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The dynamics of a doped hole in a cuprate is not
controlled by spin fluctuations
Hadi Ebrahimnejad1, George A. Sawatzky1,2 and Mona Berciu1,2*

Understanding what controls the dynamics of the quasiparticle that results when a hole is doped into an antiferromagnetically
ordered CuO2 layer is the first necessary step in the quest for a theory of the high-temperature superconductivity in cuprates.
Here we show that the long-held belief that the quantum spin fluctuations of the antiferromagnetic background play a key
role in determining this dynamics is wrong. Indeed, we demonstrate that the correct, experimentally observed quasiparticle
dispersion is generically obtained for a three-band model describing the hole moving on the oxygen sublattice and coupled
to a Néel lattice of spins without spin fluctuations. We argue that results from one-band model studies actually support this
conclusion, and that this significant conceptual change in our understanding of this phenomenology opens the way to studying
few-hole dynamics, to accurately gauge the strength of the ‘magnetic glue’ and its contribution to superconductivity.

Twenty-seven years after the discovery of high-temperature
superconductivity1, consensus on its theoretical explanation
is still absent. To a good extent, this is due to the difficulty

of studying strongly correlated systems near half-filling, needed to
understand the behaviour of one or a few holes doped into a CuO2
layer. To simplify this task it is customary to replace three-band
models2 describing the doping holes as entering the O 2p orbitals
of these charge-transfer insulators3 with much simpler one-band
Hubbard or tJ models4,5.

The simplification from three-band to one-band models is
based on the idea that the quasiparticle resulting when one hole
is doped in the system has predominantly Zhang–Rice singlet
(ZRS) character6,7. Agreement between the quasiparticle dispersion
for a generalized tJ model (with longer-range hopping) and that
measured by angle-resolved photoemission spectroscopy (ARPES)
in parent compounds8–13 is taken as evidence that one-band models
are valid.Whether this is a good approximation in all of the Brillouin
zone and also for finite doping, or whether it is valid only near
the (π/2, π/2) minimum, is still debated14. In one-band models,
moreover, spin and charge fluctuations arise from the same particle–
hole excitations, making it difficult to envisage a separation between
the quasiparticles and the pairing glue. Such a separation, however,
is assumed in most theories describing spin-fluctuation-mediated
pairing4. Even more problematic are recent arguments that such a
strong attractive interactionmediated by spin fluctuations is actually
ignored by one-band models15. In other words, even if these one-
band models capture the quasiparticle dispersion accurately, they
may still fail to properly describe their effective interactions.

To fully answer these questions, one needs to be able to compare
predictions of the three-band and one-band models not just in
the single-hole sector, where a single quasiparticle forms and its
dispersion can be calculated, but also in the two-hole sector, where
the effective interactions between quasiparticles can be studied.
Carrying out two-hole calculations by exact numerical means is
still too difficult a task: quantum Monte Carlo algorithms suffer
from sign problems, and at present exact diagonalization can be
carried out only on rather small clusters, where the finite-size

effects are still considerable and render the interpretation of the
results difficult16.

We show that a simple variational approximation for a three-
band model on an infinite lattice captures all main known
aspects of the quasiparticle behaviour not just qualitatively, but
also quantitatively. This approximation can also be systematically
improved by increasing the variational space; this provides an
estimate for the relevance of the excluded states. Most importantly,
this method can be straightforwardly generalized to calculate few-
hole propagators15,17.

Here we present the one-hole solution, which already reveals
several major surprises. First, we find that the spin fluctuations
of the antiferromagnetic (AFM) background play a negligible
role in determining the quasiparticle dispersion, because the hole
moves on a different sublattice. In contrast, in one-band models
it is widely believed that the dynamics of a ZRS is controlled
by these fluctuations, because not only does the ZRS move in
the magnetic sublattice but it is also a coherent mix of spin and
charge degrees of freedom. We argue that this view is wrong, and
that the necessary inclusion of longer-range hopping in one-band
models has precisely the effect of minimizing the role of the spin
fluctuations. Second, the quasiparticle’s dispersion in our model has
the characteristic shapemeasured experimentally for any reasonable
choice of parameters, unlike in one-band models where addition of
longer-range hoppings is necessary to obtain the correct dispersion,
as mentioned above. Third, our method allows us to study five-
band models to understand the importance of the in-plane O 2p
orbitals that do not hybridize directly with Cu 3dx2−y2 . As expected,
we find that the quasiparticle dispersion is little affected; however,
the ARPES spectral weight is significantly changed and now exhibits
a strong suppression outside the magnetic Brillouin zone (MBZ) in
agreement with ARPES findings8,11. This suggests that even three-
bandmodels do not fully capture all of the quasiparticle properties18.

The model we study can be thought of as the tJ analogue of
the three-band Emery model2: double occupancy on the Cu sites is
forbidden because of the large on-site Hubbard repulsion, so there is
a spin-1/2 at each Cu site and the doping hole enters the O 2p ligand
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Figure 1 | The models studied. a, Cu 3dx2−y2 and the O ligand 2px/y orbitals
included in the three-band model. White/shaded areas indicate our choice
for the positive/negative lobes. b, Sketch of a spin-swap process that
results in hopping of the hole while its spin is swapped with that of the
neighbour Cu. c, Unit cell for Néel AFM order, consisting of two Cu spins
and four O orbitals (highlighted in blue). d, MBZ (shaded area) and the FBZ.
e, Unit cell for Néel AFM order in the five-band model. The additional O
orbitals are highlighted in red.

orbitals (see Fig. 1a). The resulting Hamiltonian is14,19,20:

H=Tpp+Tswap+HJpd+HJdd

Tpp describes first- and second-nearest-neighbour hopping of the
hole;Tswap describes effective hopping of the holemediated by theCu
spin, whereby first the Cu hole hops onto a neighbouringO followed
then by the original hole filling the Cu orbital (see Fig. 1b). Note
that this leads to a swap of the spins of the hole and the Cu; HJpd
describes the AFM exchange between the spins of the hole and of
its two neighbouring Cu; and HJdd describes the nearest-neighbour
AFM superexchange between Cu spins except on the bond occupied
by the hole. If Jdd= 1 is the energy unit, then tpp= 4.13, t ′pp= 2.40,
tsw = 2.98 and Jpd = 2.83, respectively. We set the lattice constant
a=1. See ref. 14 for further details on the Hamiltonian, and on its
exact diagonalization solution for a hole on a 32Cu+ 64O cluster.

To study this Hamiltonian on an infinite lattice, we make the key
simplification of reducing HJdd to an Ising form, instead of its full
Heisenberg form. As a result, the undoped ground state |AFM〉 is a
simple Néel state without any spin fluctuations. This approach will
be justified a posteriori on the basis of the results it leads to.

We define Green’s functions and generate their exact equations
of motion as described in the Methods. We note that each
time a new magnon is created in a configuration, its energy
is increased by (about) 2Jdd because up to four Cu–Cu bonds
become ferromagnetic. Many-magnon states are thus energetically
expensive and unlikely to be significant components of the lowest-
energy eigenstates. We therefore define a variational approximation
by choosing an integer nm and setting all propagators with more
than nm magnons to zero. This leads to a manageable (although still
infinite) sparse system of equations that can be solved efficiently.

As exact diagonalization results show a distortion of the AFM
background only rather close to the hole (Fig. 3 of ref. 14) it
is reasonable to expect that small nm may already give a good
approximation. To check this, we calculate the results for nm≤ 3.
For nm=2 we do both the full variational calculation that allows the
magnons to be at any distance from one another, and the restricted
calculation where only configurations with the two magnons on
adjacent sites are kept (the hole can be located anywhere). In the
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Figure 2 | Results for the three-band model. a, Quasiparticle energy (in
units of Jdd) along various cuts in the Brillouin zone. The results are for the
three-band model using nm= 1 (black line), nm=2 (red line), restricted
nm=2 (red circles) and restricted nm=3 (blue line) approximations. b, The
corresponding ARPES quasiparticle spectral weights.

nm= 3 case we perform only the restricted calculation where the
magnons are in a connected cluster. The corresponding dispersions
of the low-energy quasiparticle are shown in Fig. 2a along several
cuts in the full Brillouin zone (FBZ).

The most striking observation is that the dispersions have
a shape like that measured experimentally, with deep isotropic
minima at (π/2, π/2). This shows that even the very simple
nm= 1 solution already captures important aspects of the correct
quasiparticle dynamics.

As expected for bigger variational spaces, the dispersions for
larger nm lie at lower energies. The bandwidths for nm = 2, 3 are
about half of that for nm=1, owing to standard polaronic physics.
Consider nm = 2: it is energetically favourable for the hole to be
near the second emitted magnon, as they have antiparallel spins,
but configurations with the hole near the first magnon are not
favourable because of their parallel spins. If the first magnon is
bound in the cloud it must be adjacent to the second magnon,
to limit the number of broken AFM bonds. Alternatively, this
magnon can dissociate from the cloud resulting in excited states
starting from E1,gs + 2Jdd; that is, the ground-state energy of the
nm = 1 quasiparticle plus the 2Jdd cost for a magnon located far
from it. For our parameters, this continuum starts at ≈−17.58Jdd
so the nm = 2 quasiparticle band must become narrower to fit
below it. The comparison between the full and the restricted nm=2
cases confirms that the connected magnon clusters (which cost less
exchange energy) account for the overwhelming contribution to the
low-energy quasiparticle, as expected.

The nm = 3, r results show an additional narrowing of the
bandwidth from 2.6Jdd for nm= 2, to 2.05Jdd. This solution is thus
very close to the 2Jdd bandwidth of the fully converged case. This
is not surprising because the quasiparticle cannot possibly bind
too many magnons in its cloud, given that each magnon is at a
different location and that the hole can interact with at most one
favourable magnon (with antiparallel spin) in any configuration.
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Figure 3 | Role of various parameters. a–c, Quasiparticle dispersion for the
three-band model and nm=2, when we set Jpd=0 (a), or tsw=0 (b) or
tpp=0 (c). In each case, the other parameters are kept at their
stated values.

We conclude that the nm = 3, r solution is already quantitatively
accurate, and indeed its dispersion is in excellent agreement with
the exact diagonalization dispersion of ref. 14.

This quantitative agreement between the variational and exact
diagonalization results shows that quantum spin fluctuations of
the AFM background (fully included in exact diagonalization but
frozen in our variational approach) have little or no effect on the
quasiparticle’s dynamics. This is because in three-band models the
hole can move freely on the O sublattice, so it can easily absorb
magnons created previously and then emit others at new locations
to move the cloud, resulting in fast quasiparticle dynamics. Spin
fluctuations of the background, which act on a slower timescale
(Jdd is the smallest energy), are then not essential for this dynamics.
Indeed, we have attempted to gauge the effect of spin fluctuations
for nm=2 by adding in the equations of motion terms that directly
link two-magnon and zero-magnon propagators, mimicking spin
fluctuations that either produce or remove a pair of nearest-
neighbourmagnons close to the hole. Such terms lead to veryminor
quantitative changes, as will be reported elsewhere.

This conclusion may seem surprising because for one-band
models it is believed that spin fluctuations are essential in
determining the quasiparticle dispersion: as a ZRSmoves it creates a
string of wrongly oriented spins (magnons) whose energy increases
linearly with its length, and which ‘ties’ it near the starting position.
In the absence of spin fluctuations, the quasiparticle acquires a finite
mass only by executing Trugman loops21, which are many-step (and
thus very slow) processes that lead to a very heavy quasiparticle22.
Spin fluctuations act faster to remove pairs of nearest-neighbour
magnons from the string and thus release the ZRS. These arguments,
however, depend essentially on the assumption that only nearest-
neighbour hopping of the ZRS is possible, despite the knowledge
that the resulting dispersion is wrong, being nearly flat along
(0, π)−(π , 0). To obtain agreement with experiments, second- and
third-nearest-neighbour hopping must be added8,10. These allow
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Figure 4 | Results for the five-band model. a,b, Quasiparticle energy (a)
and ARPES quasiparticle spectral weight (b) for variational solutions with
one and two magnons.

the ZRS to move freely on its magnetic sublattice and get away
from the string of defects that nearest-neighbour hopping creates,
similar to what happens in three-band models. The longer-range
hopping thus changes the phenomenology qualitatively and in its
presence, we find that spin fluctuations are no longer essential for
the quasiparticle dynamics in one-band models either, unlike when
only nearest-neighbour hopping is allowed.

A natural follow-up question is whether careful tuning of the
parameters is needed to achieve this dispersion, or whether this
shape is generic. The answer is the latter. Specifically, HJpd has
almost no effect on the shape of Eqp(k): even setting Jpd= 0 leaves
it virtually unchanged, only shifting the overall value as exchange
energy is lost (see Fig. 3a). Setting either tsw = 0 or tpp = 0 leads
to very different dispersions (Fig. 3b,c); however, if tpp and tsw are
comparable, the correct shape appears. In fact, a deep minimum
at (π/2, π/2) is then achieved even for nm= 0 (not shown). This
confirms the speculation in ref. 14 that Eqp(k) arises through
constructive interference betweenTpp andTswap, and shows that both
terms are needed to properly describe the quasiparticle dynamics.
Note that many studies of three-band models ignore Tpp or treat it
as a perturbation23–25 (for further discussion, see the supplementary
material of ref. 14).

Having established that the shape of Eqp(k) is robust, we now
analyse the quasiparticle ARPES weight, calculated as described
in the Methods. In Fig. 2b we plot Zqp(K‖) along various cuts in
the FBZ. The first observation is that unlike Eqp(k), Zqp(K‖) does
not have MBZ periodicity: the evolution along (0, 0)− (π , π)
is not symmetric about (π/2, π/2). This is expected: all of the
propagatorsmust, and indeed do, exhibitMBZperiodicity; however,
the ARPES spectral weight does not because the interference
between contributions from like orbitals switches from constructive
(inside the MBZ) to destructive (in the remaining part of the FBZ).

It is worth pointing out that a similar approach (Néel order plus a
fewmagnons) for one-bandmodels does not lead to any asymmetry.
This is because even though there are two sublattice Bloch states
with the ZRS located on either magnetic sublattice, there is no
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interference between them as they belong to sectors with different
total spin Sz. Additional Hubbard and spin-fluctuation corrections
must be included to obtain an asymmetric spectral weight (see, for
example, ref. 26).

The second observation is that Zqp(K‖) disagrees along the
(0, 0)− (π , π) cut with the experimental measurements that find
large weight near (π/2, π/2) that decreases fast on both sides8,11.
(Note that exact diagonalization predicts Zqp(π , π)=0 because its
quasiparticle has spin 3/2 in that region. Such an object cannot be
fully described with a Néel background that breaks invariance to
spin rotations.) As the situation improves with increasing nm, it is
possible that going to higher nm may fix this problem.However, such
an explanation is rather unsatisfactory because it suggests a sensitive
dependence of the ARPES weight on the precise structure of the
magnon cloud, unlike the robust insensitivity of the dispersion.

To check for an alternative explanation, we add the second set of
in-plane O 2p orbitals to our model, resulting in the new unit cell
sketched in Fig. 1e. These orbitals are usually ignored because they
do not hybridize directly with the Cu 3dx2−y2 orbitals. However, they
do hybridize heavily with the ligand 2p orbitals occupied by the hole,
so their role should be evaluatedmore carefully and this can be done
easily with our method.

For the Hamiltonian, this requires us to expand Tpp
accordingly. This is achieved without introducing new parameters
because nearest-neighbour hopping between two new orbitals
also has magnitude tpp, and between new and old orbitals
t̃pp/tpp=(tpp,σ − tpp,π )/(tpp,σ + tpp,π )=0.6 because tpp,π = tpp,σ/4.
We can also add next-nearest-neighbour hopping t̃ ′pp for the
new orbitals. As tpp,σ scales with distance as 1/d4, it follows that
t̃ ′pp= tpp,σ/4=0.2tpp (ref. 27). This is smaller than t ′pp≈0.6tpp for the
old orbitals for which next-nearest-neighbour hopping is boosted
through hybridization with the 4s orbital of the bridging Cu. In
any event, we find very little sensitivity to the precise values we
use for t̃ ′pp.

We study the five-band model with the same variational
approximations, suitably generalized. Figure 4 shows the
quasiparticle dispersion and ARPES spectral weight for the
nm=1, 2 solutions. For Eqp(k), the results are very similar to those
shown in Fig. 2a, but the bands are slightly wider, as expected
because of the increased bare kinetic energy. We have checked that
the dependence on Jpd, tsw and tpp is essentially unchanged. Indeed,
the expectation that this other set of orbitals has little effect on the
quasiparticle dispersion is correct.

However, their addition has a significant effect on the evolution
of Zqp(K‖) on the (0, 0)− (π , π) cut. The asymmetry is maintained
but the results now show a decrease of the ARPES spectral
weight on both sides of the MBZ boundary, in agreement with
experimental data8,11.

The fact that the weight is significantly changed even though
the dispersion is not much affected should not be a surprise.
As ARPES measures interference between like 2p orbitals, the
quasiparticle weight can be significantly affected even by rather
small redistributions of the wavefunction among orbitals, unlike
the energy. These results suggest that a full understanding of the
evolution of the spectral weight at low dopings, still missing at
present, may require inclusion into theoretical models of these
additional orbitals. This will only increase the need for accurate
approximations such as the one we propose here, because exact
numerical approaches become evenmore challenging to implement
in larger Hilbert spaces.

To summarize, we used a simple variational approach to study
a quasiparticle in three- and five-band models of an infinite CuO2
layer, while also being able to gauge accuracy by increasing the
variational space. Our results compare well with available results
from exact diagonalization of small clusters. As the variational
approach ignores the effect of spin fluctuations in the AFM layer,

the good agreement for the dispersion strongly supports the idea
that these spin fluctuations do not play the important role in the
quasiparticle dynamics attributed to them on the basis of results for
one-band models with only nearest-neighbour hopping.

This is a very important finding because properly describing the
background spin fluctuations is very difficult and a major barrier to
studying the two-hole sector to understand the effective interactions
between quasiparticles, which is the second piece of knowledge
(besides the quasiparticle dispersion) needed to propose accurate
simple(r) effective models. Our method allows us to distinguish the
magnons emitted and absorbed by holes, which are treated exactly,
from those due to background fluctuations, which are ignored. As
the method also generalizes to treat few-hole states, we are now
able to investigate the role of magnon exchange in mediating strong
attractions between holes, and to verify whether this attraction is
indeed absent from the one-band effective models used at present,
as speculated in ref. 15. This work is now in progress.

Methods
For the three-band model, the unit cell of the Néel AFM has two Cu spins and
thus four distinct O sites; this and the corresponding MBZ are shown in Fig. 1c,d.
Thus, there are four inequivalent hole Bloch states p†

k,α,σ =1/
√
N
∑

i∈Aα e
ik·Ri,α p†

i,α,σ ,
where N→∞ is the number of unit cells, α∈{1x , 1y , 2x , 2y} labels the type of O
orbital, Aα is the sublattice of all O of type α, Ri,α is the location of the α O of
unit cell i, k is a quasimomentum inside the MBZ and p†

i,α,σ creates a spin-σ hole
at Oi,α . In the following we set σ = ↑ (the σ = ↓ case is treated similarly and gives
identical results) and define the single-hole propagators
Gβα(k,ω)=〈AFM|pk,β ,↑Ĝ(ω)p†

k,α,↑|AFM〉, where Ĝ(ω)=[ω+ iη−H]−1, h̄=1 and
η>0 is a small broadening. The energy ω is measured from the undoped ground
state; that is, we set HJdd |AFM〉=0. The one-hole spectrum En(k) is given by the
poles of these propagators, and from the residues one can find the overlaps
〈n,k,↑|p†

k,α,↑|AFM〉, where H|n,k,↑〉=En(k)|n,k,↑〉 are the one-hole eigenstates
for band n.

The equations of motion are generated using the identity Ĝ(ω)(ω+ iη−
H)=1 to find (ω+ iη)Gβα(k,ω)=δα,β+〈AFM|pk,β ,↑Ĝ(ω)Hp†

k,α,↑|AFM〉. The
Hamiltonian has: terms that do not change either the hole location or its spin
(HJdd and the diagonal part of HJpd ) and lead to a simple energy shift; terms that
change the hole location but not its spin (Tpp and terms in Tswap that move the
hole past the Cu with the same spin orientation) and link Gβα to other Gβα′ ; and
terms that flip the hole’s spin, while also flipping a neighbouring Cu spin (terms
in Tswap that move the hole past the Cu with antiparallel spin, and the off-diagonal
part of HJpd ). These last terms define generalized propagators that we call
one-magnon propagators because they are projected on states that have a magnon
(flipped Cu spin) beside the hole. Equations of motion for the one-magnon
propagators are obtained similarly, and link them to other one-magnon
propagators with a different hole–magnon distance, to two-magnon propagators,
because the hole can flip a second Cu spin, and—if the hole and magnon are on
neighbouring sites—back to various Gβα . The equations for two-magnon
propagators link them to other two- and three-, and possibly also to one-magnon
propagators, and so on and so forth. Although the full set of exact equations of
motion can be thus generated, they are impossible to solve exactly. As described
in the main text, we use a variational principle to simplify this system by
removing all propagators with more than nm magnons. The resulting system
remains infinite but can be solved efficiently as described, for instance, in ref. 17.

If K=(K‖,Kz) is the photoelectron’s momentum and ω is the transferred
energy, and assuming an unpolarized beam, the ARPES intensity28 is then
obtained as A(K,ω)∼

∑
k,G δK‖+k,G

∑
α,β eiG·Rαβ ηαβAαβ(k,ω). We checked that this

gives the correct unfolding if we decouple the hole from the spins, because then
the dispersion in the FBZ can be calculated analytically. Here G are the reciprocal
lattice vectors of the MBZ and k are momenta in the first MBZ. The first sum
shows that ARPES detects quasiparticles of quasimomentum k equal to the
photohole’s in-plane momentum −K‖, modulo G. Rαβ=Ri,α−Ri,β is the distance
between the O sites α,β and Aαβ(k,ω)=−1/πImGαβ(k,ω) are the spectral
weights of the sublattice propagators. Finally, ηαβ=1 if the orbitals α and β are
both either 2px or 2py , and zero otherwise. The quasiparticle ARPES spectral
weight, Zqp(K‖), is the weight at the energy ω=Eqp(k) of the quasiparticle; that is,
A(K,ω→Eqp(k))→Zqp(K‖)δ(ω−Eqp(k)).
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