)
=cos#y, and performing the trivial integral ovepy, the
recurrence relation can be rewritten as where nqaz[eB[Eqa(S)w]Jrl]fl are the occupation num-
1 bers of the fermionic levels. Since an analytical expression is
FN(S)=27TJ dyFy_(V1+S?—2Sy) available for the weight functiofiy(S), these integrals can
-1 be evaluated numerically. Once the chemical potentias
X O(N—1— \/m). (A7) Ilfnn;wn, any other expectation value, such as the total spin
gnitude
Defining
1 (N
Fu(S)= (4 H\(S) 18 (9= 5[ asStuS] (1+e s )

we obtain the recurrence formula

or the total fermionic spin
1 [min(x+1N-1)

fn(X)==— dzz{_1(2). (A9)
2XJ -1l ~ B(Exp 1)

- R . T aver s

This is supplemented by the “initial” condition <|S|>:j dS§fN(S)2 Enqa Z
1 0 qo N
f200= 2x’ (AL0) can be computed for any given temperatiire
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