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Low-temperature evolution of the spectral weight of a spin-up carrier moving
in a ferromagnetic background
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We derive the lowest-temperature correction to the self-energy of a spin-up particle injected in a ferromagnetic
background. The background is modeled with both Heisenberg and Ising Hamiltonians so that differences due to
gapless versus gapped magnons can be understood. Beside the expected thermal broadening of the quasiparticle
peak as it becomes a resonance inside a continuum, we also find that spectral weight is transferred to regions lying
outside this continuum. We explain the origin of this spectral weight transfer and its low-temperature evolution.
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I. INTRODUCTION

The problem of understanding the behavior of a carrier
doped into a magnetically ordered insulator is relevant for the
study of many materials. Multiple variations are possible: the
carrier may enter into the same band that gives rise to the mag-
netic order, or, as if often the case, may be hosted in a different
band. The background might have antiferromagnetic (AFM)
order (parent cuprates1 being the most famous example), or
ferromagnetic (FM) order (in ferromagnetic chalcogenides
like EuO) or more complicated forms of magnetic order,
such as FM layers that are layered antiferomagnetically
in manganite perovskites,2,3 zigzag order in iridates,4 etc.
Finally, the magnetic order may be present in the undoped
compound (all examples listed above) or may arise as a
result of doping, like in diluted magnetic semiconductors such
as Ga1−xMnxAs,5 or heavy fermion materials like CeSix .3,6

Understanding the properties of such materials has direct
technological implications since many of them are candidates
for new spintronic and magnetoelectric devices.7

The degree of difficulty in solving such problems varies
widely. The most difficult problems are those with AFM
backgrounds, because of their inherent complexity due to
the presence of quantum spin fluctuations—this explains why
what happens when one hole is doped into an AFM cuprate
layer is still being debated.8

In contrast, FM backgrounds are exactly solvable, espe-
cially at T = 0. On the other hand, unlike in the AFM case,
here the spectrum of the carrier has a striking dependence
on its spin direction. If the carrier is injected with its spin
oriented parallel to the local moments, no spin-flip excitations
are possible and the carrier moves freely. Its spectrum is
identical to that of a free carrier up to an energy shift due
to the zz component of the magnetic exchange. If the carrier
is injected with its spin antiparallel to the local moments, the
formation of a dressed quasiparticle, a so-called spin-polaron,
is possible. This is a state where the carrier continuously emits
and re-absorbs a magnon while flipping its spin from up to
down, in a coherent fashion. There are also states where the
carrier has spin up and the magnon is present (as required
by conservation of the z component of the total spin) but not
bound to the carrier, giving rise to a continuum of incoherent
states distinct from the spin-polaron discrete state.

The fact that only one magnon can be emitted by a spin-
down carrier injected in a T = 0 FM background (assuming
the carrier has spin- 1

2 , which we do here) explains why
there exists an exactly solvable solution for such problems.
The solution was first given by Shastry and Mattis9 and
has recently been generalized to more complex lattices.10

Furthermore, exact analytical derivations of the eigenstates and
eigenenergies were recently presented by Henning et al.11 and
by Nakano et al.12 for Hamiltonians describing such problems.

As far as we know, the only other exact solution for a
generalization of this simplest case is for two carriers injected
in the FM background,13 because the number of possible
additional magnons is still very small, resulting in a solvable
few-body problem. Dealing with finite carrier concentrations
which can induce finite concentrations of magnons requires
the use of approximations,14 except in the very trivial case
when all carriers have spin up.

Here, we consider another and in real life more interesting
generalization, namely that of studying the spectrum of a
spin-up carrier injected in a FM background at finite T . An
exact solution is no longer possible since one needs to consider
states with arbitrary numbers of magnons when performing
temperature averages. A natural approach for low T is to
consider states with a small number of magnons; this is what
we do here. As a result, the solution we propose becomes
asymptotically exact in the limit of very low temperatures,
where “low” means well below the Curie critical temperature
TC of the FM background.

As mentioned, a spin-up carrier has a very simple spectrum
at T = 0, mirroring that of the free carrier, with a single
eigenstate for a given momentum. At T �= 0, thermally
activated magnons are present in the system and the carrier
can now flip its spin by absorbing one of them. Interaction
with even one such magnon takes the problem in the Hilbert
subspace appropriate for the T = 0 spin-down carrier, which
has a very different spectrum. As a result, we expect that
spectral weight is transferred from the spin-up quasiparticle
peak to energies in the spectrum of the spin-polaron, as T

increases. How exactly does this occur at very low T , and
what happens to the infinitely lived discrete state that was the
only feature in the spectrum at T = 0, is the topic of this work.

Furthermore, we consider two types of exchange between
the local moments, namely Heisenberg exchange and Ising
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exchange (in both cases, the characteristic energy scale is J ).
For the latter, the magnon spectrum is gapped, whereas for
the former, the magnon spectrum is gapless. This allows us
to contrast the two cases to understand the relevance of the
magnon’s spectrum on the evolution of the up-carrier’s spectral
function with T .

Finite temperature studies have been previously carried
out by Nolting et al.3 for the Kondo lattice model (KLM),
which is also often referred to as the s-f model. This model
accounts for the kinetic energy of the carrier as described
by a tight-binding model with an energy scale t , and for
the exchange between the local moments and the carrier,
described by a Heisenberg exchange with a coupling J0.
Unlike the models we consider, KLM does not include the
exchange J between local moments; this is one key difference
between our work and theirs. The second is the approach
employed. While, as mentioned, we use a low-T expansion to
calculate the propagator, Nolting et al. proposed an ansatz for
the self-energy chosen so as to reproduce asymptotic limits
where an exact solution is available, specifically the T = 0
solution mentioned above and the case of finite T but zero
bandwidth, t = 0.15 (This approach was later generalized to
finite carrier concentrations as well.14) Their ansatz for the
self-energy contains several free parameters, which are fixed
by fitting them to a finite number of exactly calculated spectral
moments. The temperature dependence is contained implicitly
in the magnetization which enters the self-energy as an external
parameter. In the limit of very low T we consider here, the
average local moment is essentially unchanged from its T = 0
value, so the effects we uncover are basically absent in the
ansatz of Nolting et al. In other words, besides studying
different Hamiltonians by very different means, our studies
also focus on very different regimes: very low T , in our work,
versus medium and high T in Ref. 15. Needless to say, in the
absence of an exact solution, it is likely that a collection of
approximations valid in different regimes will be needed in
order to fully understand this problem.

The article is organized as follows. In Sec. II, we introduce
our models and in Sec. III, we derive the lowest-T self-energy
correction. Section IV presents our results and Sec. V contains
our conclusions.

II. MODELS

We consider a single spin- 1
2 charge carrier which propagates

on a hypercubic lattice with periodic boundary conditions
after Ni sites in the direction i = 1,d; the total number of
sites is N = ∏d

i=1 Ni . Our results are for d = 2 and 3. Of
course, long-range FM order at finite T only exists in d = 3.
However, we also consider anisotropic layered compounds,
like the manganites, which have 2D FM layers whose finite-T
long-range order is stabilized by weak interlayer coupling,
but where one can assume that at very low T the intralayer
carrier dynamics determine its properties. In principle, similar
arguments can be employed to study d = 1 chains with FM
order at finite T maintained by their immersion in 3D lattices,
but complications due to formation of magnetic domains
would still need to be dealt with.

The carrier is an electron in an otherwise empty band or
a hole in an otherwise full band, described by a tight binding

model with nearest neighbor (nn) hopping:

T̂ =
∑
k,σ

ε(k)c†k,σ ck,σ , (1)

with ε(k) = −2t
∑d

i=1 cos ki for lattice constant a = 1. c
†
k,σ

creates a carrier with momentum k and spin σ .
The local magnetic moments are described by either a

Heisenberg or an Ising interaction:

ĤS = −J
∑
〈i,j〉

(Si · Sj − S2) (2)

for Heisenberg exchange, while for Ising exchange:

ĤI = −J
∑
〈i,j〉

(
Sz

i S
z
j − S2

)
, (3)

where Si is the spin-S moment located at site Ri and only
nn exchange is included in both models. We represent local
moments with a double arrow, e.g., ⇑, while the carrier spin is
represented by a single arrow, e.g., ↑.

For both these models the undoped ground state is |FM〉 =|
⇑,⇑, . . . 〉 and has zero energy. The only excited states of
interest will be the single magnon states:

|�(q)〉 = S−
q√
2S

|FM〉 =
∑

j

eiqRj

√
2SN

S−
j |FM〉. (4)

Here, S±
i = Sx

i ± iS
y

i are the raising (+) and lowering (−)
operators. The key difference between the Heisenberg and
Ising interactions is the dispersion of the single magnon states.
For the Heisenberg model, this is �q = 4JS

∑d
i=1 sin2(qi/2),

whereas for the Ising model the magnons are dispersionless,
�q = � = 2dJS.

The interaction between the carrier and the local moments
is also a Heisenberg exchange:

Ĥexc = J0

∑
j

sj · Sj , (5)

where si = ∑
α,β c

†
i,α

σα,β

2 ci,β is the carrier spin operator and σ

are the Pauli matrices. The coupling J0 can be either FM or
AFM; we will consider both cases.

It is convenient to split Ĥexc = Ĥ z
exc + Ĥ

x,y
exc , where

Ĥ z
exc = J0/2

∑
j (c†j,↑cj,↑ − c

†
j,↓cj,↓)Sz

j and Ĥ
x,y
exc = J0/2

∑
j

(c†j,↑cj,↓S−
j + c

†
j,↓cj,↑S+

j ). The first term causes an energy
shift ±J0S/2. The second term is responsible for spin-flip
processes, where the carrier flips its spin by absorbing or
emitting a magnon.

The total Hamiltonian is

Ĥ = T̂ + ĤS/I + Ĥexc. (6)

Due to translational invariance, the total momentum is con-
served. Furthermore, the z-component Sz

tot of the total spin
(the sum of the carrier spin and lattice spins), is also conserved.
Therefore, eigenstates Ĥ |ψ (m)

α (k)〉 = E(m)
α (k)|ψ (m)

α (k)〉 are in-
dexed by the total momentum of the system, k, by the
number m of magnons when the carrier has spin up so that
Sz

tot = NS + 1
2 − m, and by α which comprises all the other

quantum numbers.
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III. FORMALISM

We want to calculate the low-T expression of Zubarev’s
double-time retarded propagator16 for a spin-up carrier:

G↑(k,τ ) = − i

Z

(τ ) Tr[e−βĤ ck,↑(τ )c†k,↑(0)], (7)

but in a canonical (not grand-canonical) ensemble, assuming
that the carrier is injected in the otherwise undoped FM. As a
result, the trace is over the eigenstates of ĤS/I (in the absence
of carriers, Ĥ ≡ ĤS/I). 
(τ ) is the Heaviside function, Z =
Tr(e−βĤS/I ) is the partition function for the undoped FM, and
ck,↑(τ ) = eiτ Ĥ ck,↑e−iτ Ĥ is the carrier annihilation operator in
the Heisenberg picture. In the frequency domain, we have

G↑(k,ω) =
∫ ∞

−∞
dτeiωτG↑(k,τ ).

At T = 0, the trace reduces to a trivial expectation value
over |FM〉, and we find9

G
(0)
↑ (k,ω) = 〈FM|ck,↑Ĝ(ω)c†k,↑|FM〉 = 1

ω − E↑(k) + iη
.

Here, Ĝ(ω) = [ω − Ĥ + iη]−1 is the resolvent of Ĥ and η is
a small, positive number (we set h̄ = 1). Physically, 1/η sets
the carrier lifetime. The eigenenergy is E↑(k) = ε(k) + J0

S
2

for both the Heisenberg and Ising models. As discussed, this
shows that at T = 0 a spin-up carrier propagates freely and
acquires an energy shift from Ĥ z

exc.
At finite temperature, we expect to find

G(k,ω) = 1

ω − E↑(k) − 
(k,ω) + iη

= G
(0)
↑ (k,ω) + G

(0)
↑ (k,ω)
(k,ω)G(0)

↑ (k,ω) + · · · .

(8)

Strictly speaking, the energy shift J0
S
2 is part of the self-energy,

however, it is convenient to separate it as we do here so that

(k,ω) contains only the finite-T terms.

Since we are interested in the lowest-T contribution to

(k,ω), we consider only the first two terms of Eq. (7):

G↑(k,ω) = G
(0)
↑ (k,ω) + ∑

q e−β�qG
(1)
↑ (k,q,q,ω) + · · ·

1 + ∑
q e−β�q + · · · ,

(9)

where we define the new propagators G
(1)
↑ (k,q,q′,ω) =

−i
∫ ∞

0 dτ eiωτ 〈�(q′)|ck,↑(τ )c†k+q′−q,↑|�(q)〉. Only diagonal
q′ = q terms contribute to the trace. After carrying
out the Fourier transform we find G

(1)
↑ (k,q,q′,ω) =

〈�(q′)|ck,↑Ĝ(ω + �q′)c†k+q′−q,↑|�(q)〉. Note that the argu-
ment of the resolvent is shifted by the magnon energy, meaning
that the carrier’s energy is measured with respect to that of the
state in which the carrier is injected. Following calculations
detailed in the Appendix, we find∑

q

e−β�qG
(1)
↑ (k,q,q,ω)

=
∑

q

e−β�q

{
G

(0)
↑ (k,ω)

− J0

2N

[G(0)
↑ (k,ω)]2

1 + J0SG
(0)
↑ (k + q,ω + �q) + J0

2 g(k,q,ω)

}
,

where

g(k,q,ω) = 1

N

∑
Q

G
(0)
↑ (k + q − Q,ω + �q − �Q)

is a known function. When this expression is used in Eq. (9),
we obtain

G↑(k,ω) = G
(0)
↑ (k,ω)

(
1 + ∑

q e−β�q + · · · ) + [G(0)
↑ (k,ω)]2
(k,ω)(1 + · · · ) + · · ·

1 + ∑
q e−β�q + · · · = G

(0)
↑ (k,ω) + [G(0)

↑ (k,ω)]2
(k,ω) + · · · ,

since the terms in the brackets are the expansion of Z (to the
order considered here; higher order contributions will come
from including many-magnon processes) and cancel with the
denominator. This has the expected form of Eq. (8), so we can
identify the lowest-T correction to the self-energy:


(k,ω)

= − J0

2N

∑
q

e−β�q

1 + J0SG
(0)
↑ (k + q,ω + �q) + J0

2 g(k,q,ω)

+ · · · . (10)

It is important to mention that although we only considered
states with zero or one magnon in our derivation, we will see
some higher-order effects in our results when using G↑(k,ω) =
[ω − E↑(k) − 
(k,ω) + iη]−1, i.e., when the self-energy is
placed in the denominator. These are from states where
multiple magnons are present in the system but the carrier

interacts only with one of them while the rest are “inert”
spectators.

Equation (10) is the main result of this work. The only
difference between Heisenberg and Ising backgrounds is the
expression for the magnon energy �q. For the Ising case, this
energy is independent of momentum, resulting in a self-energy

(ω) independent of k.

Before presenting results, let us consider what the spectral
weight A↑(k,ω) = − 1

π
ImG↑(k,ω) should be expected to

reveal. The Lehmann representation of the propagator in its
expanded form is

G↑(k,ω) = 1

Z

[
1

ω − E↑(k) + iη

+
∑
α,q

e−β�q
|〈�(q)|ck,↑|�(1)

α (k + q)〉|2
ω + �q − E

(1)
α (k + q) + iη

+ · · ·
]
.

(11)
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At T = 0, only the first term contributes, giving a single
quasiparticle peak at ω = E↑(k). The second term has poles at
ω = E(1)

α (k + q) − �q. The m = 1 subspace also corresponds
to a spin-down carrier injected in the FM at T = 0, thus
we can find the energies E(1)

α (k) from the spectral weight
A

(0)
↓ (k,ω) = − 1

π
ImG

(0)
↓ (k,ω), where

G
(0)
↓ (k,ω) = 〈FM|ck,↓Ĝ(ω)c†k,↓|FM〉

=
∑

n

∣∣〈FM|ck,↓
∣∣�(1)

α (k)
〉∣∣2

ω − E
(1)
α (k) + iη

=
{

[G(0)
↑ (k,ω)]−1 + J0S

1 + J0
2 g(k,0,ω)

}−1

. (12)

The last result is from Ref. 9. As already mentioned and
further detailed below, the spectrum E(1)

α (k) certainly con-
tains an up-carrier+magnon continuum spanning the energies
{E↑(k − q′) + �q′ }q′ ; in the right circumstances, a coherent
spin-polaron state with the magnon bound to the carrier may
also appear, see below. Thus, for T �= 0, A↑(k,ω) should
have weight at all energies {E↑(k + q − q′) + �q′ − �q}q,q′ .
In the Ising case the magnon energies cancel out so weight
should be expected at all energies {E↑(q)}q in the spin-up
carrier spectrum, not just at E↑(k). This automatically implies
that the T = 0 infinitely lived quasiparticle of energy E↑(k)
acquires a finite lifetime at T �= 0. This remains true for
the Heisenberg case, with the added complication that now,
{E↑(k + q − q′) + �q′ − �q}q,q′ will generally span a wider
range of energies than {E↑(q)}q. If a spin-polaron appears in
the m = 1 sector, additional weight is expected at energies
in its band minus the magnon energy. Higher-order terms
will contribute similarly (remember that our solution for the
propagator does include partial contributions from many-
magnon states). To conclude, at finite T , one can no longer
assume that energies for which the spectral weight A↑(k,ω) is
nonzero are necessarily in the spectrum of the momentum-k
Hilbert subspace. This makes the interpretation of the spectral
weight less straightforward than it is at T = 0.

IV. RESULTS

A. Review of T = 0 results

Given the analysis presented above, it is useful to first
quickly review the dispersion E↑(k) and, more importantly, the
spectrum E(1)

α (k) for the m = 0 and 1 sectors, respectively. The
latter is easiest to see by plotting the spectral weight A(0)

↓ (k,ω).
The main focus will be to understand when a spin-polaron
state forms in the m = 1 sector, but we will also verify the
presence of the continuum at the expected location. Since
experimentally this is the most relevant regime, we will assume
that |J0| is the largest energy scale and J is the smallest one.
While realistically one expects J � t , we will set J/t = 0.5
so that its role can be discerned easily.

Figure 1 shows E↑(kx,ky = 0) (thick full green line) and
the spectral weight A(0)

↓ (kx,ky = 0,ω) (contour map) for the 2D
Heisenberg and Ising models, for antiferromagnetic coupling
J0 = 3. The spectrum of the m = 1 sector consists of a discrete
state at low energies, the spin-polaron, and the up-carrier +
magnon (c + m) continuum at higher energies. Because we
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FIG. 1. (Color online) Energy E↑(k) (thick full green line) and
spectral weight A

(0)
↓ (k,ω) (contour map) vs kx at ky = 0, for the

Heisenberg model (top) and the Ising model (bottom) in 2D, for
AFM coupling J0/t = 3. The dashed red lines mark the expected
continuum boundaries in the m = 1 subspace. Other parameters are
J/t = 0.5, S = 0.5, and η/t = 0.01.

will encounter a different spin-polaron later on, we will refer
to this spin-polaron as “sp1.” To first order in perturbation
theory, its effective mass is a factor of (2S + 1) larger than the
bare carrier mass and its energy is −J0(S + 1)/2 + O(t,J ).10

Most of this energy comes from Ĥ z
exc and explains why for

AFM J0 > 0 sp1 is the ground state—states in the continuum
have the carrier with spin up and therefore cost ∼J0S/2 in
exchange energy. This also suggests that for FM coupling
J0 < 0, the sp1 polaron should be located above the c + m
continuum. This expectation is confirmed below.

Comparing the two panels, we see that the sp1 dispersion is
very similar for the two models. This is expected because this
is a coherent state where the magnon is locked into a singlet
with the carrier, and this process is controlled by J0 � J .
A difference appears in the shape of the c + m continuum,
however. As mentioned, this must span energies {E↑(k − q) +
�q}q since it consists of up-carrier and magnon scattering
states. The dashed red lines show the boundaries of this range,
in agreement with the data (this is more difficult to see for the
upper edge, on this scale, due to the reduced spectral weight
at high energies). Since Ising magnons are dispersionless, the
continuum boundaries do not change with k. In contrast, the
continuum boundaries for the Heisenberg model vary with k,
the continuum being wider at the center of the Brillouin zone
than near its edges.
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FIG. 2. (Color online) (Top) A
(0)
↓ (k = 0,ω) for FM J0/t = −2

in 2D. The lower c + m continuum edge is marked with dashed
red lines. The Ising model has a discrete state (sp2) below the
continuum. (Bottom) Spectral weight A

(0)
↓ (k,ω) for the Ising model

in 2D for ky = 0,kx < 0.3π . The dashed red line marks the lower
c + m continuum edge. The sp2 state appears for small k and then
merges into the continuum. Other parameters are J/t = 0.5, S =
0.5, and η/t = 0.01.

This difference has consequences for an FM coupling
J0 < 0. As mentioned, in this case, the c + m continuum is
expected to be the low-energy feature in the m = 1 spectrum,
with the sp1 state appearing above it. This is indeed the case
for the Heisenberg model, however, in the Ising model, for
a sufficiently large J , a second discrete state emerges below
the c + m continuum. We will refer to this state as “sp2” to
distinguish it from sp1. The top panel of Fig. 2 shows its
presence (absence) for the Ising (Heisenberg) model at k = 0.
The bottom panel shows that even for the Ising model, the sp2
only exists for small k, at least for these parameters.

The origin of the sp2 state is suggested by the findings
of Henning et al. who showed that for J = 0, polaronlike
states exist inside the c + m continuum.11 We believe that the
addition of ĤI pushes one of them below the continuum. This
is possible because for an Ising coupling, the lower continuum
edge moves up by � = 2dJS, whereas the polaronlike
states experience a smaller energy shift since they include
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FIG. 3. (Color online) Ground-state energy of the Ising sp2
polaron as a function of J0/t for J/t = 0.5 (top) and as a function of
J/t for J0/t = −2 (bottom), for S = 0.5.

a component with the carrier having spin down. For the
Heisenberg model, on the other hand, inclusion of ĤS does
not change the location of the lower continuum edge at k = 0
since �q=0 = 0, so the polaronlike state remains a resonance
inside the continuum.

The ground-state energy of the sp2 polaron is explored
in Fig. 3. The top panel shows its dependence on J0/t .
The sp2 state has weight on both the down carrier and on
the up carrier+magnon components. For J0 = 0, the weight
of the latter component must vanish since no spin flips are
possible and the sp2 state is the same as a free down carrier,
whose energy −J0S/2 − 4t is also indicated (dashed blue
line). These results suggest that as |J0|/t increases, the sp2
state shifts weight from the down-carrier component to the
up-carrier+magnon component until it essentially becomes a
continuumlike state.

The bottom panel in Fig. 3 shows the sp2 ground-state
energy versus J/t for fixed J0/t = −2. This value of J0/t was
chosen because here the polaronic character of sp2 is especially
strong since if we neglect H

x,y
exc , the energy of the down-

carrier component is equal to that of the up carrier + magnon
component. The distance between sp2 and the continuum
increases with J/t , as expected from our previous discussion.

While we have only seen the sp2 polaron for the Ising
model, we cannot rule out the possibility that for a very narrow
range of momenta and carefully chosen parameters, an sp2
state might also appear in the Heisenberg model. Another
important point is that the sp1 state is not guaranteed to exist
for all k, either. In Fig. 4, we show A

(0)
↓ (k,ω) for the 2D

Heisenberg model. No sp2 state appears below the continuum,
and sp1 separates above the continuum only near the Brillouin
zone edge. This is not a surprise given the rather small value
of |J0|, since it controls the separation between sp1 and the
continuum. For sufficiently large |J0|, the sp1 polaron splits
off the continuum in the entire Brillouin zone.9

To summarize, the spectrum in the m = 1 (one-magnon)
subspace contains the expected c + m continuum. For AFM
J0, the low-energy feature is the sp1 polaron for both the
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FIG. 4. (Color online) Spectral weight A
(0)
↓ (k,ω) vs kx for the

2D Heisenberg model at ky = 0 (top) and ky = π (bottom) and FM
J0/t = −2. sp1 appears above the continuum only near the Brillouin
zone edge. No sp2 peak is seen below the continuum. The dashed red
lines mark the c + m continuum boundaries and the green line marks
E↑(k). Other parameters are J/t = 0.5, S = 0.5, and η/t = 0.01.

Heisenberg and the Ising models. For FM J0, sp1 becomes
the high-energy feature and may only appear in a small region
of the Brillouin zone if |J0| is small. For the Ising model
and FM J0, an sp2 polaron is also found to appear below the
c + m continuum, in a central region of the Brillouin zone that
increases with increasing J . For the Heisenberg model and FM
J0, we cannot entirely rule out the existence of sp2, although
we provided arguments that suggest that this is unlikely.

We focused here more on the sp2 polaron because, to our
knowledge, this solution had not been discussed before, while
the sp1 state has been analyzed in great detail.9–12 We also
note that while we presented only (computationally less costly
to generate) 2D results, we find qualitatively similar results in
3D. This will become clear from our finite-T results shown
below.

B. Low-T results

We now present and analyze low-T results for the spectral
weight of the spin-up carrier. Since the calculation of G↑(k,ω)
becomes numerically very expensive in 3D, most of our
analysis is in 2D. However, we will also show a selection
of 3D spectra, which prove that the 3D results are qualitatively
similar to the 2D results.

The spectral weight A↑(k,ω) = − 1
π

ImG↑(k,ω) and the
self-energy 
(k,ω) are shown for the Heisenberg and Ising
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FIG. 5. (Color online) Spectral weight A↑(k,ω) and the real (solid
line) and imaginary (dashed line) parts of the self-energy 
(k,ω)
for the 2D Heisenberg model with AFM J0/t = 10 and βt = 1, at
k = (0,0) (top) and k = (π,π ) (bottom). The expected sp1 continuum
boundaries are marked with dash-dotted blue lines and the expected
c + m continuum boundaries with dashed red lines. The E↑(k) energy
of the T = 0 δ peak is marked with a thick green line. Other
parameters are J/t = 0.5, S = 0.5, η = 0.02 (top), and η = 0.05
(bottom).

models with AFM coupling J0/t = 10 in Figs. 5 and 6,
respectively. In both cases, the top panel is for k = (0,0) and
the bottom one is for k = (π,π ). However, for the Ising model
the self-energy is independent of k and therefore in Fig. 6 it is
only shown beneath the k = (0,0) spectral weight. The value of
J0/t was chosen so large in order to ensure that the different
features in the spectrum are well separated, to simplify the
analysis. Results for smaller values of J0 will be shown below.

A↑(k,ω), which at T = 0 is the peak δ(ω − E↑(k)) (indi-
cated by the thick green line), broadens into a continuum at
finite T . As discussed at the end of Sec. III, this continuum
has its origin in the c + m continuum of the m = 1 sector, thus
we continue to call it the “c + m” continuum, and should span
{E↑(k + q − q′) + �q′ − �q}q,q′ . The red dashed lines show
the boundaries of this energy range, in excellent agreement
with the broadening observed in A↑(k,ω). We note that most
of the spectral weight is still located near E↑(k).

This broadening confirms that at finite T the quasiparticle
acquires a finite lifetime (the peak at E↑(k) is now a resonance
inside a broad continuum, not a discrete state). Clearly, this is
due to processes where the spin-up carrier absorbs a thermal
magnon and then re-emits it with a different momentum, thus
scattering out of its original state.
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FIG. 6. (Color online) Same as Fig. 5 but for the Ising model.
All parameters are the same except βt = 0.5 and η = 0.01 in both
panels. Note that for the Ising model 
(ω) is independent of k. The
inset shows a zoom on 
(ω) at high energies.

The finite lifetime of the carrier in the c + m continuum is
also evident in the self-energy. The inset in Fig. 6 shows that
for energies within the c + m continuum the imaginary part of
the self-energy is finite. The same is true for the Heisenberg
model (not shown).

While the broadening of the T = 0 δ peak may be thought
of as quite trivial, Figs. 5 and 6 show that it is not the only
effect of the finite T : spectral weight is also transferred to a new
continuum located below the c + m continuum. We attribute
this continuum to the sp1 state. Indeed, if we denote by Esp1(k)
the energy of the sp1 polaron, we find that this continuum spans
{Esp1(k + q) − �q}q (the boundaries of this range are marked
by the dashed-dotted blue lines). Its presence agrees with
the Lehmann representation and reveals this spectral weight
transfer to be due to processes where the spin-up carrier binds
a thermal magnon and turns into an sp1 polaron.

The sp1 continuum is also where both the real and imag-
inary part of 
(k,ω) take their largest values. Consequently
the lifetime of these states is roughly two orders of magnitude
smaller than that of the states within the c + m continuum. This
is not surprising as the c + m continuum stems from a δ peak
with an infinite lifetime at T = 0, whereas the sp1 continuum
vanishes at T = 0.

There is furthermore a qualitative difference between the
real part of 
(k,ω) in the sp1 continuum and in the c + m
continuum. For the latter, the real part falls off relatively
smoothly (cf. inset in Fig. 6), whereas for the sp1 continuum
it is highly singular and almost discontinuous.
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FIG. 7. (Color online) Spectral weight A↑(0,0,ω) for the 2D Ising
model [(a) and (b)] and 2D Heisenberg model (c) for ferromagnetic
J0/t = −2 at βt = 0.5, η/t = 0.01 (Ising) and βt = 1, η/t = 0.02
(Heisenberg). The expected location of various features are also
indicated (see text for more details). Other parameters are J/t =
0.5 and S = 0.5.

Note that there are no major differences between the
Heisenberg and Ising models, except for the fact that the
boundaries of these continua are momentum dependent for
the former and momentum independent for the latter, due to
their different magnon dispersions.

Figures 5 and 6 also show a very puzzling discrete state
at low energies. Before we turn our attention to the analysis
of this peak, we quickly discuss the case with FM coupling
J0 < 0. Ising and Heisenberg results are depicted in Fig. 7 for
J0/t = −2 and J/t = 0.5. From the discussion of the T = 0
spectrum in the m = 1 Hilbert space, we know that for these
parameters the Ising model has an sp2 state below its c + m
continuum and therefore expect to find its signature in the
finite-T spectrum, as well. This is indeed the case, as seen
more clearly in panel (b), which expands the low-energy part
of the Ising spectrum shown in (a), revealing weight at energies
spanning {Esp2(k + q) − �q}q (its lower boundary is marked
by dashed-dotted blue lines). Note that since the sp2 state
merges with the c + m continuum (boundaries marked by red
dashed lines), their corresponding continua also merge, but
panel (b) reveals a clear discontinuity where they overlap. The
high-energy sp1 continuum is also clearly observed in panel
(a), again merged with the c + m continuum since the sp1 state
is not fully separated at such a small |J0|, either.

The Heisenberg model [panel (c)] only shows the c + m
and sp1 continua, since there is no sp2 polaron here. Again,
agreement with the expected boundaries is excellent (the
weight seen below the c + m lower edge is due to the finite
η and the fact that we zoomed in close to the axis to make it
easier to see the sp1 continuum).

It is worth noting that since for small |J0| the various
features merge, it would be easy to misinterpret the thermal
broadening as being all of c + m origin, i.e., to entirely miss
the role played by the spin-polaron solutions in the m = 1
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FIG. 8. (Color online) Spectral weight A↑(0,0,ω) for the 2D Ising
(dashed lines) and Heisenberg (full lines) models for J0/t = 10, 5, 3
in the top, middle, and bottom panels, respectively. Other parameters
are J/t = 0.5, S = 0.5 and βt = 0.5, η/t = 0.01 (Ising), and βt =
1, η/t = 0.02 (Heisenberg). The oscillations visible especially in the
sp1 continuum are due to finite-size effects (we used N = 1002 and
5002 for Heisenberg and Ising models, respectively).

subspace. This is also illustrated in Fig. 8, where we return to
an AFM J0 coupling and show how the k = 0 spectra change
as J0 is decreased. All features discussed previously can be
easily identified for large J0 but merge into one another as
J0 decreases, so that by the time J0/t = 3, there is only one
very broad feature, albeit with a nontrivial structure, left in the
spectrum (apart from the low-energy discrete peak, which we
will discuss later). If one assumed that this is all of c + m origin,
i.e., scattering of the carrier on individual thermal magnons,
one would infer very wrong values of the parameters from the
boundaries’ locations.

The results shown so far are for large temperatures kBT ∼
t = 2J (for our parameters), where higher-order corrections
should certainly become quantitatively important. On the
other hand, from the Lehmann decomposition we expect
that the location of the various features does not depend on
temperature; only how much spectral weight they carry can
change with T . For a more thorough analysis, we return to the
case of AFM J0, using a rather large value so that the various
features are well separated, and plot in Fig. 9 the spectral
weight in the sp1 continuum for several different temperatures,
for both the Ising and Heisenberg models. This confirms that,
indeed, the weight in this continuum decreases fast as T → 0,
while its location is not affected (the location of the low-energy
peak shifts with T , but as we argue below, we do not believe
that this is a physical feature).

To quantify the spectral weight transferred, we calculate∫
c+m dωA↑(k,ω), i.e., how much is in the c + m continuum.

Since at T = 0 all the weight is in the δ peak at E↑(k)
located inside the c + m continuum, this value starts at 1 and
decreases with increasing T , as weight is transferred into the
sp1 continuum; one can easily check that the spectral weight
obeys the sum rule

∫ ∞
−∞ dωA↑(k,ω) = 1.
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FIG. 9. (Color online) Spectral weight A↑(k = 0,ω) for the 2D
Heisenberg (left) and Ising (right) models with AFM J0/t = 7, at
different temperatures. Only the sp1 continuum is shown. Its edges
are indicated with dot-dashed blue lines Other parameters are J/t =
0.5, S = 0.5, and η/t = 0.01 and 0.02 for Ising and Heisenberg,
respectively.

The results are shown in Fig. 10 for both models, both at
the center and at the corner of the Brillouin zone. Note that
because of the finite value of η, some spectral weight “leaks”
outside the continuum’s boundaries. This problem is more
severe at lower T because E↑(k) is located very close to an
edge of the continuum; this explains why the value saturates
below 1 as β → ∞. This explanation is also consistent with
the observation that the amount of “missing weight” as T → 0
is of order η.

Two features are immediately apparent. First, there is
a substantial difference in the amount of spectral weight
transferred out of the c + m continuum at k = (0,0) versus
k = (π,π ). This is expected for the Heisenberg model where
the location of all features changes with k, but may come as a
surprise for the Ising model where their location is independent
of k. However, for both models E↑(k), where most of the
weight is found, moves from the lower edge of the c + m
continuum when k = 0, to the upper edge for k = (π,π ). As
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FIG. 10. (Color online) Integrated spectral weight in the c + m
continuum as a function of β. Lines are fits described in the text.
Parameters are J0/t = 10, J/t = 0.5, S = 1/2, η/t = 0.01 (Ising),
and η/t = 0.05 (Heisenberg).

a result, it is reasonable that weight is transferred into the
low-energy sp1 continuum more efficiently at k = (0,0) than
at k = (π,π ), since in the former case the “effective” energy
difference between the two features is smaller.

The second observation is that spectral weight is transferred
into the sp1 continuum more efficiently in the Heisenberg
model than in the Ising model. This difference is also clearly
visible in Fig. 9, where the weight in the sp1 continuum of the
Heisenberg model is still respectable at βt = 20, while for the
Ising model this weight is already negligible at βt = 8.

An explanation for this difference comes from assuming
that the weight in the sp1 continuum is proportional to the
average number of thermal magnons, since no sp1 polaron can
appear in their absence. Because the Ising magnon spectrum is
gapped, at low T this number is proportional to the Boltzmann
factor e−β�. This suggests an integrated weight in the c + m
spectrum of a − be−β4JS , where a = 1 − O(η) is the limiting
value as T → 0. We fitted the data points for βt > 5 with this
form and found a very good fit (solid lines), which moreover
works well for a larger range of β values than used in the fit.

Magnons of the Heisenberg model are gapless so their
number increases much faster with T . A simple estimate for
a 2D unbounded parabolic dispersion suggests 〈n〉 ∼ kBT .17

The lines shown for the Heisenberg model in Fig. 10 are fits
to a − b/β for the data points with βt > 5. The fit is again
reasonable over a wider range, and much superior to other
simple functional forms we tried, such as a − b/βn, n > 1 or
a − be−βcJ (the former assuming that we misindentified the
power law, the second to see if Ising-like fits might be more
appropriate). Of course, one can find excellent fits for all data
using more complicated functions with additional parameters,
but they are much harder to justify physically than our simple
hypothesis resulting in an effectively one parameter fit.

Let us now discuss the discrete peak appearing below the
sp1 continuum for both models, for AFM J0. After carefully
investigating many of its properties, such as how its energy
and the region in the Brillouin zone where it exists depend
on various parameters including T ,18 we believe that this

is an unphysical artefact of our approximation. Arguments
for this are (i) the temperature dependence of its location,
clearly visible in Fig. 9 (note that for the Ising model, the
peak only separates below the sp1 continuum at higher T .
At βt = 2, one just starts to see weight piling up near the
lower edge, in preparation for this). According to the Lehmann
decomposition, the ranges where finite spectral weight is seen
cannot vary with T ; (ii) the fact that the problem is worse at
higher-T , where we know that higher-order corrections ought
to be included in the self-energy; these could easily remove an
unphysical pole; and (iii) the fact that this is a discrete peak,
not a resonance inside a continuum (this can be easily verified
by checking that its lifetime is set by η). According to the
Lehmann decomposition, discrete peaks cannot appear in the
T �= 0 spectral weight. Even if the carrier binds all thermal
magnons in a coherent quasiparticle, the finite-T spectral
weight would reveal only a continuum associated with it, as
is the case for the sp1 and sp2 polarons. To summarize, we
believe that this discrete peak is an artefact and that in reality,
its weight is part of the sp1 continuum from which it came.

Ideally, these arguments would be strengthened by a
calculation of the next correction to the self-energy, to check
its effects. We found the exact calculation of the two-magnon
term to be daunting even for the Ising model. The difficulty is
not so much in evaluating different terms, but in tracing over
all possible contributions—so far, we did not find a sufficiently
efficient way to do this. One can use approximations to speed
things up, but that defeats the purpose since it would not be
clear if the end results are intrinsic or artefacts, as well. Given
this, we cannot entirely rule out that the discrete peak is a
(precursor pointing to a) real feature, but we believe that to be
very unlikely.

So far, we have done the whole analysis in 2D, simply be-
cause the calculation of 
(k,ω), especially for the Heisenberg
model, is numerically much faster. However, we did investigate
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FIG. 11. (Color online) Spectral weight A↑(k = 0,ω) for the 3D
Heisenberg model at βt = 1 for FM J0/t = −3 (top) and AFM
J0/t = 10 (bottom) couplings. The edges of the c + m continuum
(dashed red lines) and sp1/sp2 continuum (dot-dashed blue lines)
are indicated, as is E↑(0) (thick green line). Other parameters are
J/t = 0.5, S = 0.5, and η = 0.1.
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FIG. 12. (Color online) Spectral weight A↑(k = 0,ω) for the 3D
Ising model at βt = 0.5 for FM J0/t = −3 (top) and AFM J0/t = 10
(bottom) couplings. The edges of the c + m continuum (dashed red
lines) and sp1/sp2 continuum (dot-dashed blue lines) are indicated,
as is E↑(0) (thick green line). Other parameters are J/t = 0.5, S =
0.5, and η = 0.01.

the 3D models and found essentially the same physics. As
examples, in Figs. 11 and 12, we show spectra for both
FM J0/t = −3 and AFM J0/t = 10, for both models. These
spectra display exactly the same features as the corresponding
2D spectra. For the Heisenberg model, we chose a larger
η = 0.1 and decreased the linear system size drastically
to keep the computational time reasonable. Consequently,
the continuum edges are more difficult to discern, while
finite size effects are more pronounced. In any event, the
knowledge accumulated from analyzing the 2D data is fully
consistent with all features we observed in all 3D data we
generated.

V. CONCLUSIONS

To summarize, we calculated analytically the lowest-T
correction to the self-energy of a spin-up carrier injected in a
FM background. We used both Heisenberg and Ising couplings
to describe the background, to understand the relevance of
gapped versus gapless magnons. These results show how the
spectral weight evolves from a discrete peak at T = 0 to a
collection of continua for T �= 0 (these can merge, in the
appropriate circumstances), and explain their origin and how
their locations can be inferred.

We were aided in this task by the fact that this model con-
serves the z component of the total spin, allowing us to consider
the contribution to the spectral weight coming from Hilbert
subspaces with different numbers m of magnons when the car-
rier has spin up. Although we focused on the m = 1, lowest-T
contribution, based on the knowledge we acquired, we can ex-
trapolate with some confidence to higher T , as we discuss now.

One definite conclusion of this work is that knowledge of
the T = 0 carrier spectrum (in the m = 0 sector) E↑(k), and
of the magnon dispersion �q, is generally not sufficient to
predict a priori all features of the finite-T spectral weight,

although a fair amount can be inferred from them. To see why,
let us assume that magnons do not interact with one another.
(This is not true for either model, for example, due to their
hard-core repulsion; we will return to possible consequences of
their interactions below.) If magnons were noninteracting, then
Lehmann decomposition of the higher-order contributions in
Eq. (7) would predict finite-T spectral weight for all intervals
{E(m)

α (k + ∑m
i=1 qi) − ∑m

i=1 �qi
}q1+···+qm

, m = 0,1, . . . .
Since we move from the m to the m + 1 subspace by adding

a magnon, and given that total momentum is conserved, we
know that the spectrum in subspace m + 1 necessarily includes
the convolution between the spectrum of the subspace m and
the magnon dispersion, i.e., {E(m)

α (k − q) + �q}q is part of the
spectrum E(m+1)

α (k) (these are the scattering states between the
extra magnon and any eigenstate in the m spectrum).

This observation allows us to infer the location of some
of the finite-T spectral weight, by recurrence. E(1)

α (k) must
include all scattering states {E↑(k − q) + �q}q, so the m =
1 contribution to the spectrum must span {E(1)

α (k + q′) −
�q′ }q′ = {E↑(k − q + q′) − �q′ + �q}q,q′ . We called this the
c + m continuum and verified that it is indeed seen in the
finite-T spectral weight. Knowledge of this part of the m = 1
spectrum allows us to infer scattering states that are part of the
m = 2 spectrum and therefore their Lehmann contribution,
etc. The conclusion is that all intervals {E↑(k + ∑m

i=1 q′
i −∑m

i=1 qi) − ∑m
i=1 �q′

i
+ ∑m

i=1 �qi
}q1,...,q′

m
will contain some

spectral weight at finite T . For the dispersionless Ising
magnons, this interval is the same for all m. For dispersive
Heisenberg magnons, this interval broadens with m. For very
small J , the additional broadening as m increases is very
small and moreover one would expect little spectral weight
in the high-m sectors if the T is not too large. Thus we expect
weight to be visible in the c + m continuum up to high(er)
temperatures; its boundaries may also slowly expand with T ,
for a Heisenberg background, as higher m subspaces become
thermally activated.

Apart from these scattering states, E(m+1)
α (k) might also

contain bound states where the extra magnon is coherently
bound to all the other particles. The existence and location
of such coherent states cannot be predicted a priori, as they
depend on the details of the model (however, they certainly
cannot appear unless coherent states exist in the m space).
An example is the E(1)

α (k) spectrum, which indeed contains
the scattering states discussed above, but also contains the
sp1 and/or sp2 discrete polarons states. These give rise to their
own continua of scattering states in higher m subspaces, whose
locations can be inferred by recurrence.

The question, then, is if it is likely to find such new, bound
coherent states for all values of m, i.e., if the number of
additional continua becomes arbitrarily large with increasing
T . Generally, the answer must be “no,” since this requires
bound states between arbitrarily large numbers of objects. For
the problem at hand, we believe that it is quite unlikely that
they appear even in the m = 2 subspace, since that would
involve one carrier binding two magnons. This is a difficult
task given the weak nearest-neighbour attraction of order J

between magnons (due to the breaking of fewer FM bonds),
and the fact that the carrier can interact with only one magnon
at a time. The exception is likely to be in 1D systems where
magnons can coalesce into magnetic domains.
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Let us now consider the role of magnon interactions.
Because of them, many-magnon states are not eigenstates
of the Heisenberg Hamiltonian so higher-order terms are
not obtained by tracing over states with many independent
magnons (in the Ising model this complication can be avoided
by working in real space). If the attraction between magnons
is too weak to bind them, this is not an issue since their spectra
will still consist of scattering states spanning the same energies
like for noninteracting magnons. As a result, the location of
various features is not affected, but the distribution of the
spectral weight inside them will be since the eigenfunctions
are different. Magnon pairing is unlikely for d > 1 unless
the exchange is strongly anisotropic. However, if it happens
and if the spectrum of the magnon pairs is known, one
could infer its effects on the carrier spectral weight just like
above.

Based on these arguments, we expect the higher-T spectral
weight to show the same features we uncovered at low T

(the distribution of the weight between them might be quite
different, though). These expectations could be verified with
numerical simulations (conversely, our low-T results can be
used to test codes). Such simulations would also solve the issue
of the discrete peak that we observed for AFM J0, and which
we argued to be an artefact of our low-T approximation.

To conclude, although quantitatively our results are only
valid at extremely low T , we believe that this study clarifies
qualitatively how the spectral weight of a spin-up carrier
evolves with T . Our arguments can be straightforwardly
extended to predict what features appear in the spectral weight
of a spin-down carrier, as well.

A general feature demonstrated by our work is that finite
T does not result in just a simple thermal broadening of
the quasiparticle peak, as it becomes a resonance inside a
continuum. Spectral weight can also be transferred to quite dif-
ferent energies if the quasiparticle can bind additional magnons
into coherent polarons. When this happens, interpretation of
experimentally measured and/or of computationally generated
spectra could become difficult, unless one is aware of this
possibility.
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APPENDIX: DERIVATION OF THE LOWEST T �= 0
SELF-ENERGY TERM

We present this calculation for the Heisenberg FM; the Ising
case is treated similarly. To find G

(1)
↑ (k,q,q′,ω), we divide Ĥ =

Ĥ0 + V̂ , where Ĥ0 = T̂ + Ĥ z
S and V̂ = Ĥ

x,y

S + Ĥexc, and
use Dyson’s identity Ĝ(ω) = Ĝ0(ω) + Ĝ(ω)V̂ Ĝ0(ω), where
Ĝ0 = [ω − Ĥ0 + iη]−1 is the resolvent for Ĥ0. This procedure
is similar to that used in Ref. 10 for the T = 0 spin-polaron.

Applying Dyson’s identity once, we obtain

G
(1)
↑ (k,q,q′,ω)

= G
(0)
↑ (k + q′ − q,ω + �q′ − �q)

×
[
δq,q′ − J0

2N

∑
Q

G
(1)
↑ (k,Q,q′,ω)

+ J0

√
S

2N
F (k,q,ω)

]
. (A1)

The first term on the right-hand side is just the diagonal term.
The second term accounts for the energy shift that occurs
when the up carrier is on the same site as the magnon,
and the third term contains a new propagator F (k,q′,ω) =
〈�(q′)|ck,↑Ĝ(ω + �q ′ )c†k+q,↓|FM〉. This term accounts for
spin-flip processes where the up carrier absorbs the magnon,
turning into a down carrier with momentum k + q. Using
Dyson’s identity again, we get an equation of motion for
F (k,q′,ω):

F (k,q′,ω) = J0

√
S

2N
G

(0)
↑ (k + q,ω + �q′ + J0S)

×
∑

Q

G
(1)
↑ (k,Q,q′,ω). (A2)

The diagonal element vanishes since the bra and ket are
orthogonal. The energy shift −J0S/2 of the spin-down carrier
is absorbed into the argument of G

(0)
↑ , leaving only the spin-flip

process, which links F back to G
(1)
↑ .

These two coupled equations can now be solved as follows.
We insert Eq. (A2) into Eq. (A1) to obtain

G
(1)
↑ (k,q,q′,ω)

= G
(0)
↑ (k + q′ − q,ω + �q′ − �q)

{
δq,q′

− J0

2
f (k,q′,ω)[1 − J0SG

(0)
↑ (k + q,ω + �q′ + J0S)]

}
,

(A3)

where f (k,q′,ω) = 1
N

∑
Q G

(1)
↑ (k,Q,q′,ω). Using Eq. (A3) in

the definition of f (k,q′,ω) yields

f (k,q′,ω) = 1

N
G

(0)
↑ (k,ω)

[
1 + J0

2
g(k,q′,ω)

× (1 − J0SG
(0)
↑ (k + q′,ω + J0S))

]−1

,

with g(k,q′,ω) = 1
N

∑
Q G

(0)
↑ (k + q′ − Q,ω + �q′ − �Q).

Note that g(k,q′,ω) can be calculated numerically since
G

(0)
↑ (k,ω) is a known function. All that is left to do is to

insert the above expression into Eq. (A3) and calculate∑
q e−β�qG

(1)
↑ (k,q,q,ω), to find the expression listed in
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