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Spectrum of a lattice exciton in a transverse magnetic field: Emergence of full
translational symmetry
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We show that even in the presence of a transverse magnetic field, the eigenstates of an exciton remain invariant
to the full lattice translation group. This is expected if the exciton is viewed as a neutral quasiparticle, but not
if one views it as a bound electron-hole pair. Single electron and hole wave functions are invariant only to
the magnetic translation group, and their momenta are restricted to the magnetic Brillouin zone; the associated
folding is the origin of their Hofstadter butterfly spectra. We find that such folding is not necessary for exciton
eigenstates, which are characterized by momenta in the full Brillouin zone and thus have higher symmetry than
the Hamiltonian. The magnetic field can have a significant effect on the shape of the exciton dispersion, however.
While similar effects have been noted in continuous models, we find qualitatively different behavior for Frenkel
excitons, whose origin we clarify. We also derive an analytical solution for the Hofstadter butterfly on a square
lattice and analyze its dispersion in the full Brillouin zone.
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I. INTRODUCTION

The spectrum of a charged particle moving on a two-
dimensional (2D) lattice in a transverse magnetic field—the
Hofstadter butterfly—has long been a fascinating topic in
condensed matter physics [1,2]. The key result is that if the
magnetic flux per unit cell � is a rational fraction of the
elementary magnetic flux �0 = h

e
, i.e., � = p

q
�0 where p,q

are mutually prime integers, then the spectrum consists of q

subbands. The reason is that due to the Peierls phases, the
Hamiltonian is not invariant to all lattice translations, only
to those in the magnetic translation group [3]. This group
is associated with a magnetic unit cell q times larger than
the original unit cell, so as to enclose an integer flux p�0.
Consequently, the magnetic Brillouin zone (MBZ) is q times
smaller than the full Brillouin zone (FBZ); this explains the q

subbands of the butterfly as the result of folding the dispersion
from the FBZ into the MBZ. We note that the Hofstadter
butterfly has been recently observed in graphene [4] and there
are suggestions for how to engineer effective “magnetic” fields
in cold atom systems, which may provide another platform for
investigating such Hamiltonians [5].

A charge neutral object has no corresponding Peierls
phases, so a magnetic field should have no effect on its
spectrum (hereafter, we ignore spin degrees of freedom).
Naively, one would expect this to hold for an exciton, which
is a bound electron-hole pair and thus neutral. However, the
electron and the hole acquire Peierls phases and their individual
wave functions are properly defined only in the MBZ. It is thus
not a priori clear if the exciton eigenstates are defined in the
FBZ, or the MBZ. Here, we show that the former holds true:
Indeed, the exciton eigenstates continue to be characterized
by momenta in the FBZ even in the presence of the magnetic
field. Unlike in the naive picture, however, we do find that the
exciton’s dispersion may depend significantly on the magnetic
field, since interference between the hole’s and the electron’s
Peierls phases affects its motion.

In this work, the spectrum of a lattice exciton in a transverse
magnetic field is investigated. Previous work focused on

continuous models [6–9], where translations form a continuous
group [7] and the momentum can have any value. By contrast,
in lattice models the translation group is discrete and the
question as to what is the proper Brillouin zone for the crystal
momentum is meaningful. Also, while a dependence of the
exciton’s effective mass on the magnetic field was found in the
continuous models as well, its origin is qualitatively different
from what we find for lattice models, as discussed below.
Moreover, the solution we provide here for the lattice problem
is exact, whereas most of the work on continuous models
is based on a projection into the lowest Landau level, i.e.,
assumes that the applied magnetic field is large enough that
the gap opened between consecutive Landau levels is much
larger than the typical electron-hole interaction energy. We
make no such approximations here. In fact, since the Peierls
phases are periodic functions of the magnetic flux and since
they are the only way for the magnetic field to enter the model
(see below), it is not even clear what a “large enough magnetic
field” means in the lattice context.

The paper is organized as follows: Section II describes the
specific 2D lattice models studied here and a possible exper-
imental implementation. Section III shows that an analytical
solution is possible for the propagator of a single charge-carrier
hopping on a square lattice placed in a transverse magnetic
field, both in the MBZ and the FBZ. Some of the relevant
aspects of the Hofstadter butterfly spectrum in the unfolded
Brillouin zone are then analyzed. Section IV generalizes this
approach to calculate the electron+hole propagator, from
which the exciton spectrum is extracted as the lowest-energy
feature. The results are analyzed in Sec. V, while Sec. VI
contains our conclusions.

II. MODEL

The Hamiltonian we investigate is

H = −
∑
〈i,j〉

(
t

(e)
ij c

†
i cj + t

(h)
ij h

†
i hj + H.c.

) −
∑
i,j

Uij c
†
i cih

†
jhj .

(1)
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FIG. 1. (Color online) Magnetic unit cell consisting of q sites
α = 0, . . . ,q − 1. The Peierls phases for electron (hole) hopping in
(opposite to) the direction of the arrows equal eiαφ .

The first term describes nearest-neighbor (NN) hopping on a
2D square lattice with a = 1, where the hopping integrals
t

(e/h)
ij = te/h exp[±ie

�

∫ i

j
�A(�r)d�r] include the Peierls phases,

and ci and hi are annihilation operators for an electron and hole
at site i, respectively. We ignore the Zeeman coupling effects,
so their spins are irrelevant. In the Landau gauge �A(�r) = Bxêy ,
the Peierls phases appear only for hopping along the y axis
and are proportional to

φ = 2π
�

�0
= 2π

p

q
, (2)

where p,q are mutually prime integers. The magnetic unit
cell consisting of q adjacent sites and their Peierls phases are
sketched in Fig. 1.

The second term is the electron-hole attraction.
We consider both short-range (on-site) attraction Uij =
Uδij , and long-range attraction Uij = U (ix − jx,iy − jy) =
U/

√
1 + |ix − jx |2 + |iy − jy |2. The geometry we envision

is that of a bilayer with the electron and hole moving each
in its own layer, like in biased coupled quantum wells with
a modulation applied electrostatically through a lateral gate
[10]. This gate could also be patterned with a 2D lattice, with
a lattice constant large enough so that � ∼ �0 for reasonable
values of B [11]. The short-range and long-range interactions
correspond to having the lattice constant a large and small,
respectively, compared to the distance between the two layers.

As we show below, both models give the same qualitative
physics, although of course there are quantitative differences.
This suggests that the answers to the specific questions we
are interested in are universal, i.e., would be similar in other
simulators of this problem. Given the recent progress [4], a
biased graphene bilayer may offer another possible setup (on
a honeycomb lattice), and many other implementations can be
envisioned, including in the context of cold atoms trapped in
optical lattices.

III. SINGLE CARRIER SPECTRUM

Before discussing the exciton spectrum, we briefly discuss
the single carrier spectrum. This allows us not only to define
the notation and explain how we implement the unfolding
from the MBZ to the FBZ, but also to show that the Hofstadter
spectrum can be calculated analytically for the square lattice.

There are q one-electron states with well-defined momen-
tum in the MBZ, �k ∈ (−π

q
, π

q
] × (−π,π ], namely,

c
†
�k,α

=
√

q

N

∑
i∈Aα

ei�k· �Ri c
†
i , (3)

where α = 0, . . . ,q − 1 indexes distinct sites in the magnetic
unit cell and Aα contains all lattice sites of type α. N → ∞ is
the total number of lattice sites.

Since Hamiltonian (1) is invariant to translations in
the MBZ, 〈0|c�k′βĜ(ω)c†�kα

|0〉 = δ�k′,�kGβα(�k,ω). Here, Ĝ(ω) =
[ω + iη − H]−1 is the resolvent, η → 0+ is a small broad-
ening, and we set � = 1. The equations of motion for
Gβα(�k,ω) are obtained from the matrix elements of the identity
Ĝ(ω)(ω + iη − H) = 1, and read

(ω + iη)Gβα(�k,ω)

= δαβ − 2te cos(αφ − ky)Gβα(�k,ω)

− te[e−ikx Gβ,α+1(�k,ω) + eikx Gβ,α−1(�k,ω)], (4)

where the cyclicity of α is implicitly assumed: if α = q − 1,
then α + 1 = 0, etc. This system of q linear equations can be
solved (see below) and the spectrum in the MBZ is extracted
from the poles of any Gβα(�k,ω) propagator.

However, our goal is to calculate the Green’s function
G( �K,ω) = 〈0|c �KĜ(ω)c†�K |0〉 defined in the original FBZ,

for �K ∈ (−π,π ] × (−π,π ], where c
†
�K = 1/

√
N

∑
i e

i �K· �Ri c
†
i

describes a free particle (for B = 0). This operator can be
written in terms of c

†
�k,α

where �k ∈ MBZ is the value onto

which �K folds when going from the FBZ to the MBZ. For
example, for Kx > 0 and an even γ so that �k = �K − γ π

q
x̂

lies in the MBZ, we have c
†
�K = 1/

√
q

∑q−1
α=0 exp(iαγ π

q
)c†�k,α

and therefore G( �K,ω) = 1/q
∑q−1

α,β=0 ei(α−β)γ (π/q)Gβα(�k,ω).
Similar expressions (with somewhat different phase factors)
are obtained for all other possible folding cases.

Let us introduce the generalized FBZ propagators:

Gn( �K,ω) = 1

q

q−1∑
α,β=0

ei(α−β)γ (π/q)+iαnφGβα(�k,ω)

which are cyclic in n = 0, . . . ,q − 1 and of which the
n = 0 one is G0( �K,ω) ≡ G( �K,ω) = 〈0|c �KĜ(ω)c†�K |0〉. Using
Eq. (4), we find that they satisfy the equations:

[ω + iη − ε(Kx + nφ)]Gn( �K,ω)

= δn,0 − tee
−iKy Gn+1( �K,ω) − tee

iKy Gn−1( �K,ω). (5)

This system of q linear equations can be solved an-
alytically as follows. First, we treat the n = 1, . . . ,q − 1
equations as a set of linear equations for the unknowns
G1( �K,ω), . . . ,Gq−1( �K,ω). Inhomogeneous terms appear only
in the n = 1 and n = q − 1 equations and are proportional
to G0 ≡ G( �K,ω). It follows that we must have Gn( �K,ω) =
gn( �K,ω)G( �K,ω) for all n. To simplify notations, from now
on we use gn ≡ gn( �K,ω). The n = 0 equation then gives the
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solution in the expected form:

G( �K,ω) = 1

ω + iη − ε(Kx) − ε(Ky) − �( �K,ω)
(6)

with the self-energy of the particle in the magnetic field:

�( �K,ω) = −teiKy (gq−1 − 1) − te−iKy (g1 − 1). (7)

To find g1 and gq−1, we split the inhomogeneous system of
linear equations into two parts: gn = Fn + Hn, where

[ω + iη − ε(Kx)]F1 = −tee
iKy − tee

−iKy F2,

[ω + iη − ε(Kx + nφ)]Fn = −tee
iKy Fn−1

− tee
−iKy Fn+1,

{ω + iη − ε[Kx + (q − 1)φ]}Fq−1 = −tee
iKy Fq−2

with n = 2, . . . ,q − 2 in the central equations, and a similar
set for Hn, n = 1, . . . ,q − 1, but now with the inhomogeneous
terms in the equation for Hq−1.

These can now be solved easily. For the F ’s, starting from
n = q − 1 it is immediate to see that Fn = AnFn−1, where
the coefficient An is a finite continued fraction. The n = 1
equation then allows us to find all variables in terms of these
continued fractions. For the H ’s, we start from n = 1 and find
Hn = BnHn+1, again with simple finite continued fractions for
coefficients; now the n = q − 1 equation allows one to find all
unknowns.

We can write both solutions in a compact form as follows.
We introduce the finite continued fractions:

Mn(Kx,ω) = t

ω + iη − ε(Kx + nφ) − tMn−1(Kx,ω)

with M0(Kx,ω) = 0. Then for any n = 1, . . . ,q − 1, Fn =
A1A2 · · ·An where An = −eiKy Mq−n(−Kx,ω), and Hn =
Bq−1Bq−2 · · · Bn with Bn = −e−iKy Mn(Kx,ω).

As a result, the self-energy is

�( �K,ω)/te = Mq−1(Kx,ω) + Mq−1(−Kx,ω) + 2 cos(Ky)

+ eiq(Ky+π)
q−1∏
n=1

Mn(−Kx,ω)

+ e−iq(Ky+π)
q−1∏
n=1

Mn(Kx,ω).

The presence of Mq−1, with their q − 1 continued-fraction
“floors,” agrees with the expectation of q − 1 additional
poles for G( �K,ω) (q subbands in the spectrum). Note that
�(Kx,Ky,ω)|B = �(−Kx,Ky,ω)|−B , �( �K,ω) = �(− �K,ω),
etc. However, there is no symmetry to 90◦ rotations,
�(Kx,Ky,ω) 
= �(Ky,−Kx,ω). The reason for this becomes
clear if we plot the spectral weights in the BZ.

Before analyzing these spectra, we point out that the
FBZ propagators are not diagonal in momentum, i.e., there
are momenta �K 
= �K ′ for which 〈0|c �K ′Ĝ(ω)c†�K |0〉 
= 0. This

occurs, for instance, for any �K, �K ′ with Kx > 0, K ′
x < 0

which map onto the same �k value, and can be seen from the fact
that the resulting set of linear equations [analogs of Eq. (5)]
continue to have a nonzero inhomogeneous part although now
it is not in the n = 0 equation, but in one with a finite n value.

Physically, this shows that the FBZ is not the true Brillouin
zone, as expected since the full lattice translations group is not
the proper symmetry group of the Hamiltonian.

Plots of the single charge-carrier spectral weight A( �K,ω) =
− 1

π
Im G( �K,ω) and of the density of states (DOS) ρ(ω) =

1
N

∑
�K A( �K,ω) are shown in Fig. 2 for � = 1

q
�0 with 2 �

q � 5. Since the spectral weight is very small in some regions
of the FBZ, we superimposed solid (blue) lines which show the
location of all the poles (i.e., the location of all eigenenergies).
As expected, we see the q subbands. For even q, the two central
subbands cross at a few Dirac points in the BZ, explaining the
absence of a gap between them in the DOS.

The first two panels show the dispersion from X1 =
(−π,0) → � = (0,0) → X2 = (π,0). Not surprisingly, we
see the q periodicity consistent with the folded MBZ used
in the calculation. However, precisely the same periodicity
appears on all other cuts in the BZ. For example, the subband
energies on the � → X2 line are identical to those on the
� → X3 = (0,π ) line, even though the MBZ was not folded
along the y axis. This is correct: The spectrum cannot depend
on the gauge used (which determined the folding of the MBZ),
and must have the symmetry to 90◦ rotations of the underlying
problem. What is sensitive to the gauge are the wave functions
and thus the quasiparticle weights—indeed, these are different
along otherwise equivalent lines. For example, along �-X2

the weight shifts steadily from the lowest to the highest
subband, whereas along �-X3 most of the weight is in the
lowest subband. Note that the sum rule

∫ ∞
−∞ dω A( �K,ω) = 1

is obeyed at all �K .
In addition to the q periodicity for any cut in the BZ, we also

see the reason for the existence of van Hove singularities in the
DOS: these are due to the appearance of saddle points in the
dispersion (e.g., the X points for q = 3). The evolution with
increasing q (decreasing B) also becomes clear: The additional
subbands are pushed to the top/bottom of the spectrum and
become flatter. The expected dispersionless Landau levels
spaced by the cyclotron frequency are indeed recovered as
B → 0.

This solution also allows us to understand the changes
in the spectral weight for small variations of B. In Fig. 3
we show what happens to A( �K,ω) when the flux is changed
from �/�0 = 1/3 to 10/31 and 100/301. The rough pattern
remains the same, in particular three main subbands with q = 3
periodicity are seen in all cases. Of course, for the larger q

there are, in fact, q rather flat subbands with their proper q

periodicity. These are still visible in the p/q = 10/31 case,
especially in the central “subband” where one can see pieces
of the 11 true subbands that contribute to it. The top/bottom
“subbands” have contributions from ten true subbands each,
but their spacing is less than the broadening η and they merge
into a broad feature in most places. This is certainly the case
for p/q = 100/301 at all energies.

The weights in A( �K,ω) also have similar patterns in all
cases. For example, along X2 → � the maximum weight
moves from the upper to the lower subband, while along
� → X3 the maximum is always in the lowest band. The
flatness of the true subbands explains the lack of apparent
dispersion along � → X3 for the q = 31,301 cases. This also
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FIG. 2. (Color online) Electron spectra for � = 1
q
�0 with 2 �

q � 5, along cuts between high-symmetry points � = (0,0), X1 =
(−π,0), X2 = (π,0), X3 = (0,π ), and M = (π,π ) in the FBZ. Solid
(blue) lines show the eigenstates, overlayed over the spectral weight
(contour plots with broadening η = 0.05). The rightmost panels show
the total DOS ρ(ω) versus ω.

illustrates the danger of attributing meaning to the contour
plots of A( �K,ω). For q = 31,301, the spectrum is very similar
at all �K points, and consists of many flat true subbands bunched
into the three visible ‘subbands. The apparent dispersion in
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FIG. 3. Single charge-carrier spectral weight A( �K,ω) for � =
p

q
�0 with p/q = 1/3, 10/31, and 100/301, along cuts between high-

symmetry points in the FBZ, for t = 1, η = 0.05.

A( �K,ω) is simply because of the shift of the spectral weight
between these many subbands, not because their location
changes with �K , as is normally the case. A different gauge
will select a different looking “dispersion”, which will mock
the corresponding q = 3 pattern. In any event, these results
confirm that even gauge dependent quantities vary smoothly
with small changes in the flux, as expected on physical
grounds. Our analytical solution can be used to easily study
many other issues, but we stop here.

IV. ELECTRON+HOLE PROPAGATORS IN THE FBZ

We now follow similar steps to calculate the FBZ Green’s
functions for electron+hole states, to find

G( �K,ω) = 〈0|e �KĜ(ω)e†�K |0〉,

where e
†
�K = 1/

√
N

∑
i e

i �K· �Ri h
†
i c

†
i is defined in the FBZ. Note

that other propagators are also obtained from this method (see
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below) but we focus on this particular one because it has the
largest spectral weight on the bound excitonic states of interest
to us. We again start with the MBZ electron+hole propagators

Gβα(�k,n,m,ω) = 〈0|e�k,0,0,βĜ(ω)e†�k,n,m,α
|0〉

with e
†
�k,n,m,α

= √
q/N

∑
i∈Aα

ei�k· �Ri h
†
i c

†
i+nx̂+mŷ describing a

state of momentum �k ∈ MBZ with the electron at nx̂ + mŷ

away from the hole, the latter being on sublattice α. Taking
matrix elements of the identity Ĝ(ω)[ω + iη − H] = 1, we
now find

[ω + iη + U (n,m)]Gβα(�k,n,m,ω)

= δβαδn,0δm,0 − (the
iαφ−iky + tee

i(α+nq )φ)

×Gβα(�k,n,m − 1,ω) − (the
−iαφ+iky + tee

−i(α+nq )φ)

×Gβα(�k,n,m + 1,ω) − (the
−ikx + te)

×Gβα(�k,n − 1,m,ω) − (the
ikx + te)

×Gβα(�k,n + 1,m,ω),

where nq = n (mod q) and U (n,m) = Uδn,0δm,0 or Un,m =
U/

√
1 + n2 + m2 for short-range or long-range interactions,

respectively. This is an infinite system of coupled linear
equations, with an inhomogeneous term only in the equations
for Gαα(�k,0,0,ω).

These equations can be solved as discussed below. How-
ever, since we are interested in the FBZ propagators, we use
these equations to first generate equations of motion for the
FBZ propagators, which we then solve. The mapping between
FBZ and MBZ operators is done like for single carriers; for
instance, for Kx > 0 and even γ mapping �K → �k + γ π

q
�x, we

have e
†
�K = 1√

q

∑q−1
α=0 eiαγ (π/q)e

†
�k,0,0,α

, etc. Suppresing the �K,ω

indices to compactify the notation, let

gnm( �K,ω) ≡ gn,m = 1

q

∑
α,β

ei(α−β)(γπ/q)−imαφGβα(�k,n,m,ω).

The propagator of primary interest to us is G( �K,ω) ≡ g0,0.

The equations of motion for gnm are generated from those for
Gβα listed above. They read as follows:

[ω + iη + U (n,m)]gnm

= δn,0δm,0 − (the
−iKy + tee

inqφ)gn,m−1

− (the
iKy + tee

−inqφ)gn,m+1 − (the
−iKx+imφ + te)gn−1,m

− (the
iKx−imφ + te)gn+1,m.

Even though this is an infinite system of coupled equations,
an arbitrarily accurate solution can be obtained by truncating
it at a sufficiently large Manhattan distance Nc, i.e., by
assuming that all gnm → 0 if |n| + |m| � Nc. The cutoff Nc is
increased until the results converge. For exciton (bound) states
this cutoff can be quite small, Nc ∼ 10, since in excitonic
states it is exponentially unlikely to find a large distance
between the electron and the hole. For higher-energy states
in the continuum describing (unbound) scattering states of the
electron and hole, the cutoff needs to be much larger since, in

FIG. 4. (Color online) Exciton dispersion along the (0,0)-(π,0)
cut in the FBZ, for several values of φ and te = th = t .

principle, the electron and the hole can be arbitrarily far apart.
In practice, however, the broadening η defines a finite lifetime
τ ∼ 1/η which prevents the electron and hole from moving
arbitrarily far apart. As a result, for results to converge Nc only
needs to be larger than the typical distance traveled by carriers
within this lifetime τ . The resulting finite linear and very sparse
system of equations is solved numerically [12] and the FBZ
spectrum is obtained from the poles of G( �K,ω) ≡ g00( �K,ω).
As mentioned above, this also gives us all other propagators
gnm with |n| + |m| < Nc, not just g00.

V. RESULTS

In Fig. 4 we plot the exciton dispersion Eexc( �K) defined
as the lowest-energy pole of the electron+hole propagator
G( �K,ω) for a given �K , along the (0,0)-(π,0) cut in the FBZ, for
several values of �. We show results for p

q
< 0.5 because the

spectra are invariant to � → � + �0 and � → −�. Panel (a)
is for short-range attraction with U = 7.5t , while panel (b)
is for long-range attraction with U = 4t . These values were
chosen so that the exciton binding energy at B = 0 is similar.

The first observation is that there is no trace of the q

periodicity apparent in the single particle dispersion. For any
panel in Fig. 2 one can easily identify the true Brillouin zone
(the MBZ) for the single charged particle from the fact that the
dispersion must mirror its periodicity and therefore the slope
of the dispersion must vanish at the Brillouin zone edges.
Indeed, this occurs at π/q values. By contrast, the slope of
the exciton dispersion is finite everywhere inside the FBZ,
showing that this must be the true Brillouin zone for this
neutral object. The curves have similar (though not identical)
shapes irrespective of their �/�0 ratio, showing no sign of
any underlying MBZ-related periodicity. To put it another way,
for these exciton dispersions choosing a larger unit cell and
therefore a smaller Brillouin zone would result in a folded
dispersion that would not have zero slope at the boundaries
of this smaller Brillouin zone. This is similar to what would
happen in the absence of the magnetic field for a single particle;
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FIG. 5. (Color online) (a) Effective mass of the exciton vs p/q =
φ/(2π ), for the same parameters as in Fig. 4. (b) Corresponding
probabilities Pn,m to find a relative distance nx̂ + mŷ between the
electron and the hole, in the B = 0 ground state of the exciton,
normalized with respect to P0,0.

of course one could choose a larger unit cell and therefore find
the free-particle dispersion ε( �K) = −2t(cos Kx + cos Ky)
folded in the appropriate number of subbands. None of those
subbands has zero slope at the edges of the folded Brillouin
zone, though, showing that the dispersion is not periodic within
this small Brillouin zone and therefore that it is not the true
(largest possible) Brillouin zone.

We find similar results (not shown) along all other cuts
in the Brillouin zone and also for different ratios of te/th,
so long as neither hopping vanishes. This confirms that these
exciton eigenstates are indeed properly defined in the FBZ,
in agreement with general expectations for neutral objects.
The dispersions, however, do change with B, this being more
apparent for the longer-range interaction. To quantify this
change, we calculate the effective mass of the exciton from
the curvature of its dispersion at K = 0. The results are shown
in Fig. 5(a), in units of the mass m of a single particle with
hopping t . The effective mass shows significant dependence
of B.

To understand the reason for this dependence, we use
perturbation theory to fourth order in |te| and |th| to calculate
the exciton’s dispersion in the case with short-range attraction.
The zeroth-order solution is an immobile Frenkel exciton with
the hole and electron at the same site, and energy −U . Standard
calculations lead to

Eexc( �K) = E0 − 2t∗1 (cos Kx + cos Ky) − 4t∗2 cos Kx cos Ky

− 2t∗3 [cos(2Kx) + cos(2Ky)] + · · · ,

i.e., the dispersion of a quasiparticle (the exciton) with up to
third nearest neighbor hopping, which is indeed well defined
within the FBZ irrespective of the applied magnetic field. The
effective on-site energy and hopping integrals for the exciton

(a) (b) 

(c) (d) 

FIG. 6. (Color online) Examples of contributions to NN exciton
hopping in (a) and (b), and to second and third NN exciton hopping in
(c) and (d), respectively. In panels (b) and (c), the first example leads
to Aharonov-Bohm interference and thus magnetic field dependence,
while the second does not. The hole and electron are depicted with
different symbols and their hopping is indicated by arrows of different
colors.

are
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h

U 3
+ · · · .

Consider now the effective exciton hopping integrals. The only
second-order term is 2teth/U in t∗1 , due to processes depicted
in Fig. 6(a) where either the electron hops to a NN site and
is then followed by the hole, or vice versa. They follow the
same path so their Peierls phases cancel out and there is no φ

dependence. In fourth order, however, t∗1 acquires dependence
of φ through processes where, for example, the hole moves to
a NN site by one hop, while the electron goes to the same site
by three hops on the other sides of the plaquette [see Fig. 6(b)].
This leads to an overall phase of ±φ for these contributions
and thus to Aharonov-Bohm interference between them. Of
course, there are also fourth-order contributions independent
of φ, one of which is sketched in Fig. 6(b).

Fourth-order perturbation in hopping also generates ef-
fective second and third NN exciton hopping. The former
contains a term dependent on (independent of) φ, describing
contributions from processes where the electron and the hole
move on the opposite (same) sides of a plaquette [see Fig. 6(c)].
The third NN hopping is independent of φ since no phase is
acquired in fourth order [see Fig. 6(d)], although φ dependence
appears in higher orders.

The ratio between the exciton effective mass and the mass
of either charge carrier me/h ∼ (te/h)−1 is

m∗/me/h = U/(2th/e) + [
t2
e + 4teth

+ t2
h − 2

(
t2
e + 3teth + t2

h

)
cos(φ)

]
/(Uth/e) + · · · .

This is in reasonable agreement with the short-range result in
Fig. 5(a) (see dashed line), although higher-order terms are
required for good quantitative agreement at this still modest
value U = 7.5t . Note that if either te or th vanish, then the
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effective exciton mass becomes infinite as the exciton will be
pinned near this immobile charge. Of course, in that case the
question of a Brillouin zone again becomes nonsensical, as the
immobile carrier breaks translational symmetry.

For the long-range potential, the dependence of m∗ on φ

is much stronger. This is expected given that in this case the
exciton wave function is much more extended, as shown in
Fig. 5(b) where we plot the probability Pn,m to find the electron
at a distance nx̂ + mŷ from the hole in the ground state at B =
0 (this quantity can be extracted from the residues associated
with the exciton pole, of the various propagators gnm). This
exciton is more Wannier-like, with larger average distance
between the electron and the hole, and therefore there are
many more contributions to its hopping where the electron
and hole trajectories enclose larger magnetic fluxes, resulting
in additional Aharonov-Bohm interference. However, these
enclosed fluxes depend only on the difference between the
hole and the electron trajectories, and not on their original
starting point. This is why all the q sites in the magnetic unit
cell are identical starting points, as far as the exciton dynamics
is concerned, and so the normal unit cell is a valid choice and
the corresponding FBZ characterizes the dispersion.

VI. DISCUSSIONS

To summarize, we have produced exact results for 2D
lattice models of excitons moving in transverse magnetic
fields, where the attraction between the electron and hole is
modeled both by short-range and long-range interactions. In
all cases we find that the exciton dispersion retains the FBZ
as its proper Brillouin zone, i.e., these bound states retain the
full translational invariance of the original lattice, despite the
presence of the Peierls phases which reduce the translational
symmetry of the Hamiltonian to that associated with the MBZ.

While this agrees with general expectations for the disper-
sion of a neutral object, we also find a strong dependence of the
dispersion on the value of the applied magnetic field, which
contradicts the naive expectations. As we showed, this is due
to constructive or destructive interference between the phases
accumulated by the constituent parts of the exciton—the
electron and the hole—as they move together through the
lattice. Thus, the dependence must be a periodic function
of the “quantum of phase” φ = 2π�/�0, since the phase
accumulated on any trajectory is an integer multiple of this.

This suggests the interesting possibility that quantum
oscillations in various transport and thermodynamic properties
should arise in excitonic systems, despite the absence of a
Fermi surface.

This periodic dependence on φ is qualitatively different
from that found in continuous models, which is through the
magnetic length l = √

�/eB and is monotonic, not periodic;
e.g., for the lowest-energy exciton (associated with the electron
and hole occupying states in the lowest Landau level), one finds
[8] that m∗ ∼ √

B. This dependence has nothing to do with
interference between trajectories, like for a lattice model; there
is certainly no “quantum of phase” in a continuous model.
Instead, it arises through the modulations of the magnitude
of the effective Coulomb attraction, which is controlled by l

since the magnetic length defines the typical “spread” of the
electron and hole wave functions.

We also note that Aharonov-Bohm oscillations of excitons
have been discussed in the context of particles constrained to
move on a ring [13]. While the underlying idea of interference
is the same, that problem is very different from the one we
consider here. In particular, there is no sense in discussing what
is the discrete translational symmetry group and associated
Brillouin zone for a ring, just as there is none for continuous
models.

One interesting question is whether this invariance of
the exciton eigenstates to all lattice translations can be
inferred from group-theoretical considerations, or is it an
emergent property that only applies to the bound sector of
electron+hole eigenstates. In favor of the former possibility
is the fact that one can easily verify that these electron+hole
propagators are diagonal in the FBZ, i.e., 〈0|e �K ′Ĝ(ω)e†�K |0〉 =
δ �K ′, �KG( �K,ω). This is to be contrasted with the single-electron
or single-hole propagators, which have nonvanishing matrix
elements between momenta �K ′ 
= �K , as mentioned before,
and which clearly signal that for charged particles the FBZ
is not a symmetry group. However, while the orthogonality is
necessary for the higher symmetry to be valid, it is not clear
that it is a sufficient condition, as well.

Indeed, counterarguments are easy to find. To begin with,
there are electron+hole propagators obtained by sandwiching
the resolvent not between the e

†
�K |0〉 states, but between FBZ

Bloch states where the hole and electron are at a finite
separation. In that case, one can find nonvanishing results
for �K ′ 
= �K . This is not such a surprise if one considers the
continua of states that must appear above the exciton bound
state and describe scattering states where the electron and hole
are not bound to each other. The energies of these states are
given by the convolution of the single-electron and single-hole
spectra, and should mirror their symmetry.

Indeed, this is illustrated for p = 1, q = 3 in Fig. 7,
where we plot the electron+hole spectral weight A( �K,ω) =
− 1

π
ImG( �K,ω) for U = 0 at energies corresponding to the

lowest-energy electron+hole continuum. Figure 2(c) shows
that the lowest single particle subband lies at −2.75 < ω/t <

−2, and the convolution should double these values (we
choose te = th = t). Indeed, Fig. 7 shows a continuum of
states between these expected bounds. The band edges of this
continuum clearly show the π/3 periodicity expected for this

FIG. 7. Exciton spectral weight A( �K,ω) for energies in the lower
electron+hole continuum, for p = 1, q = 3. Other paramerters are
te = th = 1, U = 0, η = 0.025.
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q = 3 situation (in the right upper corner the spectral weight
vanishes so the true band-edge location is hard to see).

This continuum keeps its location for any value of U , since
scattering states always appear at any energy in the convolution
of the single-hole and single-electron spectra. What changes
with U is that once the bound state appears, a lot of spectral
weight is shifted into that state and the continuum is harder
to “see.” Its band edges and their MBZ periodicity remain
the same, though. The remarkable fact is that the exciton
dispersion shows no trace of this periodicity (see Fig. 4).

Since different parts of the spectrum exhibit different
symmetries, it seems reasonable to conclude that the invariance
to the full lattice translational group of the exciton eigenstates
is an emergent property, valid only for the bound state. Indeed,
only the bound state can be thought of as a charge neutral

object (the exciton), for whom this higher symmetry is not
unexpected.

These results provide an example of rather unusual eigen-
functions with higher symmetry than their Hamiltonian, and
show that composite objects do not automatically inherit the
translational properties of their constituent parts, but can have
higher symmetry. In a very different context (and not based
on an exact solution, like here) a similar situation was found
in Ref. [14]. It would be interesting to understand to what
extent this is a general occurrence, and what controls when it
emerges.
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