
PHYSICAL REVIEW B 89, 035122 (2014)

Single-polaron properties for double-well electron-phonon coupling
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We show that in crystals where light ions are symmetrically intercalated between heavy ions, the electron-
phonon coupling for carriers located at the light sites cannot be described by a Holstein model. We introduce
the double-well electron-phonon coupling model to describe the most interesting parameter regime in such
systems and study it in the single-carrier limit using the momentum average approximation. For sufficiently
strong coupling, a small polaron with a robust phonon cloud appears at low energies. While some of its properties
are similar to those of a Holstein polaron, we highlight some crucial differences. These prove that the physics of
the double-well electron-phonon coupling model cannot be reproduced with a linear Holstein model.
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I. INTRODUCTION

When charge carriers couple to phonons, magnons, or other
bosonic excitations, the resulting dressed quasiparticles—the
polarons—often behave drastically different from the free
carriers. This is why understanding the consequences of
carrier-boson coupling is important for many materials such
as organic semiconductors [1,2], cuprates [3–8], manganites
[9], two-gap superconductors like MgB2 [10–13], and many
more. To describe them, many models of varying complexity
have been devised and studied. The simplest is the Holstein
model for electron-phonon coupling [14], where carriers
couple to a branch of dispersionless optical phonons through
a momentum-independent coupling g. Physically, it describes
a modulation of the on-site potential of the carrier due to
the deformation of the “molecule” hosting it. Longer-range
coupling that modulates the carrier’s on-site potential leads to
g(q) couplings that depend on the boson’s momentum, such
as the Fröhlich [15] or the breathing-mode models [16]. If
the bosons modulate the hopping of the carrier, the coupling
g(k,q) depends on the momenta of both carrier and boson, as
is the case in the Su-Schrieffer-Heger (SSH) model [17,18]
or for a hole coupled to magnons in an antiferromagnet, as
described by a tJ model [19].

All these electron-phonon coupling models assume that
the coupling is linear in the lattice displacements. This is a
natural assumption because if the displacements are small, the
linear term is the most important contribution. However, the
coefficient of the linear term may vanish due to symmetries of
the crystal. In such cases, the most important contribution is
the quadratic term.

Here, we introduce, motivate, and study in detail a
Hamiltonian describing such quadratic electron-phonon (e-
ph) coupling relevant for many common crystal structures,
consisting of intercalated sublattices of heavy and light atoms.
We focus on the single-carrier limit and the parameter regime
where the carrier dynamically changes the effective lattice
potential from a single well to a double well; hence we call
this “the double-well e-ph coupling.” We use the momentum-
average approximation [20,21] to compute the properties of the
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resulting polaron with high accuracy. We find that although the
polaron shares some similarities with the Holstein polaron, it
also differs in important aspects. Indeed, we show that the
physics of the double-well e-ph coupling model cannot be
described by a renormalized linear Holstein model.

In this paper, we present a systematic, nonperturbative
study of such a quadratic model. Previously [22], we studied
the effect of quadratic (and higher) corrections added to a
linear term. Weak, purely quadratic coupling was studied using
perturbation theory in Refs. [23,24]. Other works considered
complicated nonlinear lattice potentials and couplings but
treated the oscillators classically [25–27], or discussed anhar-
monic lattice potentials but for purely linear coupling [28,29].
Away from the single-carrier limit, the Holstein-Hubbard
model in infinite dimensions was shown to have parameter
regions where the effective lattice potential has a double-well
shape [30–32]; this was then used to explain ferroelectricity
in some rare-earth oxides [33]. However, the effects of a
double-well e-ph coupling on the properties of a single polaron
were not explored in a fully quantum-mechanical model on a
low-dimensional lattice.

This work is organized as follows. In Sec. II, we introduce
the Hamiltonian, motivate its use for relevant systems, and
discuss all approximations made in deriving it. In Sec. III,
we review the theoretical means by which we study our
Hamiltonian. In Sec. IV, we present our results, and in Sec. V,
we give our concluding discussion and an outlook for future
work.

II. THE MODEL

The crystal structures of interest are illustrated in Fig. 1(a)
for 1D and Fig. 1(b) for 2D cases. The 3D crystal would have a
perovskite structure but we do not discuss it explicitly because,
as we show below, dimensionality plays no role in determining
the polaron properties.

The undoped compound is an insulator made of light
atoms, shown as filled circles, intercalated between heavy
ones, shown as empty circles. To zeroth order, the vibrations
of the heavy atoms can be ignored while those of the light
atoms are described by independent harmonic oscillators
Hph = �

∑
i b

†
i bi , where bi annihilates a phonon at the ith
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FIG. 1. (Color online) Sketch of the crystal structures discussed
in this work: (a) 1D chain and (b) 2D plane, consisting of light atoms
(filled circles) intercalated between heavy atoms (empty circles).
In the absence of carriers, the ionic potential of a light atom is
a simple harmonic well. In the presence of a carrier, the ionic
potential of the light atom hosting it remains an even function of
its longitudinal displacement, so the linear e-ph coupling vanishes.
In suitable conditions, the effective ionic potential becomes a double
well (see text for more details).

light atom. (We set the mass of the light ions M = 1, and
also � = 1.) In reality, there is weak coupling between these
oscillators giving rise to a dispersive optical phonon branch.
However, the dispersion can be ignored if its bandwidth is
small compared to all other energy scales. We do so in the
following.

Consider now the addition of a carrier. If it occupies orbitals
centered on the heavy atoms, its coupling to the oscillations
of the light atoms is described by breathing-mode coupling
models [16]. Here, we are instead interested in the case where
the carrier is located on the light atoms. Such is the situation
for a CuO2 plane as shown in Fig. 1(b), since the parent
compound is a charge-transfer insulator [34] so that upon
doping, the holes reside on the light O sites (of course, there are
additional complications due to the magnetic order of the Cu
spins; we ignore these degrees of freedom in the following).
The carrier moves through nearest-neighbor hopping between
light atoms: T̂ = −t

∑
〈i,j〉(c

†
i cj + H.c.), where ci is the carrier

annihilation operator at light atom i.
Given the symmetric equilibrium location of the light ion

hosting the carrier between two heavy ions, it is clear that
the e-ph coupling cannot be linear in the displacement δxi

of that light ion: the sign of the displacement cannot matter.
Thus e-ph coupling in such a material is not described by
a Holstein model. This assertion is supported by detailed
modeling. For simplicity, we assume that the interactions
with the neighboring heavy atoms are dominant (longer-range

interactions can be easily included but lead to no qualitative
changes). There are, then, two distinct contributions to the
e-ph coupling. (1) Electrostatic coupling: the carrier changes
the total charge of the light ion it resides on. If the distance
between adjacent light and heavy ions is d, and if U (x) is
their additional Coulomb interaction due to the carrier, then
the potential increases by U (d + δxi) + U (d − δxi). This is
an even function and thus has no linear (or any odd) terms in
δxi . The coefficient of the quadratic term (δxi)2 can be either
positive or negative, depending on the charge of the carrier
(electron or hole).

(2) Hybridization: even though charge transport is assumed
to take place in a light atom band, there is always some
hybridization tlh allowing the carrier to hop onto an adjacent
heavy ion. If � is the corresponding energy increase, assumed
to be large, then the carrier can lower its on-site energy
by −t2

lh/� through virtual hopping to a nearby heavy ion
and back. The hopping tlh depends on the distance between
ions; for small displacements tlh(δx) ≈ tlh(1 + αδx) where
α is some material-specific constant. Because the light ion
is centered between two heavy ions, such contributions add

to −t2
lh

�
[(1 + αδx)2 + (1 − αδx)2] = −2t2

lh
�

[1 + α2(δx)2]. The
potential is again even in δx. In this case, the coefficient of
the quadratic term is always negative.

Given that δxi ∼ bi + b
†
i , it follows that the largest

(quadratic) contribution to the e-ph coupling for such a crystal
has the general form

H(2)
e-ph = g2

∑
i

c
†
i ci(bi + b

†
i )2,

where all prefactors have been absorbed into the energy scale
g2, and the sum is over all light ions. From the analysis above,
we know that g2 may have either sign.

Physically, H(2)
e-ph shows that the presence of a carrier

modifies the curvature of its ion’s lattice potential, and
thus changes the phonon frequency at that site from � to
�at =

√
�2 + 4�g2. If g2 > 0 then �at > �, making phonon

creation more costly. As we show in Appendix C, this leads
to a rather uninteresting large polaron with very weakly
renormalized properties. This is why in the following, we focus
on the case with g2 < 0.

For sufficiently negative g2, �at vanishes or becomes
imaginary, i.e., the lattice is unstable. This is unphysical; in
reality, the bare ionic potential contains higher-order terms
that stabilize the lattice. This means that for g2 < 0, we must
include anharmonic (quartic) terms in the phonon Hamiltonian
and, for consistency, also in the e-ph coupling, so that

Hph = �
∑

i

b
†
i bi + �

∑
i

(b†i + bi )4,

H(4)
el-ph =

∑
n∈{2,4}

gn

∑
i

c
†
i ci (b†i + bi )n,

where � is the scale of the anharmonic corrections. In
physical situations, � � � and 0 < g4 � |g2|, or the Taylor
expansions would not be sensible starting points.

The anharmonic terms in Hph make the total Hamiltonian
unwieldy, because the phonon vacuum |0〉 is no longer the
undoped ground state, and the new undoped ground state |0̃〉
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FIG. 2. (a) Overlap between the undoped ground states with
and without anharmonic corrections and (b) the average number
of phonons per site in the undoped system, due to anharmonic
corrections, as a function of θ/�.

has no simple analytical expression. In order to be able to
proceed with an analytical approximation, we argue that these
terms can be absorbed into the e-ph coupling; this is a key
approximation of the model. The reasoning is as follows. At
those lattice sites that do not have a carrier, the quartic terms
have little effect if θ � �. This statement is verified by exact
diagonalization of Hph. Results are shown in Fig. 2 where we
plot the overlap O = |〈0|0̃〉|2 (per site) between the undoped
ground states with and without anharmonic corrections, as well
as the average number of phonons at a site of the undoped
lattice. Even for unphysically large values �/� ∼ 1, the
overlap O remains close to 1 while Nph � 1, showing that
the undoped ground state has not changed significantly in the
presence of anharmonic corrections. From now, we ignore
these corrections at sites without an additional carrier.

However, for sites that have a carrier present, we cannot
ignore the anharmonic term. As discussed, it is crucial for
stabilizing the lattice. Since this term is similar to the quartic
term in the e-ph coupling, they can both be grouped together,
resulting in the approximate Hamiltonian for our crystal:

H = T̂ + �
∑

i

b
†
i bi + g2

∑
i

c
†
i ci (b†i + bi )2

+ (g4 + �)
∑

i

c
†
i ci (b†i + bi )4 (1)

with an effective quartic e-ph coupling term g4 + �, which
from now on, we will simply call g4. This is the Hamiltonian
that we investigate in this work.

Before proceeding, let us review what we are neglecting
when we discard the anharmonic corrections at the unoccupied
sites. Besides ignoring the change in the undoped ground state
from |0〉 to |0̃〉 (which is a reasonable approximation if θ/� �
1, as discussed), we also assume that only the e-ph coupling can
change the number of phonons in the system, whereas in the
full model the phonon number is also changed by anharmonic
corrections. This latter approximation is valid if the time scale

for anharmonic phonon processes τ4 ∼ 1/� is much longer
than the characteristic polaron time scale τp ∼ tm/m∗, where
m∗ is the effective polaron mass.

Let us briefly summarize the basic properties of the lattice
potential, which equals Ve(δx) = �2(δx)2/2 for sites without
an extra carrier, and Vc(δx) = �2

at(δx)2/2 + 4�2g4(δx)4 for
sites with one carrier. If g2 > −�/4, the first term describes
a harmonic well with frequency �at and Vc(δx) describes
a single well centered at δx = 0. If g2 < −�/4, however,
�at becomes purely imaginary. In this case, Vc(δx) becomes
a double-well potential with a local maximum at δx = 0.

The two wells are centered at ±xeq = ±
√

−�−4g2

16�g4
. For δx ≈

±xeq, we obtain Vc(δx) ≈ V (xeq) − �2
at(δx ∓ xeq)2, which

locally describes a harmonic well of frequency �2
eff = −2�2

at.
Interestingly, this is independent of g4, whose only role is to
control the location and depth of the two wells (they are further
apart and deeper for smaller g4).

III. FORMALISM

We want to find the single-particle Green’s function
G(k,ω) = 〈0|ckĜ(ω)c†k|0〉, where Ĝ(ω) = [ω − H + iη]−1 is
the resolvent of Hamiltonian (1). From this, we can obtain
all the polaron’s ground-state properties as well as its disper-
sion [21].

Grouping terms in the Hamiltonian according to how
they affect the phonon number, we rewrite H = H0 + Hp +
H2 + H4 with H0 = T̂ + �

∑
i b

†
i bi + g2 + 3g4 and Hp =∑

i nib
†
i bi(2g2 + 6g4 + 6g4b

†
i bi) do not change the num-

ber of phonons, while H2 = ∑
i ni[(g2 + 6g4)(b†,2i + b2

i ) +
4g4(b†,3i bi + b

†
i b

3
i )] and H4 = g4

∑
i ni(b

†,4
i + b4

i ) change it
by ±2 and ±4, respectively. The constant g2 + 3g4 in H0 is
absorbed into ω in the following derivations, but plots of the
spectral weight will show actual energies.

One important property of this Hamiltonian is that it
preserves the phonon number parity on each site: because
its terms only change the number of phonons by multiples
of two, any eigenstate is a sum of basis states having only
even (or only odd) number of phonons. The Hilbert space can
thus be divided into an even and an odd (phonon number)
sector, which can be diagonalized separately. We emphasize
that this symmetry is different from the parity symmetry under
a global lattice inversion 
r → −
r . The latter has been studied
extensively for the linear Holstein model [35], where it was
shown that polaron states with total momentum K = 0,π have
well defined (spatial) parity. The phonon number parity, on the
other hand, corresponds to a unitary transformation b

†
i → −b

†
i ,

i.e., a local inversion of the phonon coordinates. The number
parity symmetry also correlates with the local spatial parity
of the ions, since the spatial parity operator for site i can be
written as P̂i = exp(iπb

†
i bi).

A. The even sector

We compute the Green’s function via the same continued
matrix fractions method [36] previously used by us to compute
the Green’s function of a generalized Holstein model with
linear and higher-order terms [22] within the framework of the
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momentum average (MA) approximation. This approximation
was shown to be highly accurate for models with Holstein
coupling [20,21]. The reasons for this (such as obeying exact
sum rules) can be verified to hold for this model, too. To be
specific, here we implement the MA(2) flavor which allows
us to also locate the continuum lying above the polaron
band [37].

We begin our derivation by dividing the Hamiltonian into
H = H0 + H1 with H1 = Hp + H2 + H4. Using Dyson’s
identity Ĝ(ω) = Ĝ0(ω) + Ĝ(ω)H1Ĝ0(ω), where Ĝ0(ω) =
[ω − H0 + iη]−1, we obtain

G(k,ω) = G0(k,ω)

[
1 +

∑
i

eikRi

√
N

(g2 + 6g4)F1(k,ω; i,i)

+ g4F2(k,ω; i,i)

]
(2)

with Fn(k,ω; i,j ) = 〈0|ckĜ(ω)ci(b
†
i )2n−2(b†j )2|0〉 being the

generalized propagator for a system with 2n phonons in total,
2n − 2 of them on site i with the other two on site j . The
difference between MA(2) and the original MA, which we also
call MA(0), is that for F1 we also use its exact equation of
motion (EOM),

F1(k,ω; i,j ) = G(k,ω; j )G0(j − i,ω − 2�)(2g2 + 12g4)

+F1(k,ω; j,j )G0(j − i,ω − 2�)(4g2 + 36g4)

+ 8g4F2(k,ω; j,j )G0(j − i,ω − 2�)

+
∑

l

G0(l − i,ω − 2�)[F2(k,ω; l,j )(g2+ 6g4)

+F3(k,ω; l,j )g4], (3)

which is obtained by applying Dyson’s identity again, and
introducing G(k,ω; j ) = 〈0|ckĜ(ω)c†j |0〉 and G0(j − i,ω) =
〈0|cj Ĝ0(ω)c†i |0〉. The equations of motion for the Fn prop-
agators with n � 2 are approximated by replacing the free
propagator G0(j − i,ω − 2n�) → δi,j ḡ0(ω − 2n�), where
ḡ0(ω) = 1

N

∑
k G0(k,ω) is the momentum averaged free prop-

agator. At low energies, this is a good approximation because
G0(j − i,ω − 2n�) decays exponentially with the distance
|j − i| if ω − 2n� < −2dt in d dimensions. This is also
justified by the variational meaning of the MA approximations,
discussed at length elsewhere [37,38]. (Basically, MA(2)

assumes that all phonons in the cloud are at the same site
but also allows for a pair of phonons to be created at a site
away from the cloud.)

The resulting EOMs are different depending on whether
i = j or i 
= j . If we define F=

n (k,ω; i) = Fn(k,ω; i,i) and
F


=
n (k,ω; i,j ) = Fn(k,ω; i,j ) for i 
= j , we obtain

F=
n (k,ω; i) = ḡ0(ω − 2n�){F=

n−2(2n)4̄g4

+F=
n−1[(g2 + 6g4)(2n)2̄ + 4g4(2n)3̄]

+ (4ng2 + 12ng4 + 24n2g4)F=
n

+ (g2 + 6g4 + 8ng4)F=
n+1 + g4F

=
n+2}, (4)

F 
=
n (k,ω; i,j )

= ḡ0(ω − 2n�){g4(2n − 2)4̄F

=
n−2

+ [(g2 + 6g4)(2n − 2)2̄ + (2n − 2)3̄4g4]F 
=
n−1

+ [2(2n − 2)g2 + 12(n − 1)g4 + 6(2n − 2)2g4]F 
=
n

+ [g2 + 6g4 + 4(2n − 2)g4] F

=
n+1 + g4F


=
n+2}, (5)

where we use the notation xn̄ = x!/(x − n)!. We also omitted
the arguments from the Fn appearing on the right-hand sides,
as they remain unchanged.

These EOMs connect generalized Green’s functions Fn

with Fn±1 and Fn±2. We reduce this to a first-order recurrence
relation [22] by introducing vectors W=

n = (F=
2n,F

=
2n+1) and

analogously for W

=
n . Below, we write Wn without the index =

or 
= for results that apply to both W=
n and W


=
n . By inserting

the EOMs into the definition of Wn, we obtain a matrix EOM
for the Wn,

γnWn = αnWn−1 + βnWn+1. (6)

The coefficients of these matrices are read off from the EOM
for the Fn. They are listed in Appendix A 1.

Using the fact that limn→∞ An = 0, we can show [22] that
Wn = AnWn−1 with An = [γn − βnAn+1]−1 αn. By introduc-
ing a suitably large cutoff N where we set AN+1 = 0, we can
compute all An with n � N as continued matrix fractions.
Knowledge of A1 allows us to express F2 and F3 in terms
of F1 and F0 = G. Following a series of steps presented in
Appendix A 2, we obtain a closed equation for F1 in terms of
G, which we then finally use to compute G. The end result of
these manipulations is the self-energy

�(ω) = (g2 + 6g4 + A=
1 |12g4)g̃0(ω)a=

0

1 − g̃0(ω)(a=
1 − a 
=)

+ g4A
=
1 |11,

with g̃0(ω) = ḡ0(ω − 2� − a 
=) and the other coefficients
defined in Appendix A 2. The independence of the self-energy
on momentum is the consequence of the local form of the
coupling and of the nondispersive phonons, similar to the MA
results for the Holstein model [37]. Momentum dependence
would be acquired in a higher flavor of MA, but is likely to be
weak. Finally, the Green’s function is

G(k,ω) = 1

ω − εk − �(ω) + iη
. (7)

One can now use the matrices An to generate the generalized
propagators Fn, which allow one to reconstruct the entire
polaron wave function (within this variational space) [39].
For the quantities of interest here, however, the single-particle
Green’s function suffices.

B. The odd sector

Here, we calculate the Green’s function for a state that
already has a phonon in the system. Since the phonon number
can only change by 2 or 4, this single phonon can never be
moved to another site, so it is natural to compute the Green’s
function in real space. The most general such real-space
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Green’s function is

Gijl(ω) = 〈0|bl cj Ĝ(ω)c†i b
†
l |0〉 .

Applying the Dyson identity leads to the EOM

Gijl(ω) = G0(j − i,ω − �)

+
∑

i ′
G0(i ′ − i,ω − �) 〈0|bl cj Ĝ(ω)H1c

†
i ′b

†
l |0〉 .

We then split the sum over all lattice sites into a term i ′ = l

where the electron is on the same site as the extra phonon,
and a sum over all the other sites. The subsequent steps are
very similar to those for the even-sector Green’s function. We
summarize them in Appendix B, where we also discuss how
various propagators that enforce translational symmetry, i.e.,
propagators defined in momentum space, can be obtained from
these real-space Green’s functions.

The end result for the real-space Green’s functions is
Gijl(ω) = G0(j − i,ω̃) + G0(l − i,ω̃)G0(j − l,ω̃)(a=

o − a

=
o )

[1 − ḡ0(ω̃)(a=
o − a


=
o )]−1, where ω̃ = ω − a


=
o − �. The

coefficients a=
o and a


=
o are listed in Appendix B.

IV. RESULTS

A. Atomic limit: t = 0

We begin our analysis with the atomic limit since it is a
good starting point for understanding the properties of the
small polaron, which is the more interesting regime. However,
we note an important distinction between the Holstein model
and our double-well model. In the former, the atomic limit is
the infinite-coupling limit. In the latter, g4 sets an additional
energy scale. Thus the atomic limit is not the same as the strong
coupling limit; the latter also requires that g4/|g2| be small.

Before doing any computations, we can describe some
general features of the spectrum. As already discussed, the
phonon component of the wave functions has either even or
odd phonon number parity. Since this is due to the spatial
symmetry in the local ionic displacement, in any eigenstate,
the ion is equally likely to be found in either well. As usual,
the ground state has even symmetry since it has no nodes
in its wave function. Subsequent eigenstates always have
one more node than the preceding eigenstate, so states with
even and odd parity alternate. The exception is the limit of
infinite well separation, g4/|g2| → 0+, where the 2nth and
(2n + 1)th eigenstates become degenerate. The system can
then spontaneously break parity to have the ion definitely
located in the left or in the right well, like in a ferroelectric.
For a finite g4, this is not possible in the single-carrier limit,
but it can be achieved at finite carrier concentration through
spontaneous symmetry breaking.

As discussed, our results are obtained with MA. In the
atomic limit, MA is exact [20] because for t = 0 the free
propagator is diagonal in real space so the terms ignored by
MA vanish. Thus MA results must be identical here to those
obtained by other exact means. To check our implementation
of MA, we used exact diagonalization (ED) with up to a few
thousand phonons; this suffices for an accurate computation of
the first few eigenstates. ED and MA results agree, as required.

Figure 3 shows the ground-state quasiparticle weight
Z (the overlap between the polaron ground state and the
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FIG. 3. (Color online) Polaron ground-state properties in the
atomic limit, for several values of the g4: (a) quasiparticle weight and
(b) average number of phonons in the phonon cloud. Other parameters
are � = 0.5 and t = 0.

noninteracting carrier ground state), and the ground-state
average number of phonons in the cloud Nph, as a function of
g2 < 0, for various values of g4. Z has an interesting behavior.
At g2 = 0, it is slightly below 1 because of the quartic terms.
As |g2| is increased, Z first rises towards a value close to 1
and then sharply drops. This turnaround is caused by the terms
that involve both g2 and g4, i.e., (2g2 + 6g4)

∑
i nib

†
i bi from

Hp and (g2 + 6g4)
∑

i ni(b
†,2
i + b2

i ) from H2. Starting from
g2 = 0 and making it increasingly more negative will at first
decrease these coefficients, thereby renormalizing the ground
state less. For even more negative g2, however, Z decreases
sharply as the absolute value of these coefficients increases;
this is paralleled by a strong increase in Nph. Based on this
argument, the peak in Z should occur for −6g4 < g2 < −3g4,
which is, indeed, the case. The strong-coupling limit of a
small polaron (corresponding to small Z, large Nph val-
ues) is therefore reached either by increasing |g2| or by
lowering g4.

While this allows us to conclude that in the atomic limit, the
crossover into the small-polaron regime occurs at g2

3g4
≈ −1.5,

it also illustrates the difficulty in defining an effective coupling
for this model. For the Holstein model, the dimensionless
effective coupling λ is the ratio between the ground-state
energies in the atomic limit and in the free-electron limit;
the crossover to the small-polaron regime occurs at λ ∼ 1.
For the double-well model, the introduction of an effective
coupling is not as straightforward, because the atomic limit
has vastly different properties depending on the ratio g2/g4,
so comparing the energy in this limit to that of a free electron
is not sufficient. (Moreover, there is no analytic expression for
the ground state energy of the double well potential.) For these
reasons, we continue to use the bare coupling parameters g2

and g4 to characterize our model.
For strong coupling, we can accurately estimate the ground-

state energy by using the barrier depth and effective harmonic
frequency of the double-well potential, E0,sc = Vc(xeq) +
�eff/2. Figure 4 shows the relative error of this estimate,
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FIG. 4. (Color online) Relative error in the ground-state energy
when computed in the semiclassical approximation (see text for
details). The coupling g2 < −�/4 is restricted to values for which
there is a double-well potential. Other parameters are the same as in
Fig. 3.

which indeed decreases as parameters move deeper into the
small-polaron regime. Since here the tunneling between the
two wells also becomes increasingly smaller, one may think
that we can describe this regime accurately by assuming that
the carrier becomes localized in one of the wells (thus breaking
parity), i.e., that we can approximate the full lattice potential
as being a single harmonic well centered at either xeq or −xeq.
Of course, the latter situation can be modeled with a linear
Holstein model.

It turns out that this is not the case. In the standard Holstein
model, the charge carrier cannot change the curvature of the
lattice potential and thus cannot account for the difference
between � and �eff. To account for the change in the curvature
of the well, one would have to consider at least a Holstein
model with both linear and quadratic e-ph coupling terms.
Although it is possible to find effective parameters g1,eff, g2,eff,
and �eff so that the resulting lattice potential in the presence
of the carrier has the same location and curvature as one
of the wells of the double-well potential, the corresponding
quasiparticle weight Zeff severely underestimates Z. This is
because the single well approximation severely overestimates
the lattice potential at x = 0, thereby reducing the overlap
between the ground state of the shifted well and that of
the original well. We conclude that the double-well coupling
cannot be accurately described by a (renormalized) Holstein
coupling even in this simplest limit.

B. Finite hopping

We focus on results from the even sector because it describes
states accessible by injecting the carrier in the undoped ground
state. The odd sector is accessed only if the carrier is injected
into an excited state with an odd number of phonons present
in the undoped system; we briefly discuss this case at the end
of the section.

We begin by plotting the ground-state values of Z and Nph,
for 1D and 2D lattices, in Figs. 5 and 6, respectively. Since
the MA self-energy is local, the effective polaron mass m∗ =
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FIG. 5. (Color online) Polaron ground-state properties in one
dimension for various values of the quartic coupling term g4 as a
function of the quadratic coupling g2: (a) quasiparticle weight and
(b) average number of phonons in the phonon cloud. Other parameters
are t = 1 and � = 0.5t .

m/Z, where m is the free carrier mass; we therefore do not plot
m∗ separately. Apart from t = 1, the parameters are the same as
in Fig. 3. Note that the kinks in the Nph curves for g4 = 0.02 are
not physical; they arise from numerical difficulties in resolving
the precise location of the ground-state peak when Z → 0.

Qualitatively, the polaron properties show the same depen-
dence on g2 as in the atomic limit, but the shape and location
of the turnarounds is slightly modified. As one would expect,
the presence of finite hopping counteracts the formation of a
robust polaron cloud and increases the quasiparticle weight Z

for any given g2 and g4 when compared to the atomic limit.
The results in one and two dimensions are strikingly similar.

The 2D Z is slightly larger than the 1D Z, and Nph in 2D
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FIG. 6. (Color online) Polaron ground-state properties in two
dimensions for various values of the quartic coupling term g4 as
a function of the quadratic coupling g2: (a) quasiparticle weight and
(b) average number of phonons in the phonon cloud. Other parameters
are t = 1 and � = 0.5t .
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(a) g2 = −0.5 (b) g2 = −1

(c) g2 = −1.5 (d) g2 = −2

FIG. 7. (Color online) A(k,ω) in 1D, for g4 = 0.05, � = 0.5, and
t = 1, for various values of g2.

is slightly lower than in 1D. This is expected because in
higher dimensions, the polaron formation energy is competing
against a larger carrier kinetic energy. These results suggest
that dimensionality is not playing a key role for the double-well
model, similar to the situation for the Holstein model. This is
why we did not consider 3D systems explicitly.

We now move on to discuss the evolution of the spectral
weight A(k,ω) = − 1

π
ImG(k,ω) with increasing |g2|, at a fixed

value of g4. This is shown in Fig. 7 for 1D, and in Fig. 8 for 2D.
Because the evolution is again qualitatively similar in the two
cases, we analyze in more detail the 1D results. Here, at small
quadratic coupling g2 = −0.5, we observe the appearance of
a polaron band below a continuum of states. This continuum
begins at E0 + 2�, and consists of excited states comprising
the polaron plus two phonons far away from it. (In our MA(2)

approximation, the continuum actually begins at EMA(0)

0 + 2�,
not at EMA(2)

0 + 2�, for reasons detailed in Ref. [37].)
Note that due to the parity-preserving nature of the

Hamiltonian there is no analog of the polaron+one-phonon
continuum starting at E0 + �, which is observed in all linear
coupling models. Trying to mimic the results of the double-
well coupling with a linear model will, therefore, lead to a
wrong assignment for the value of �.

At small |g2|, the polaron band flattens out just below
the polaron+two-phonon continuum. With increasing |g2|, its
bandwidth decreases as the polaron becomes heavier, and
additional bound states appear below the continuum. This
is similar to the evolution of the spectrum of a Holstein
polaron when moving towards stronger effective coupling [21].
However, as already discussed, this does not mean that the two
Hamiltonians can be mapped onto one another.

For completeness, let us also discuss some of the features
of the odd sector. In particular, we focus on the local Green’s
function Giii(ω), which can be written as

Giii(ω) = ḡ0(ω̃) + ḡ0(ω̃)2(a= − a 
=)

1 − ḡ0(ω̃)(a= − a 
=)

with ω̃ = ω − � − a 
=. One can verify that a 
= equals the
MA(0) self-energy for the even sector, up to a shift by � of
its frequency. The equation for Giii(ω) then shows that the
odd sector spectral function comprises two parts: (i) the first
term is just the momentum-averaged spectral function of the
even-sector, shifted in energy by � due to the presence of
the extra phonon. One can think of these as states where the
even-sector polaron does not interact with the extra phonon.
This contribution therefore has weight starting from E0 + �;
(ii) the second part describes interactions between the polaron
and the extra phonon. An interesting question is whether these
can lead to a bound state, i.e., to a new polaron with odd
numbers of phonons in its cloud.

This question is answered in Fig. 9 where we plot Aiii(ω) =
− 1

π
ImGiii(ω) for different values of |g2| and g4 = 0.05,

� = 0.5, t = 1, in one dimension. The vertical bars indicate
the position of E0 + �, where indeed a continuum begins,
as expected from the previous discussion. At sufficiently
strong coupling |g2|, we find a discrete bound state below
that continuum, showing that the polaron can bind the extra
phonon. In fact, it is more proper to say that the extra phonon
(which is localized somewhere on the lattice) binds the polaron

(a) g2 = −0.5 (b) g2 = −1 (c) g2 = −1.5

FIG. 8. (Color online) A(k,ω) in 2D, for g4 = 0.05, � = 0.5, and t = 1, for various values of g2.
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0 + �.

to itself and therefore localizes it. One can think of this as an
example of “self-trapping,” except here there is an external
trapping agent in the form of the extra phonon.

One might wonder whether this localized bound state in
the odd sector could ever be at an energy below the polaron
ground-state energy E0 of the even sector, i.e., become the
true ground state. This is not the case; as explained above,
in the atomic limit the ionic states alternate between even
and odd symmetry. Introducing a finite hopping allows the
polaron to further lower its energy by delocalizing, but this
is only possible in the even sector. Thus we always expect
the even-sector polaron to have an energy below that of this
localized state.

As stated before, the two subspaces with even and odd
phonon number are never mixed, at least at zero temperature.
At finite temperature, the extra charge is inserted not into the
phonon vacuum but into a mixed state containing a number of
thermally excited phonons. We therefore expect the resulting
spectral function to show features of both the even and odd
sectors. To be more precise, some spectral weight should be
shifted from the even-sector spectral weight to the odd-sector
spectral weight as T increases and there is a higher probability
to find one or more thermal phonons in the undoped state.
We plan to study the temperature depend properties of this
double-well coupling elsewhere.

V. SUMMARY AND DISCUSSIONS

Here, we introduced and motivated a model for purely
quadratic e-ph coupling, relevant for certain types of inter-
calated lattices, wherein the carrier dynamically changes the
on-site lattice potential from a single well into a double-well
potential. All the approximations made in deriving this model
were analyzed. In particular, we argued that ignoring the
anharmonic lattice terms at the sites not hosting the carrier

should be a good approximation. However, a more in-depth
numerical analysis might be needed to further validate this
assumption.

We used the momentum average approximation to obtain
the model’s ground-state properties and its spectral function in
the single polaron limit, in one and two dimensions. We found
that for sufficiently strong quadratic coupling a small-polaron
forms. Although the polaron behaves somewhat similarly to
the polaron of the linear Holstein model, the double-well
model cannot be mapped onto an effective linear model:
apart from the difference in the location of the continuum
in the even sector, the double-well model also has an odd
sector that should be visible at finite T , and which is entirely
absent in the Holstein model. This is due to the double-well
potential model’s invariance to local inversions of the ionic
coordinate; this symmetry is not found in the Holstein model.
The polaron in this odd sector is also qualitatively different
from the Holstein polaron, in that it is localized near the
additional phonon present in the system when the carrier is
injected. Of course, if the assumption of an Einstein mode
is relaxed, then the phonon acquires a finite speed and
this polaron would become delocalized, as expected for a
system invariant to translations. However, this would still be
qualitatively different than a regular polaronic solution because
this polaron’s dispersion would be primarily controlled by the
phonon bandwidth, not the carrier hopping.

Our results suggest that researchers interpreting their
measurements from, e.g., angular-resolved photoemission
spectroscopy, must carefully consider the nature of their
system’s e-ph coupling: if they assume linear coupling where
the lattice symmetry calls for a quadratic one, the parameters
extracted from fitting to such models will have wrong
values.

While we have laid here the basis for a thorough investiga-
tion of the properties of the double-well e-ph coupling model,
much work remains. We believe that adjusting already existing
numerical schemes such as diagrammatic Monte Carlo to this
model is straightforward and look forward to a comparison of
numerically exact results with our MA results. In addition,
there are certain ranges of parameters for which MA is
not well-suited, such as the adiabatic limit � → 0 at weak
coupling, or systems with finite carrier densities. We anticipate
that these regimes will be explored with a range of numerical
and analytical tools, especially, the finite-carrier regime, which
should be relevant for modeling ferroelectric materials.

We plan to extend our study of the double-well e-ph
coupling beyond the single-polaron limit. We deem especially
interesting the parameter range where the lattice potential
remains a single well if only one carrier is present, but changes
into a double well when a second charge is added. In this case,
we anticipate the appearance of a strongly bound bipolaron
while the single polarons are relatively light. Such states are
not possible in the Holstein model. Finally, extending our MA
treatment to finite temperature should yield interesting insights
into the interplay between the two symmetry sectors revealed
by the spectral weight.
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APPENDIX A: DETAILS FOR THE EVEN SECTOR

1. Coupling matrices

The matrices appearing in Eq. (6) are

γ =
n |11 = 1 − ḡ0(ω − 4n�)(8ng2 + 24ng4 + 96n2g4),

γ =
n |12 = −ḡ0(ω − 4n�)(g2 + 6g4 + 16ng4),

γ =
n |21 = −ḡ0[ω − (4n + 2)�][(g2 + 6g4)(4n + 2)2̄

+ 4g4(4n + 2)3̄],

γ =
n |22 = 1 − ḡ0[ω − (4n + 2)�][(8n + 4)g2

+ (24n + 12)g4 + 24(2n + 1)2g4],

α=
n |11 = ḡ0(ω − 4n�)[g4(4n)4̄],

α=
n |12 = ḡ0(ω − 4n�)[(g2 + 6g4)(4n)2̄ + 4g4(4n)3̄],

α=
n |21 = 0,

α=
n |22 = ḡ0[ω − (4n + 2)�][g4(4n + 2)4̄],

β=
n |11 = ḡ0(ω − 4n�)g4,

β=
n |12 = 0,

β=
n |21 = ḡ0[ω − (4n + 2)�][g2 + 6g4 + (16n + 8)g4],

β=
n |22 = ḡ0[ω − (4n + 2)�]g4.

The matrices for 
= sector are the same if we substitute n →
n − 1/2 everywhere except in the argument of ḡ0(ω).

2. Manipulation of the EOMs

We can rewrite the EOM of F1 by inserting the matrices
A=

1 and A

=
1 and collecting terms. This results in

F1(ij ) = G0(j − i,ω − 2�)[a=
0 G(j ) + a=

1 F=
1 (j )]

+
∑
l 
=j

G0(l − i,ω − 2�)a 
=F

=
1 (lj ), (A1)

where we omit the arguments k and ω for shorter notation. We
give expressions for the various coefficients below. For now,
we rewrite the EOM as

F1(ij ) = G0(j − i,ω − 2�)

× [a=
0 G(j ) + (a=

1 − a

=
1 )F=

1 (j )]

+
∑

l

G0(l − i,ω − 2�)a 
=F1(lj ). (A2)

Defining G0(ω)ij := G0(j − i,ω), we can write this as a
matrix product:∑

l

[δil − a 
=G0(ω − 2�)il]F1(lj )

= G0(ω − 2�)ij [a=
0 G(j ) + (a=

1 − a

=
1 )F1(jj )].

We multiply this from the left with G−1
0 (ω − 2�) and obtain∑

l

[
G−1

0 (ω − 2�)rl − a 
=δrl

]
F1(lj )

= δrj [a 
=
0 G(j ) + (a=

1 − a 
=)F1(jj )].

Next, we use the fact that G−1
0 (ω − 2�)rl = δrl(ω − 2�) −

Ĥrl , so subtracting a 
=δrl from this just shifts its frequency to
obtain G−1

0 (ω − 2� − a 
=)rl . As a result,

F1(ij ) = G0(ω − 2� − a 
=)ij [a=
0 G(j ) + (a=

1 − a

=
1 )F1(jj )].

Since in the EOM for G we only require F1(jj ), we solve for
that diagonal element and obtain

F1(jj ) = ḡ0(ω − 2� − a 
=)a=
0 G(j )

1 − ḡ0(ω − 2� − a 
=)(a=
1 − a


=
1 )

.

The coefficients are obtained by just inserting the appropriate
matrices An into the EOM and collecting terms:

a=
0 = 2g2 + 12g4 + (g2 + 14g4)A=

1 |11 + g4A
=
1 |21,

a=
1 = 4g2 + 36g4 + (g2 + 14g4)A=

2 |12 + g4A
=
2 |22,

a 
= = (g2 + 6g4)A
=
1 |12 + g4A


=
1 |22.

Finally, F1(jj ) are used in Eq. (2) to obtain G(k,ω).

APPENDIX B: DETAILS FOR THE ODD-SECTOR

1. Equations of motion

Starting from the EOM for Gijl(ω), we let H1 act on the
states in those sums, to find for the diagonal state:

H1c
†
l b

†
l |0〉 = (2g2 + 12g4)c†l b

†
l |0〉

+ (g2 + 10g4)c†l b
†,3
l |0〉 + g4c

†
l b

†,5
l |0〉,

while for the off-diagonal ones:

H1c
†
i ′b

†
l |0〉 = (2g2 + 6g4)c†i ′b

†
l |0〉

+ (g2 + 6g4)c†i ′b
†,2
l b

†
l |0〉 + g4c

†
i ′b

†,4
l b

†
l |0〉.

We now define the generalized Green functions as

Fn(k,i,j,ω) = 〈k|Ĝ(ω)cib
†,2n

i bj |0〉 ,

so we always have the extra phonon at site j .
The equation of motion for G then becomes
Gijl(ω) = G0(j − i,ω − �) + [(2g2 + 12g4)F=

0 (l) + (g2 +
10g4)F=

1 (l) + g4F
=
2 (l)]Gill + ∑

i ′ 
=l[(2g2 + 6g4)F 
=
0 (i ′,l) +

(g2 + 6g4)F 
=
1 (i ′,l) + g4F


=
2 (i ′,l)]G0(i ′ − i,ω − �). Again,

we start by separating the cases F=
n and F


=
n . The resulting

equations of motion for F=
n are like those of the even-sector

F=
n with n → n + 1/2, while those for F


=
n are like those of

the even-sector F

=
n with n → n + 1.

In the spirit of MA(2), only the EOM for G, which already
has one phonon present, is kept exact, while in the EOMs for all
the Fn with n � 1, we approximate G0(i − j,ω) → δij ḡ0(ω).
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We introduce matrices Wn = (F2n−1,F2n). Again we obtain an
equation like Eq. (6), where now

γ =
11 = 1 − ḡ0[ω − (4n − 1)�][(4n − 1)(2g2 + 6g4

+ 6g4(4n − 1)],

γ =
12 = −ḡ0[ω − (4n − 1)�] [g2 + 6g4 + 4g4(4n − 1)] ,

γ =
21 = −ḡ0[ω − (4n + 1)�][(4n + 1)2̄(g2 + 6g4)

+ (4n + 1)3̄4g4],

γ =
22 = 1 − ḡ0[ω − (4n + 1)�](4n + 1)

× [2g2 + 6g4 + 6g4(4n + 1)] ,

α=
11 = ḡ0[ω − (4n − 1)�](4n − 1)4̄g4,

α=
12 = ḡ0[ω − (4n − 1)�][(4n − 1)2̄(g2 + 6g4)

+ (4n − 1)3̄4g4],

α=
21 = 0,

α=
22 = ḡ0[ω − (4n + 1)�](4n + 1)4̄g4,

β=
11 = ḡ0[ω − (4n − 1)�]g4,

β=
12 = 0,

β=
21 = ḡ0[ω − (4n + 1)�] [g2 + 6g4 + 4g4(4n + 1)] ,

β=
22 = ḡ0[ω − (4n + 1)�]g4.

The matrices for W

=
n are obtained from these by replacing

n → n − 1/4 everywhere except in the argument of ḡ0. The
remaining steps are in close analogy to those for obtaining the
even-sector Green’s function and not reproduced here.

The coefficients occurring in the final results for the odd-
sector Green’s function are

a=
o = 2g2 + 12g4 + (g2 + 10g4)A=

1 |1,2 + g4A
=
1 |2,2,

a 
=
o = (g2 + 6g4)A
=

1 |1,2 + g4A

=
1 |2,2.

2. Momentum space Green’s functions

Rather than having the phonon present at a lattice
site l, we can construct an electron-phonon state of total
momentum K as |K,n〉 = ∑

i e
iKRi /

√
Nc

†
i b

†
i+n |0〉, where

n is the relative electron-phonon distance. It is easy to
show that 〈K,m|Ĝ(ω)|K,n〉 = Gi,i+n−m,i+n(ω) exp(iKa(n −
m)) where a is the lattice constant. In particular, the odd-
polaron propagator n = m = 0 is just the completely local
real-space propagator Giii(ω). In other words, the odd-sector
polaron shows no dispersion at all.

Another Green’s function of interest is given by

〈k′,q ′|Ĝ(ω)|k,q〉 = 〈0|ck′bq ′Ĝ(ω)b†qc
†
k|0〉,

where we insert an electron of momentum k into a system
where the phonon has momentum q. Conservation of total
momentum demands that k + q = k′ + q ′. It is again easy to
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FIG. 10. (a) Quasiparticle weight Z and (b) average number of
phonons for a quadratic model with g2 > 0,g4 = 0 in the atomic limit
t = 0, for � = 1.

show that the resulting propagator is

〈k′,q ′|Ĝ(ω)|k,q〉
= δkk′δqq ′G0(k,ω̃)

+ 1

N
G0(k′,ω̃)G0(k,ω)

a=
o − a


=
0

1 − ḡ0(ω̃)
(
a=

o − a

=
0

) .

Since the latter term vanishes in the thermodynamic limit N →
∞, we are left with just the even-sector polaron propagator.
This is to be expected: in an infinite system, an electron
does not scatter off a single impurity. If instead we assume
a finite but low density np of phonons, the prefactor 1/N in
the scattering term is replaced with np. This brief analysis
shows that the interesting physics of the odd phonon number
sector are best observed in real space.

APPENDIX C: QUADRATIC E-PH COUPLING WITH g2 > 0

Figure 10 shows that for g2 > 0, g4 = 0, the e-ph coupling
has an extremely weak effect even in the atomic limit t = 0,
since the quasiparticle weight Z remains very close to 1 while
the average number of phonons is very small. An explanation
for this behavior is sketched in Fig. 11: in the linear Holstein

FIG. 11. (Color online) Sketch of the lattice potential for
(i) Holstein and (ii) g2 > 0 quadratic models. Full (dashed) lines
indicate ionic potential and ground-state wave function without (with)
an extra charge on the site.
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model, the carrier displaces the harmonic lattice potential of
its site, as sketched in the left panel. The overlap between the
ground-state wave functions of the original and the displaced
potentials is then the overlap between the tails of two Gaussians
with different centers, which decreases exponentially with
increasing displacement. Indeed, in the atomic limit for the
linear Holstein model, Z ∼ exp[−(g/�)2]. In the purely
quadratic model with positive g2, however, the electron merely
changes the shape of the well by increasing � to �at. The
overlap between the ground states of the original and modified
potential is that of two Gaussians with the same center but
different widths. We can calculate this overlap analytically to

find

Z =
√

1 −
(

� − �at

� + �2
at

)2

. (C1)

For � = 1.0, even for g2 = 100�, we still have Z ≈ 0.42.
We conclude that a positive, purely quadratic electron-phonon
coupling has negligible effect on the dynamics of a charge car-
rier. In particular, no crossover into the small-polaron regime
occurs for positive g2 for any reasonable coupling strength.
Finite-t results (not shown) fully support this conclusion.
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