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On the equivalence of models with similar low-energy quasiparticles
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We use a Metropolis algorithm to calculate the finite temperature spectral weight of three related models that
have identical quasiparticles at T = 0, if the exchange favors the appearance of a ferromagnetic background.
The low-energy behavior of two of the models remains equivalent at finite temperature, however that of the
third does not because its low-energy behavior is controlled by rare events due to thermal fluctuations, which
transfer spectral weight well below the T = 0 quasiparticle peaks and generate a pseudogaplike phenomenology.
Our results demonstrate that having T = 0 spectra with similar quasiparticles is not a sufficient condition to
ensure that two models are equivalent, i.e., that their low-energy properties are similar. We also argue that the
pseudogaplike phenomenology is quite generic for models of t-J type, appearing in any dimension and for
carriers injected into both ferromagnetic and antiferromagnetic backgrounds.
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I. INTRODUCTION

All physics knowledge is built on the study of models.
Formulating a model for the system of interest is thus a
key step in any project. Of course, “all models are wrong,
but some of them are useful” [1]. This is because, ideally, a
model incorporates all relevant physics of the studied system
so that its solution is useful to gain intuition and knowledge
regarding some properties of interest. At the same time, models
discard details assumed to be irrelevant for these properties.
Even though this makes them “wrong,” it is a necessary and
even desirable step if the solution is to not be impossibly
complicated.

How to decide where the separation line lies between
relevant and irrelevant aspects for a given system and set
of properties of interest is still an art. A general guiding
principle, based on perturbation theory, is that high-energy
states can be discarded (integrated out) if one is interested
in low-energy properties. Consequently, it is assumed that
models with identical low-energy spectra provide equivalent
descriptions of a system, and therefore the simplest of these
models can be safely used.

A prominent example is the modeling of cuprates. It is
widely believed that the Emery model [2] can be replaced
by the simpler t-J model to study their low-energy physics
[3,4]. The justification was provided by Zhang and Rice [5],
who argued that the low-energy states of the Emery model are
singlets formed between the spin of a doping hole hosted on the
four oxygens surrounding a copper and the spin of that copper,
and that the resulting quasiparticle is described accurately by
the t-J model [6]. Whether this is true is still being debated
[7–9].

In this paper we show that by itself, the condition that two
models have the same low-energy spectrum is not sufficient
to guarantee that they describe similar low-energy properties,
despite widespread belief to the contrary. Indeed, we identify
three models that have identical T = 0 quasiparticles yet
have very different behavior at any temperature T �= 0. The
qualitative differences are due to rare events controlled by
thermal fluctuations, which lead to a pseudogap type of
phenomenology.

While our argument takes the form of a “proof by
counterexample,” we also provide arguments that our findings
are not merely an “accident” caused by our specific choice
of models but are more general in nature. Specifically, we
comment on its validity in arbitrary dimensions and also
for other types of magnetic coupling which differ from the
examples that are our main focus.

The remainder of this paper is organized as follows: We
introduce the models in Sec. II and discuss our method
of solution in Sec. III. The main results, which are for a
particle injected into a ferromagnetic (FM) background, are
presented in Sec. IV A, while Sec. IV B contains some results
for an antiferromagnetic (AFM) background, which further
substantiate our claims. Short conclusions are presented in
Sec. V.

II. MODELS

Because we are interested in the quasiparticle spectrum,
from now on we consider only the single carrier sector of
the Fock space. To be specific, we take the carrier to be an
electron added into an otherwise empty band; the solution is
mapped onto that for removing an electron from a full band
by changing the energy ω → −ω.

The models of interest are sketched in Fig. 1. They describe
the interaction of the carrier with a background of local
moments and as such bear some similarity to those used in the
Zhang-Rice mapping mentioned above. Model I is the parent
two-band model, from which Models II and III are derived as
increasingly simpler effective models. In Model I, one band
hosts the spin- 1

2 magnetic moments, and a second band, located
on a different sublattice, hosts the carrier. Model II is also a
two-band model, but the carrier and local moments are located
on the same sites. One can think of the states occupied by
the carrier in this model as being local linear combinations of
the carrier states in Model I, each centered at a spin site. In
Model III, the carrier is locked into a singlet with its lattice
spin, forming a “spinless carrier” analogous to the Zhang-Rice
singlet.

There are also significant differences between our models
and the Zhang-Rice mapping: (i) We restrict ourselves to one
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FIG. 1. (Color online) Sketch of the three models. Large, red
arrows represent the local magnetic moments; empty (filled) blue
circles represent empty (filled) carrier sites. For Models I and II the
carrier spin is represented by a blue arrow; for Model III the carrier
is a spinless “hole” in the Ising chain.

dimension as this suffices to prove our claim. However, some
comments on the extension of our results to higher dimensions
can be found below. (ii) We concentrate on the case of a
ferromagnetic (FM) background, because for models with an
antiferromagnetic (AFM) background the T = 0 spectra are
not identical. However, we also present some AFM results
later on, to demonstrate that some of the features we discuss
here are generic, not FM-specific. (iii) All spin exchanges are
Ising-like, i.e., no spin flipping is allowed. The latter constraint
allows us to find numerically the exact solutions using a
Metropolis algorithm [10] to uncover a surprising finite-T
behavior for Model III.

In all three cases, the interactions between the local
moments are described by the Ising Hamiltonian:

ĤS = −J
∑

i

σ̂i+δσ̂i+1+δ − h
∑

i

σ̂i+δ, (1)

where δ = 1/2 for Model I and δ = 0 for Models II and III,
and σ̂i+δ is the Ising operator for the local magnetic moment
located at Ri+δ = i + δ (we set a = 1). Its eigenvalues are
σi = ±1. For J > 0 the ground state of ĤS is FM, and it
is AFM for J < 0. In the case of FM coupling, the external
magnetic field h can be used to favor energetically one of the
two possible FM ground states of the h = 0 case.

For Models I and II, the kinetic energy of the carrier is
described by a nearest-neighbor hopping Hamiltonian:

T̂ = −t
∑
i,σ

c
†
i,σ ci+1,σ + H.c. =

∑
k,σ

ε(k)c†k,σ ck,σ , (2)

where c
†
i,σ is the creation operator for a spin-σ carrier at site Ri

and c
†
k,σ = 1/

√
N

∑
i eikRi c

†
i,σ are states with momentum k ∈

(−π,π ) and eigenenergy ε(k) = −2t cos k (the lattice constant
is set to a = 1). The interaction between the carrier and the
local moments is an AFM Ising exchange:

Ĥ (I,II)
ex = J0

2

∑
i,σ

σ c
†
i,σ ci,σ (σ̂i−δ + σ̂i+δ). (3)

Note that flipping the sign of the carrier spin corresponds to
letting J0 → −J0, so we can assume without loss of generality
that the carrier has spin-up and suppress the spin index. The
total Hamiltonian for Models I and II is thus given by Ĥ (I,II) =
ĤS + T̂ + Ĥ (I,II)

ex .
Model III is the FM (J > 0) or AFM (J < 0) Ising version

of the one-band t-J model discussed extensively in the cuprate
literature [3,4]. The case of interest now has N + 1 electrons
in the N site system (N → ∞), and double occupancy is
forbidden apart from the site where the additional carrier

is located and which can be viewed as hosting a “spinless
carrier” whose motion shuffles the otherwise frozen spins.
The Hamiltonian is Ĥ (III) = P T̂P + ĤS , where the operator
P projects out additional double occupancy. It is important to
note that in contrast to Models I and II, here the spin operators
σ̂i are related to the electron creation/annihilation operators
via σ̂i = ∑

σ σc
†
i,σ ci,σ .

III. METHOD

We calculate the finite-T spectral weight A(k,ω) =
− 1

π
ImG(k,ω), where G(k,ω) is the one-carrier propagator.

If the carrier is injected in the magnetic background equili-
brated at temperature T , its real-time propagator is G(k,τ ) =
−iθ (τ )Tr[ρ̂Sck↑(τ )c†k↑(0)], where ρ̂S = exp(−βĤs)/Z is the
density matrix of the undoped chain in thermal equilibrium,
and β = 1/kBT and ckσ (τ ) = exp(iĤ τ )ckσ exp(−iĤ τ ) are
the operators in the Heisenberg representation (we set � = 1).

In frequency domain, the propagator becomes:

G(k,ω) =
∑
{σ }

e−βES
{σ }

Z
〈{σ }|ck↑Ĝ(ω + ES

{σ })c
†
k↑|{σ }〉.

The sum is over all configurations {σ } = (σ1, . . . ,σN ) of the
Ising chain, with corresponding energies ĤS |{σ }〉 = ES

{σ }|{σ }〉
and Z = ∑

{σ } exp(−βES
{σ }). The resolvent is Ĝ(ω) = [ω −

Ĥ + iη]−1, where η → 0+ ensures retardation. The shift by
ES

{σ } in the argument of the resolvent shows that the poles of
the propagator mark the change in the system’s energy, i.e.,
the difference between the eigenenergies of the system with
the carrier present and those of the undoped states into which
it was injected. This reflects the well-known fact that electron
addition states have poles at energies EN+1,α − EN,β [11].

After Fourier transforming to real space and using the
invariance to translations of the thermally averaged system,
we arrive at:

G(k,ω) =
∑

n

eikRn

∑
{σ }

e−βES
{σ }

Z
g0,n(ω,{σ }), (4)

where g0,n(ω,{σ }) = 〈{σ }|c0,↑Ĝ(ω + ES
{σ })c

†
n,↑|{σ }〉 is the

Fourier transform of the amplitude of probability that a state
with configuration {σ } and the carrier injected at site n

evolves into a state with the carrier injected at site 0. These
real-space propagators are straightforward to calculate, as they
correspond to a single particle (consistent with our assumption
of a canonical ensemble with exactly one extra charge carrier
in the system) moving in a frozen spin background. We
emphasize that this is true only because of the Ising nature
of the exchange between the background spins. Heisenberg
coupling, on the other hand, would lead to spin fluctuations
that would significantly complicate matters. Below we present
the calculation of these real-space propagators for Model III.
For Model II, the solution is described in detail in Ref. [10],
and the same approach, with only minor modifications, applies
to Model I.

It is convenient to introduce the following notation. When
an extra electron is injected at site n of Model III, it effectively
removes the spin at this site. The spin σn will therefore be
missing from the set {σ } which describes the state of the
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spin chain before injection. Consequently we label the state
after injection as |{σ } \ σn〉 = | . . . σn−1 ◦ σn+1 . . . 〉, where ◦
denotes the effective “hole” created by the injection of the
extra electron. The “hole” can propagate along the chain and
in doing so reshuffles the spins. To capture the propagation
of the “hole” we introduce an index j corresponding to
the number of sites that the “hole” has hopped to the left
(j < 0) or right (j > 0). A general state is therefore given
by |{σ } \ σn,j 〉 = | . . . σn−1σn+1 . . . σn+j ◦ σn+j+1〉. Note that
this way of labeling states is not unique. For instance, if
σ0 = σ1 = · · · = σn, then |{σ } \ σ0,0〉 = |{σ } \ σn,−n〉.

With this notation, the real-space propagators are
g0,n(ω,{σ }) = 〈{σ } \ σ0,0|Ĝ(ω + ES

{σ })|{σ } \ σn,0〉. Their
equations of motion (eom) are obtained by splitting the
Hamiltonian in two parts, Ĥ = Ĥ0 + V̂ , and repeatedly using
Dyson’s identity Ĝ(ω) = Ĝ0(ω) + Ĝ(ω)V̂ Ĝ0(ω). Choosing
Ĥ0 = ĤS and suppressing the ω and {σ } dependence, we
obtain

g0,0 = G0(ω + 
0)[1 − tf0,1 − tf0,−1], (5)

f0,n = −tG0(ω + 
n)[f0,n+1 + f0,n−1], (6)

where G0(ω) = (ω + iη)−1, 
n = ES
{σ } − ES

{σ }\σ0,n
, and

f0,n = 〈{σ } \ σ0,0|Ĝ(ω + ES
{σ })|{σ } \ σ0,n〉. Note that f0,0 =

g0,0. The exact form of 
n depends on the sign of n:


0 = −Jσ0(σ−1 + σ1) (7)


n = 
0 + Jσ−1σ1 − Jσnσn+1, for n > 0 (8)


n = 
0 + Jσ−1σ1 − Jσnσn−1, for n < 0. (9)

The eom (6) can be solved with the ansatz f0,n = Anf0,n−1

for n > 0 and f0,n = Bnf0,n+1 for n < 0. Since the “hole” has
a finite lifetime ∝1/η and f0,n measures the probability that the
“hole” injected at site 0 moves to site n, one expects f0,n → 0
for n → ∞. We therefore introduce a sufficiently large cutoff
Mc and require AMc

= 0 = B−Mc
. It is then straightforward to

obtain

An = −t

ω + 
n + iη + tAn+1
, (10)

Bn = −t

ω + 
n + iη + tBn−1
, (11)

g0,0 = 1

ω + 
0 + tB−1 + tA1
, (12)

f0,n = An . . . A1g0,0 for n > 0, (13)

f0,n = Bn . . . B1g0,0 for n < 0. (14)

To calculate the g0,n we make use of the fact that hopping
reshuffles the spins. Therefore g0,n �= 0, only if σ0 = σ1 =
· · · = σn. In that case, as mentioned above, the states |{σ } \
σ0,n〉 and |{σ } \ σn,0〉 are equal which means that g0,n = f0,n.

The thermal average in Eq. (4) is then calculated for the
infinite chain with a Metropolis algorithm which generates
configurations {σ } of the undoped chain. To summarize, our
method of solution consists of the following steps: (i) generate
a configuration {σ } of the Ising chain using a Metropolis
algorithm, (ii) calculate all the g0,n(ω,{σ }) propagators for

that specific configuration and perform the sum over n in
Eq. (4), and (iii) repeat steps (i) and (ii) until convergence
is reached. Full details of this procedure can be found in
Ref. [10] for Model II; the generalization to Models I and III
is straightforward. For Model III it is convenient to inject the
carrier with an unpolarized total spin to ensure that a “hole”
is always created. Since for each configuration {σ } there is
a configuration {σ̄ } with all the spins flipped, injecting an
unpolarized carrier does not change the results but merely
speeds up the numerics.

IV. RESULTS

A. FM Results

At T = 0, the undoped Ising chain is in its FM ground state.
The quasiparticles of Models I and II have energy ∓J0 + ε(k)
if the carrier is injected with its spin antiparallel/parallel to
the background. Only the former case can be meaningfully
compared with Model III, which has a quasiparticle of energy
2J + ε(k) (2J is the cost of removing two FM Ising bonds).
Thus, apart from trivial shifts, the three models have identical
quasiparticles, namely carriers free to move in the otherwise
FM background.

Finite-T spectral weights A(k = 0,ω) for the different mod-
els are shown in Fig. 2. We emphasize that only the electron-
addition part is discussed here. We do not consider the electron-
removal states, which lie at energies well below those of
the electron-addition states and must be identical for all three
models, because in all cases, one of the electrons giving rise to
the magnetic moments is removed. We also emphasize that our
calculation is in a canonical ensemble. The chemical potential
is not fixed at ω = 0, as is customary in grand canonical
formulations, instead it can be calculated as μ = ( ∂F

∂N
)
T

→
minα,β[EN+1,α − EN,β] as T → 0. As pointed out above, here
ω = 0 marks the energy of the undoped Ising chain.

For Models I and II, shown in panels (a) and (b), at
the lowest temperature one can see two peaks marking the
contributions from injection of the carrier into the two ground
states of the Ising chain (all spins up and all spins down,
respectively). Indeed, these peaks are located at ±J0 − 2t , the
lower one of which is marked by the vertical line. Note that we
chose a large J0 value to keep different features well separated
and thus easier to identify. The insets show the spectral weights
for h = −0.1t , which at low T suppresses the contribution
from the up-spin FM state so that only the lower peak remains
visible.

With increasing T , both peaks broaden considerably on
their higher-energy side, and many resonances become visible.
As demonstrated in Ref. [10] for Model II, these resonances are
due to temporal trapping of the carrier inside small magnetic
domains that are thermally generated at higher T . The presence
of these domains also explains the decreasing difference
between the h = 0 and h = −0.1t curves at higher T . For
βJ = 0.5 both curves are shown in the main panels (the finite
h curve is shaded in). Indeed, the resonances appear in the
same places and with equal weight in both curves, the only
difference being a small spectral weight transfer from J0 − 2t

to −J0 − 2t , i.e., from the FM ground state disfavored by
h < 0 to the one favored by it. The weight for the former is
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FIG. 2. (Color online) Spectral weight at k = 0 for a FM back-
ground and three different temperatures for (a) Model I with J0/t =
5,J/t = 0.5, (b) Model II with J0/t = 5,J/t = 0.5, (c) Model III
with J/t = 2.5. Insets in panels (a) and (b) show the spectral weight
in the presence of a magnetic field, while in (c) it shows the two
continua appearing at low energies, for βJ = 0.5. In all cases, the
broadening is η/t = 0.04. The vertical lines show the energy of the
T = 0 quasiparticle peak.

no longer zerolike for T → 0, showing that at higher T the
carrier is increasingly more likely to explore longer domains
of spin-up local moments.

The main difference between Models I and II is that the
latter also has a third finite-T continuum, centered around
ω = 0. It corresponds to injecting the carrier in small AFM
domains, where its exchange energy vanishes because it sits
between a spin-up and a spin-down local moment. Such energy
differences are not possible in Model II, where the carrier
interacts with a single moment so its exchange energy is ±J0.

However, if one is interested in the low-energy behavior,
Models I and II are equivalent because their low-energy
continua have similar origins and evolve similarly with T .
This is true in the whole Brillouin zone (BZ), as can be seen
from comparing panels (a) and (b) of Fig. 3.

-8 -6 -4 -2 0 2 4 6 8
ω/t

0

2

4

6

8

A
(k

,ω
)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

k/
π

(a)

-8 -6 -4 -2 0 2 4 6 8
ω/t

0

2

4

6

8

A
(k

,ω
)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

k/
π

(b)

-2.5 0 2.5 5 7.5
ω/t

0

1

2

3

4

5
A

(k
,ω

)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

k/
π

(c)

FIG. 3. (Color online) A(k,ω) for the three models with FM
background at βJ = 0.5. Other parameters are as in Fig. 2. The
dispersionless low energy, low weight part of the spectrum of Model
III is not shown. Red, vertical lines indicate the location of the T = 0
quasiparticle peaks.

The finite-T evolution of the spectral weight of Model III
is very different. Consider first the k = 0 case, shown in
Fig. 2(c). The T = 0 peak at 2J − 2t (marked by the vertical
line) evolves with T very similarly to the low-energy peaks
of the other two models, broadening on its high-energy side
and again displaying resonances due to temporal trapping
inside small domains. The k evolution of this feature, shown
in Fig. 3(c), is also very similar to the low-energy continua of
the other two models.

However, for Model III this continuum is not the low-energy
feature. Instead, in 1D there are three lower-energy continua
centered at 0, −2J , and −4J , all of which are due to injection
of the carrier into specific, thermally excited configurations of
the background. For example, consider the −2dJ continuum
which also appears in dimensions d > 1. As sketched in Fig. 4,
it corresponds to the carrier being paired with a thermally
excited spin. This lowers the exchange energy by 2dJ , as
2d AFM bonds are broken. In contrast, T = 0 doping always
leads to loss of exchange energy, because only FM bonds can
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(a) (b)

FIG. 4. (Color online) When doping “removes” a thermally ex-
cited spin-down, the energy variation upon doping is Eb − Ea =
−2dJ + ε(k) and lies (at least partially) below the T = 0 quasiparti-
cle ground-state energy of 2dJ − 2dt .

be broken. This is why in Model III it can cost less energy
to dope from a thermally excited state rather than the ground
state, and therefore why its finite-T low-energy properties are
not controlled by the T = 0 quasiparticle.

The weight of these low-energy continua is very small,
see inset of Fig. 2(c), because they are controlled by thermal
activation. For example, in the limit T → 0 the spectral weight
of the continuum centered at −2dJ can be calculated to first
order, as was shown in Refs. [10,12], by expanding Eq. (4)
in powers of e−β4dJ . The lowest order terms correspond to
the two FM ground states which have all spins aligned, |{↑}〉
and |{↓}〉, respectively. The first order terms are given by states
with a single flipped spin and are denoted by |{↑,σm = ↓}〉 and
|{↓,σm = ↑}〉, where m indicates the location of the flipped
spin. Since the flipped spin can be anywhere in the system
there are N of these states for each ground state configuration.
For simplicity we assume that the spin of the extra carrier
is unpolarized, then it suffices to consider only |{↑}〉 and
|{↑,σm = ↓}〉, the contribution from the other ground state
will be exactly the same. Considering only these states in the
trace of Eq. (4), we obtain:

G(k,ω) = 1

Z′ [G
(0)(k,ω) + e−β4dJG(1)(k,ω)] + O((e−β4dJ )2),

(15)

where

G(0)(k,ω) = [ω − εk − 2dJ + iη]−1 (16)

G(1)(k,ω) =
∑
n,σ

eikRn

∑
m

g0,n(ω,{↑,σm = ↓}) (17)

Z′ = Z

e−βEFM
= (1 + Ne−β4dJ + · · · ). (18)

Note that G(0)(k,ω) is identical to the T = 0 solution.
To evaluate G(1)(k,ω) we need to treat the case m = 0,

separately. In this case the extra carrier removes the flipped
spin. This results in the breaking of 2d AFM bonds and
therefore an energy gain of 2dJ . Furthermore as pointed out
above only g0,0(ω,{↑,σ0 = ↓}) contributes to the sum since
the extra carrier was injected into a domain of length 1. Since
the flipped spin was removed and all the remaining spins
are aligned it is easy to calculate g0,0(ω,{↑,σ0 = ↓}), which
in the limit N → ∞ becomes

g0,0(ω,{↑,σ0 = ↓}) =
∫

dq
(2π )d

1

ω − εq + 2dJ + iη
, (19)

i.e., a continuum of states centered at ω = −2dJ .
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FIG. 5. (Color online) Rescaled spectral weight eβ4J [A(0,ω) −
A(0)(0,ω)] in the region of the continuum centered at −2J , for Model
III with FM background and different values of β. For comparison
the dashed black line shows −Im[g0,0(ω,{↑,σ0 = ↓})]/π calculated
with Eq. (19). Other parameters are J/t = 2.5 and η/t = 0.04.

We are now left with calculating the remaining contri-
butions to G(1)(k,ω) for which m �= 0. This is not a trivial
problem, but since there is only one flipped spin in the
system and we are summing over all “hole” locations, we
can approximate g0,n(ω,{↑,σm = ↓}) ≈ g0,n(ω,{↑}). In doing
so we neglect that the energy is lowered when the “hole” is
adjacent to the flipped spin σm. Reinserting into Eq. (17) we
obtain

G(1)(k,ω) ≈ g0,0(ω,{↑,σ0 = ↓}) + (N − 1)G(0)(k,ω), (20)

where the factor N − 1 in front of G(0) is due to the sum over
m. Note that this factor ensures that the Z′ in the equation
for G(k,ω) is approximately canceled. Similarly one expects
contributions from states with two or more well-separated
flipped spins to cancel the Z′ in front of g0,0(ω,{↑,σ0 = ↓})
[10,12]. Consequently the low-T expansion of the Green’s
function gives

G(k,ω) ≈ G(0)(k,ω) + e−β4dJ g0,0(ω,{↑,σ0 = ↓}), (21)

i.e., the spectral weight below the T = 0 quasiparticle which
is given by g0,0(ω,{↑,σ0 = ↓}) vanishes like the probability
e−β4dJ to find a flipped spin.

To verify this behavior we show in Fig. 5 the rescaled
spectral weight eβ4J [A(0,ω) − A(0)(0,ω)], where A(0)(k,ω) =
δ(ω − εk − 2J )/π is the T = 0 quasiparticle peak. From
Eq. (21) it is clear that at sufficiently low T the resulting
curves should equal −Im[g0,0(ω,{↑,σ0 = ↓})]/π , which is
shown by the dashed black line in Fig. 5. Indeed we find
that the three curves in Fig. 5 for βJ = 1.5, 2.0, and 2.5,
respectively, collapse onto each other and onto the curve
for −Im[g0,0(ω,{↑,σ0 = ↓})]/π . Close to the upper edge of
the continuum the agreement starts to falter. This is because
in addition to the T = 0 peak there are other peaks in the
spectral weight (see Fig. 2) whose tails contribute to the
−2J continuum and are not subtracted. Multiplying with eβ4J

amplifies these tails. Similarly the oscillating features in Fig. 5
are numerical artifacts which are amplified by the factor eβ4J .

Similar calculations can be performed for the other low-
energy features. All their spectral weights vanish as T → 0
because they all originate from doping the carrier into a
thermally excited environment, which become less and less
likely to occur in this limit.
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FIG. 6. (Color online) A(k = 0,ω) for Model III with FM back-
ground, for different values of J at a temperature βJ = 0.5. The
dashed red lines show the location of the T = 0 quasiparticle peak.
Full blue lines mark the energies −2J ± 2t . Parts of the spectra have
been rescaled for better visibility.

The finite-T behavior of Model III is thus qualitatively
different from that of Models I and II. For the latter, the T = 0
quasiparticle peak also marks the lowest energy for electron
addition at any finite temperature, whereas for Model III we
observe the appearance of electron-addition states well below
the T = 0 quasiparticle peak. Their spectral weight vanishes
as T → 0, which is very reminiscent of pseudogap behavior
and offers a simple and general scenario for how it can be
generated. These low-energy states vanish from the spectrum
as the temperature is lowered not because a gap opens and/or
the electronic properties are somehow changed, but simply
because these states describe doping into thermally excited
local configurations, and the probability for the doped carrier
to encounter them vanishes as T → 0.

As should be clear from these arguments, the appearance
of these low-energy continua is not a consequence of the large
J/t values used so far for Model III. Indeed, Fig. 6 shows
that similar behavior is observed for smaller J values (parts of
these spectral weights have been rescaled for better visibility).
With decreasing J the different continua overlap, but shoulders
marking some of their edges are still clearly visible and marked
by dashed lines. In all cases, at finite T spectral weight appears
below the T = 0 quasiparticle peak, marked by the full line.

It should also be clear that this phenomenology is not
restricted to FM backgrounds either: One can easily think of
excited configurations in an AFM background whose exchange
energy would be lowered through doping, in a t-J model
similar to Model III. We have verified numerically that at finite-
T , features lying below the corresponding T = 0 quasiparticle
peak indeed appear in the spectral weight of AFM chains.
These results are presented below. This phenomenology is
therefore quite general.

B. AFM Results

Just like in the FM case, there are also two ground states of
the undoped AFM Ising chain: either the odd or the even lattice
hosts the up spins. Of course, both AFM ground states yield
the same quasiparticle properties. However, the quasiparticles

FIG. 7. (Color online) T = 0, AFM solutions. Top panels: con-
tour plots of A(k,ω). Bottom panels: cross sections at k = 0. (a) and
(d) Model I with J0/t = 5, |J |/t = 0.5; (b) and (e) Model II with
J0/t = 5, |J |/t = 0.5; (c) and (f) Model III with |J |/t = 2.5. To
improve visibility of the continuum a hard cutoff at A(k,ω) = 0.1
was used for the Model III contour plot. In all cases η/t = 0.04.

that result when a carrier is injected in the three models are
different even at T = 0, for the AFM backgrounds. This is
shown in Fig. 7, where contour plots of the T = 0 spectral
weight A(k,ω), and cross sections at k = 0, are shown.

For Model I, the energy shifts due to the Ising exchange
with the spins to the left and right of the extra electron
exactly cancel out, and the quasiparticle behaves like a
free electron with dispersion ε(k). For Model II, interaction
with the AFM background opens a gap in the quasiparticle
spectrum and halves its BZ. The upper and lower bands have
dispersion ±

√
J 2

0 + ε2(k), respectively. For Model III, the
T = 0 spectral function is independent of k and has a coherent
quasiparticle peak at ω = 4|J | − 2

√
J 2 + t2 and a continuum

for 4|J | − 2t < ω < 4|J | + 2t . The quasiparticle peak corre-
sponds to a bound state with the extra electron confined at
its injection site. Propagation of the extra electron along the
chain reshuffles the Ising spins and gives rise to the continuum
centered at 4|J |. One can therefore think of this continuum
as the electron+magnon continuum. Mathematically, the k

independence follows directly from the fact that for Model
III, g0,n(ω,{σ }) = 0 when n > 0, if {σ } is the AFM ground
state.

The finite-T spectral functions for k = 0 are shown in
Fig. 8. For all three models the peaks broaden and spectral
weight appears below, as well as above, the T = 0 quasiparti-
cle peak. This is in contrast to the FM case, where in Models I
and II, at k = 0, spectral weight appears only above the T = 0
quasiparticle peak. For Model I the energy difference between
the low-energy states and the T = 0 peak is controlled by
J0, whereas for Model II it is of the order of t . Just as for
the FM case, these features can be linked to small domains
which temporarily trap the carrier [10]. As the temperature
increases more weight is transferred to these low-energy
features, and the low-energy behavior of Model II starts to
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FIG. 8. (Color online) AFM Spectral weight at k = 0 for three
different temperatures for (a) Model I with J0/t = 5,|J |/t = 0.5;
(b) Model II with J0/t = 5,|J |/t = 0.5; (c) Model III with |J |/t =
2.5. The inset shows spectral weight below the T = 0 quasiparticle
peak for β|J | = 2.5. In all cases, the broadening is η/t = 0.04. The
vertical lines show the energy of the T = 0 quasiparticle peak.

resemble that of Model I even though they have different T = 0
quasiparticles.

For Model III, at finite-T features appear, centered at −2|J |
and 0. Just as for the FM case, they are due to the injection of
the extra electron into specific, excited, local configurations of
the chain. If the electron is injected into a small FM domain
embedded in an otherwise AFM ordered background, the
energy is lowered by 2d|J |. As long as the electron stays
within the FM domain, reshuffling of the spins does not result
in a further change in energy. This explains the appearance of

spectral weight at ω ∼ −2d|J |. This is true for any dimension
d, and consequently the appearance of spectral weight at
−2d|J | is a generic feature of Model III. Coming back to the
specific case of d = 1, if the electron leaves the FM domain
reshuffling of the spins recreates an FM bond and destroys
one of the AFM bonds. The total change in energy (injection
and reshuffling) is therefore zero, explaining the continuum
centered around ω ∼ 0. Besides the appearance of these
low-energy continua, resonances appear close to the T = 0
quasiparticle peak and within the high-energy continuum (not
visible in Fig. 8 due to the scale). They are likely caused by
injection of the electron into an AFM domain and subsequent
scattering off domain walls which can only exist at finite T .

V. CONCLUSIONS

In this paper, we identified models that have identical
T = 0 low-energy quasiparticles (for couplings favoring a
FM background) and yet exhibit very different low-energy
behavior at finite T , proving that the former condition does not
automatically guarantee the latter. In particular, the finite-T
behavior in Model III is controlled by rare events, where
the carrier is injected into certain magnetic configurations
created by thermal fluctuations. Their energies are higher
than that of the undoped ground state, however the spectral
weight measures the change in energy upon carrier addition
(or removal), and this may be lower at finite T than at T = 0.
This is the case for Model III, because here doping removes
a magnetic moment from the background while its motion
reshuffles the other ones. It is not the case for Models I and II
where the carrier can do neither of these things. This difference
is irrelevant at T = 0, because of the simple nature of the
undoped FM ground state, but becomes relevant at finite T .

We showed that such a transfer of finite-T spectral weight
well below the T = 0 quasiparticle peak is independent of the
size of the magnetic coupling J and occurs for both FM and
AFM coupling. Furthermore, we provided arguments that this
behavior is expected to occur in any dimension.

While far from being a comprehensive study, these results
clearly demonstrate that the appearance of finite-T spectral
weight well below the quasiparticle peak, due to the injection
of the carrier into a thermally excited local environment
making it behave very unlike the T = 0 quasiparticle, is a
rather generic feature for t-J -like models. The weight of
these finite-T , low-energy features must vanish when T → 0
because the probability for such excited environments to occur
vanishes, therefore these models exhibit generic pseudogap
behavior.
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