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Binding carriers to a nonmagnetic impurity in a two-dimensional square Ising antiferromagnet
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A hole in a two-dimensional Ising antiferromagnet was believed to be infinitely heavy due to the string of
wrongly oriented spins it creates as it moves, which should trap it near its original location. Trugman showed
that, in fact, the hole acquires a finite effective mass due to contributions from so-called Trugman loop processes,
where the hole goes nearly twice around closed loops, first creating and then removing wrongly oriented spins,
and ending up at a different lattice site. This generates effective second- and third-nearest-neighbor hopping
terms which keep the quasiparticle on the sublattice it was created on. Here, we investigate the trapping of the
quasiparticle near a single attractive nonmagnetic impurity placed at one lattice site. We consider the two cases
with the quasiparticle and impurity being on the same versus on different sublattices. The main result is that
even though the quasiparticle can not see the bare disorder in the latter case, the coupling to magnons generates
an effective renormalized disorder on its own sublattice which is strong enough to lead to bound states, which
however have a very different spectrum than when the quasiparticle and impurity are on the same sublattice.
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I. INTRODUCTION

Understanding the motion of charge carriers in a two-
dimensional (2D) Heisenberg antiferromagnet (AFM) is a
central challenge for deciphering the mechanism behind high-
temperature superconductivity in cuprates.1–5 At half-filling,
the strong hybridization tpd between copper dx2−y2 and oxygen
px,y orbitals drives the CuO2 planes into an insulating state
in which the holes on neighboring copper atoms align their
spins antiferromagnetically in order to gain the superexchange
energy J ∼ t4

pd/�
3, where � = Ep − Ed is the charge-transfer

energy from d to p orbitals. Superconductivity emerges upon
doping the 2D AFM planes with charge carriers.6,7

A major setback in the search for an analytic description
of the behavior of these charge carriers is the lack of a simple
wave function for the ground state of the undoped AFM planes.
The semiclassical Néel state breaks spin rotation symmetry
and is therefore smeared out by quantum spin fluctuations
to a significant degree that is hard to capture with simple
wave functions. This leaves numerical calculations as the only
way to make quantitative predictions.8 While implementing
such numerical calculations is already a complicated task even
for a clean system, a further complication comes from the
presence of disorder and imperfections in the real materials,
introduced during the sample growth and preparation. Given
the low dimensionality, even weak disorder may have dramatic
effects on the motion of charge carriers in the CuO2 planes.
It is well known that nonmagnetic impurities are strong pair
breakers in d-wave superconductors.9 Indeed, substitution of
only a few percent of the copper atoms with nonmagnetic
impurities has been observed to suppress the superconductivity
by localizing the low-energy electronic states.10 Even in the
cleanest samples, the dopant ions are in close proximity to the
CuO2 planes, and the disorder potential they create can disturb
the motion of the charge carriers.

Impurities have been shown to be responsible for a range of
phenomena in low-dimensional correlated electron systems,
and they can be also utilized for probing correlations which
are otherwise difficult to observe in the ground state.11 For

the undoped parent compound, mean-field analysis of the
disordered Hubbard model predicts the emergence of an
inhomogeneous metallic phase in which the Mott gap is locally
closed wherever the disorder is strong enough to do so.12

However, it is not always the case that impurities destroy
the order in the underlying system. For instance, impurities
induce local magnetic order in one-dimensional (1D) quantum
magnets,13 and long-range antiferromagnetism is predicted
upon doping some quantum spin liquids with nonmagnetic
impurities.14 In any event, a complete understanding of
the interplay between disorder and AFM correlations and
especially of their role in controlling the carrier dynamics
away from half-filling is still lacking.

In this paper, we consider a much simpler variant of this
problem where, at zero temperature, a hole is created in a 2D
Ising AFM on a square lattice, and is also subject to the onsite
attractive potential of an impurity that can be visited by the
hole. Thus, our model is very different from previous models of
an impurity in a 2D Heisenberg AFM, which assumed that the
hole can not visit the impurity site, and is coupled to it at most
through exchange.15,16 As we discuss in the following, our
results have some similarities but also considerable differences
from those obtained numerically in these other models.

We investigate the local density of states (LDOS) near the
impurity to study the appearance of bound states, focusing
specifically on the relevance of the magnetic sublattice on
which the impurity is located. The advantage of our approach
is that the wave function of the undoped 2D AFM is the
simple Néel state, and this allows us to study the problem
(quasi)analytically. Of course, spin fluctuations are completely
absent, but, as we argue in our discussion, our results allow us
to speculate about (at least some of) their likely effects.

We note that a single hole in an Ising AFM was initially
believed to be localized even in the absence of impurities,
because when the hole hops it reshuffles the spins along its
path, thus creating a string of wrongly oriented spins. In
dimensions larger than one, the energy cost of this string
increases roughly linearly with its length, resulting in an
effective potential well that binds the hole in the vicinity of its
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original position. Finite mobility was believed to arise only due
to spin fluctuations which can remove pairs of such defects,17,18

but they are absent from the Ising Hamiltonian.
However, as pointed out by Trugman,19 the hole is actually

delocalized even in the Ising AFM, and it achieves this by
going twice around closed loops. The string of misaligned
spins that are created in the first round is removed when spins
are reshuffled again during the second round. When the last
one is removed, the hole ends up at a different site from where
it started, and by repeating this process it can move anywhere
on its original sublattice (spin conservation ensures that the
hole propagates on one sublattice). This raises the question
of how the hole’s motion will be affected by an attractive
impurity, especially by one located on the other sublattice
than the one on which the hole resides. While one expects
the hole to become bound to the impurity if they are on the same
sublattice, if they are on different sublattices, one may expect
the hole not to be sensitive to the presence of the impurity
and therefore remain unbound. We investigate this problem
using a variational method introduced in Ref. 20 to study the
clean case, which we generalize here to systems that are not
invariant under translations. Our results confirm the expected
existence of a bound state when the hole and impurity are on
the same sublattice. When they are on different sublattices, we
find that the naive picture described above is wrong: the hole
develops multiple bound states with a characteristic spectrum
and symmetries. The implications of these results as seen in the
wider context of the effect of disorder on dressed quasiparticles
are also discussed.

This paper is organized as follows: we introduce the model
in Sec. II. The generalization of the variational method to
inhomogeneous systems is discussed in Sec. III, followed in
Sec. IV by results for a single impurity located (i) on the same
and (ii) on the other sublattice than the hole. We conclude the
paper by giving a summary and discussing possible further
developments of this work in Sec. V.

II. MODEL

We consider the motion of a single hole doped into a spin- 1
2

Ising antiferromagnet on a 2D square lattice. The Hamiltonian
of the undoped system is

HAFM = J
∑
〈i,j〉

[
Sz

i S
z
j + 1

4

]
= J̄

∑
〈i,j〉

[
σ z

i σ z
j + 1

]
, (1)

where σ z is the Pauli matrix and J̄ = J/4 > 0. The vacuum
|0〉 is the Néel-ordered state, with all spins on one sublattice
pointing up and those on the other sublattice pointing down.
Excitations are gapped spin flips, or localized magnons, and
we refer to them also as spin defects. The creation operator
for a spin defect is written in terms of the spin-raising and
-lowering operators, σ± = σx ± iσ y :

d
†
i =

{
σ−

i if i ∈↑ sublattice,

σ+
i if i ∈↓ sublattice.

(2)

Consider now the doped case. Creating a hole in this system
corresponds to removing a spin from the same lattice site,

therefore the hole creation operators are

h
†
i =

{
ci↑ if i ∈↑ sublattice,

ci↓ if i ∈↓ sublattice.
(3)

Once the hole is created (h†
i ), it moves via nearest-neighbor

hopping. This, however, either creates a spin defect on the
hole’s departure site (d†

i ) or annihilates one from its arrival site
(dj ), if there was a spin defect already there. The Hamiltonian
can therefore be written as20

H = P

⎧⎨
⎩−t

∑
〈ij〉

[h†
jhi(d

†
i + dj ) + H.c.]

⎫⎬
⎭P

+HAFM − Uh
†
0h0, (4)

where P is the projection operator enforcing no double
occupancy: at any site there is a hole or there is a spin which is
either properly oriented or is flipped, h†

i hi + d
†
i di + did

†
i = 1.

Thus, the first term describes the hopping of the hole which is
accompanied by either spin-defect creation or annihilation.

In addition, there is an attractive potential of strength U

centered at the origin r = 0, which changes the onsite energy
of the visiting hole (variations of the local hoppings and
exchanges can be trivially included in the model and our
solution, but should not lead to any qualitative changes if they
are small or moderate in size). Physically, such a potential can
be due to an attractive nonmagnetic impurity located above
the origin, in a different layer, and which modulates the onsite
energy at the origin. Another possibility comes from replacing
the atom at the origin by an impurity atom with the same
valence, but whose orbitals lie at lower energies than those of
the background atoms. This is very different from the impurity
models studied in previous work where the impurity is an inert
site that can not be visited by carriers,15 and there is at most
exchange between the spin of the impurity and that of carriers
located on neighboring sites.16

III. PROPAGATION OF THE HOLE
IN THE CLEAN SYSTEM

In this section, we construct the equations of motion
for the zero-temperature Green’s function (GF) of a single
hole moving through the lattice in the absence of impurity
U = 0. This was done using a momentum-space formulation
in Ref. 20. Here, we present a real-space derivation, whose
use becomes inevitable once we introduce the impurity which
breaks the translational invariance. The single hole GF is
defined as

G0,R(ω) = 〈0|h0Ĝ(ω)h†
R|0〉, (5)

where Ĝ(ω) = limη→0+ 1/(ω − H + iη) is the resolvent asso-
ciated with the Hamiltonian when U = 0.

By dividing the Hamiltonian asH = HAFM + Ht whereHt

is the first term in Eq. (4) responsible for hopping, equations
of motion for G0,R(ω) can be generated by repeated use of the
Dyson identity

Ĝ(ω) = ĜAFM(ω) + Ĝ(ω)Ht ĜAFM(ω),
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in which ĜAFM(ω) = limη→0+ 1/(ω − HAFM + iη). Using
this, Eq. (5) becomes

G0,R(ω) = g0(ω)

[
δ0,R − t

∑
u

F1(R,u; ω)

]
, (6)

where g0(ω) = 1/(ω − 4J̄ + iη) and 4J̄ is the cost of breaking
four AFM bonds when introducing the hole in the lattice.
Here, the lattice constant is set to unity, a = 1, u = ±x, ± y
is any of the four nearest-neighbor vectors, and F1(R,u; ω) =
〈0|h0Ĝ(ω)d†

Rh
†
R+u|0〉 has the hole at a nearby site R + u and

a spin defect at R. To simplify notation, from now on we do
not write explicitly the dependence on ω of all these GFs.

The equation of motion for F1 can be similarly generated.
Upon application of the Dyson identity, the hole can hop back
to R and remove the spin defect, or it can hop further away
and create a second spin defect, with an associated GF F2,
and so on. As discussed, states with many spins defects are
less likely to occur due to the energy cost of creating the spin
defects. In order to avoid the rise in the number of spin defects,
the hole can trace back its path to remove the spin defects,
however, this effectively confines the hole to the vicinity of
its creation site. The hole is freed to move on the lattice by
the so-called Trugman loop processes in which it goes twice
around a closed path. In this case, spin defects that are created
at the first pass are annihilated when the hole arrives there the
second time. Furthermore, when the very last spin defect is
annihilated, the hole ends up two hops away from its starting
point, which is equivalent to either second- or third-nearest-
neighbor hopping on the main lattice (i.e., first- or second-
nearest-neighbor hopping on the hole’s sublattice).

Longer loops involve more costly intermediate states
with more spin defects, therefore we can proceed within a
variational approach in which a limit is set for the maximum
number of spin defects that can be generated as the hole
propagates. We choose to work with up to three spin defects,
which is the minimum number necessary for the hole to
complete the shortest possible loop. Moreover, we only keep
spin-defect configurations consistent with these short closed
loops (i.e., we exclude, for example, configurations where
all three spin defects are collinear). Figure 1 shows how
both types of effective hoppings can be generated with the
three-spin-defect types of configurations that we keep in our
variational calculation. One can include more configurations

FIG. 1. (Color online) Effective first- and second-nearest-
neighbor hoppings of the hole (the blue square) achieved with loops
involving only up to three spin defects. The latter is realized when
the hole starts a second loop before removing the last spin defect
it created during the first loop. The spin defects are shown by red
circles. The properly oriented spins are not shown.

with numerical simulations, but this was shown to result in only
quantitative differences as long as t/J is not too large.20,22

Coming back to the equation of motion for F1, it relates
it to G0,R(ω) and also to three GSs F2 with two spin defects.
One of these, with the two spin defects collinear with the hole,
can not lead to a closed loop without generating more than
three spin defects, therefore we exclude it from the variational
space, as discussed. Hence, we are left with only three terms

F1(R,u) = −tg1

[
G0,R +

∑
v⊥u

F2(R,u,v)

]
, (7)

where F2(R,u,v) = 〈0|h0Ĝ(ω)d†
Rd

†
R+uh

†
R+u+v|0〉, v = ±x if

u ∈ {y, − y} and vice versa, g1 = 1/(ω − 10J̄ + iη), and 10J̄
is the cost of having a spin defect near the hole.

Within our variational space, the equation of motion for F2

is

F2(R,u,v) = −tg2[F1(R,u) + F3(R,u,v, − u)], (8)

where

F3(R,x,y,z) = 〈0|h0Ĝ(ω)d†
Rd

†
R+xd

†
R+x+yh

†
R+x+y+z|0〉

and g2 = 1/(ω − 14J̄ + iη), where 14J̄ is the cost of the
allowed two-spin-defect configurations. The other two three-
spin-defect configurations that can be reached starting from
d
†
Rd

†
R+uh

†
R+u+v|0〉 do not belong to our variational space and

are discarded. Finally, in this variational space F3 relates to F2

only:

F3(R,u,v,−u) = −tg3[F2(R,u,v)

+F2(R + u + v, − v, − u)], (9)

with g3 = 1/(ω − 16J̄ + iη), 16J̄ being the energy of the
allowed three-spin-defect configurations.

These equations can be used to eliminate all F3,F2,F1

unknowns and be left with equations involving only G0,R(ω).
The details are presented in the Appendix. The final result is

G0,R(ω) = ḡ0(ω)

[
δR,0 − t1(ω)

∑
δ

G0,R+δ(ω)

− t2(ω)
∑

ξ

G0,R+ξ (ω)

]
, (10)

in which ḡ0(ω) = 1/[ω − 4J̄ + 4tζ1(ω) + iη], t1(ω) =
2tζ3(ω), t2(ω) = tζ2(ω), and δ = ±u ± v and ξ = ±2u are
all the second- and third-nearest-neighbor vectors of the
full lattice, respectively. The explicit expressions of the ζ

functions are given in the Appendix.
Equation (10) shows that the motion of the hole is similar to

that of a quasiparticle with effective second- and third-nearest-
neighbor hoppings t1(ω) and t2(ω), respectively, and an effec-
tive onsite energy ε(ω) = 4J̄ − 4tζ1(ω). This quasiparticle is
comprised of the hole accompanied by a cloud of spin defects
which are constantly created and annihilated, helping to release
the quasiparticle to move freely on the lattice. Note that all sites
R, R + δ, and R + ξ belong to the same sublattice. Therefore,
the quasiparticle propagates on the sublattice on which the
hole is originally introduced, and for which δ and ξ are
the first- and second-nearest-neighbor vectors, respectively.
The constraint that keeps the quasiparticle moving on one
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sublattice is very general, being due to the spin-conserving
nature of the Hamiltonian which prevents the hole from ending
up on the other sublattice in the absence of spin defects: if the
hole starts on one sublattice and ends up on the other one, the z

component of the total spin angular momentum of the system
changes from Sz

i = ± 1
2 to Sz

f = ∓ 1
2 , therefore there needs to

be an odd number of spin defects around to compensate for
the change of spin Sz

f − Sz
i = ∓1.

Before presenting the real-space solution of Eq. (10), note
that we are now in a position to construct the momentum-space
Green’s function:

G(k; ω) = 〈0|hkĜ(ω)h†
k|0〉 = 1

ω + iη − ε(ω; k)
, (11)

where hk = ∑
r exp(−ik · r)hr/

√
N̄ and the sum is over the

sites in the hole’s sublattice and N̄ → ∞ is their number.
ε(ω; k) is the self-energy coming from coupling to the spin
degrees of freedom, which is responsible for the dynamical
generation of the hole’s energy dispersion:

ε(ω; k) = ε(ω) − 2t1(ω)[cos(kx + ky) + cos(kx − ky)]

− 2t2(ω)[cos(2kx) + cos(2ky)]. (12)

As required, this is identical to the solution derived using a
momentum-space formalism in Refs. 20 and 21. The spectral
function A(k; ω) = −ImG(k; ω)/π is then used to identify the
quasiparticle excitations and their various properties such as
energy dispersion, effective mass, etc.20

Equation (10) can be solved directly in real space by
the method of continued fractions detailed in Ref. 23. For
completeness, we briefly outline it here. Let n and m be the
x and y components of R 
= 0 on the coordinates axes XY

which is rotated by 45◦ with respect to the lattice. It spans
the sublattice on which the quasiparticle moves, shown by the
black dots in Fig. 2(a); its elementary vectors are y ± x. In this
coordinate system, Eq. (10) can be written as

Gn,m = ḡ0[−t1(Gn+1,m + Gn−1,m + Gn,m+1 + Gn,m−1)

− t2(Gn+1,m+1 + Gn+1,m−1

+Gn−1,m+1 + Gn−1,m−1)], (13)

where Gn,m ≡ G0,R(ω) for R = n(y + x) + m(y − x) is a
shorthand notation. Equation (13) can be expressed as a
single-index recursive relation by grouping distinct GF’s

FIG. 2. (Color online) The choice of coordinate systems for the
lattice with impurity. The impurity, shown in green, is at the origin
of the xy axes that span the original lattice with unit vectors x,y. The
XY axes are rotated by 45 ◦ and span the sublattice (black dots) on
which the quasiparticle propagates via the elementary vectors y ± x.

with n � m � 0 into column vectors VM according to their
Manhattan distance M = n + m:

VM=2r =

⎛
⎜⎜⎜⎜⎝

G2r,0

G2r−1,1

...

Gr,r

⎞
⎟⎟⎟⎟⎠, VM=2r−1 =

⎛
⎜⎜⎜⎜⎝

G2r−1,0

G2r−2,1

...

Gr,r−1

⎞
⎟⎟⎟⎟⎠.

These are the only distinct GFs since all others can be related
to these using symmetries: Gn,m = Gm,n = Gn,−m = G−n,m,
etc. In terms of these vectors, Eqs. (13) can be grouped into
the following matrix form:

λrVr = α̃rVr−2 + αrVr−1 + βrVr+1 + β̃rVr+2 (14)

for r � 2 and

V0 = ḡ0(ω) + β0V1 + β0V2,
(15)

V1 = α1V0 + β1V2 + β̃1V3

for the GFs with M = 0,1. Here, λ, α̃, α, β, and β̃ are extremely
sparse matrices whose elements can be read from Eq. (13).
Combining two copies of Eq. (14) corresponding to r = 2s − 1
and r = 2s leads to

�sWs = AsWs−1 + BsWs+1, (16)

where Ws = ( V2s−1
V2s

), �s = ( λ2s−1 −β2s−1
−α2s λ2s

), etc. Because Eq. (16)
links three consecutive terms, it can be solved in terms
of continued fractions of matrices. Specifically, assuming a
solution as Ws = �sWs−1 and using it in Eq. (16) gives

�s = (�s − Bs�s+1)−1As, (17)

which can be calculated starting from a cutoff c such that
�c+1 = 0. This results in a continued-fraction solution for �s .
In particular, this gives �2 which relates W2 (set of V3 and
V4) to W1 (set of V1 and V2). Finally, the diagonal element of
Green’s function is found by using these in Eqs. (15) and (14)
with r = 2 to solve for V0 = G0,0(ω) from which we find the
hole’s local density of states (LDOS):

ρ(r; ω) = − 1

π
Im〈0|hrĜ(ω)h†

r|0〉

= − 1

π
ImG0,0(ω), (18)

which is same as the total density of states in the clean
system. Other GFs G0,r
=0(ω) can be then calculated from
G0,0(ω) using the continued fraction matrices �s . In practice,
the calculation is done on a finite lattice which is chosen
sufficiently large that the GFs become negligible beyond its
boundaries (the broadening η introduces an effective lifetime
1/η that prevents the quasiparticle from going arbitrarily far
away from its original location). Note that the equations are
modified for the lattice sites close to the boundary: if the hole
can not hop outside the boundary, some of the generalized GS
F1,F2,F3 must be set to zero for sites close to the boundary,
resulting in modified effective hoppings t1(ω), t2(ω), and
onsite energy ε(ω) near the boundary. If the cutoff is large
enough, however, the solution becomes insensitive to these
changes.

The top panels in Fig. 3 show the hole’s total density
of states (DOS) at two moderate t/J values, for which
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FIG. 3. (Color online) The total density of states (top panels),
effective hoppings t1(ω), t2(ω) (middle panels), and onsite energy
ε(ω) (bottom panels) in the clean system for two different values
of t/J̄. The effective parameters are relatively constant within the
energy band, explaining why the DOS has the generic form expected
for a bare particle with nearest-neighbor hopping on a square lattice.
Here, J̄ = 1, η = 10−3, and t = 3 (left panels) and 6 (right panels),
respectively.

this variational approximation was shown to be in good
agreement with the numerical results.20 The quasiparticle
bandwidth for t = 6 is considerably larger than that for t = 3,
showing the rapid decrease of the quasiparticle’s effective
mass with increasing hopping. In the lower panels, we plot
the quasiparticle’s effective hoppings t1(ω), t2(ω), and onsite
energy ε(ω) over this energy range. It shows that their energy
dependence is relatively weak in this range and that t2(ω),
which would make the DOS asymmetric, is vanishingly small.
This explains why the quasiparticle, in spite of being dressed
with magnons, has a DOS similar to that of a featureless bare
particle with only a constant first-nearest-neighbor hopping.

IV. EFFECT OF THE IMPURITY

In the previous section, we confirmed that the hole’s
motion in the clean system is described by an effective tight-
binding Hamiltonian with second- and third-nearest-neighbor
hoppings which keep the quasiparticle on the same sublattice
at all times. In this section, we investigate the effect of an
attractive impurity on the spectrum of the quasiparticle. The
impurity can be on the sublattice in which the quasiparticle
moves, or it can be on the other sublattice. In the former
case, one expects the quasiparticle to bind to the impurity.
As mentioned in the Introduction, when they are on different
sublattices, one might naively expect the quasiparticle to
remain mobile and insensitive to the presence of impurity.
However, we will see that this is not the case.

A. Quasiparticle and impurity on the same sublattice

The translational invariance of the clean system requires
the equal spreading of the hole’s wave function over the
entire lattice. This is expected to change when introducing

an attractive impurity and, in particular, there may exist low-
energy bound states where it is energetically more favorable
for the hole to stay close to the impurity. This tendency can be
studied using the hole’s Green’s function G0,R(ω), where R
and the impurity site r = 0 belong to the same sublattice. This
can be calculated similar to the previous section, while keeping
track of the position of hole with respect to the impurity in order
to include the energy gain U whenever they meet. As a result,
some of the equations of motion are changed. For example,
Eq. (6) now reads as

G0,R(ω) = g0(ω; R)

[
δ0,R − t

∑
u

F1(R,u; ω)

]
, (19)

where g0(ω; R) = 1/(ω + iη + UδR,0 − 4J̄). The coefficients
in the equations of motion for F2 also become position
dependent, reflecting the possibility that the hole is at the
impurity site. The equations for F1 and F3, for which the hole
is on the sublattice without the impurity, remain the same as
their counterparts in the clean system. Tracking these changed
coefficients and their effects on the effective hoppings and
onsite energies, we now find

G0,R(ω) = g̃0(ω; R)

[
δR,0 −

∑
δ

t̃1(R,δ; ω)G0,R+δ(ω)

−
∑

ξ

t̃2(R,ξ ; ω)G0,R+ξ (ω)

]
, (20)

which is similar to Eq. (10), but now t̃1 and t̃2 depend both
on the location and on the direction of hopping, if R has
the impurity within the range of its second- or third-nearest
neighbors. If R is further away, the effective parameters take
the same values as in the clean system.

Equation (20) can be solved similar to Eq. (10), that is, by
grouping GFs according to their Manhattan distance. Because
the problem has rotational symmetry about the impurity,
G0,R(ω) continues to have the same symmetries as in the clean
system, so only the GFs corresponding to n � m � 0 need to
be calculated.

Given the almost constant values of ε, t1, t2 in this range
of energies and the fact that the problem is two dimensional,
bound states are expected to appear for any finite U . The top
panel in Fig. 4 shows the LDOS at the impurity site r = 0 for
various values of the onsite attraction U . The peaks that appear
below the DOS of the clean system (shown by the dashed line)
are proportional to Dirac delta functions which are broadened
into Lorentzians by the finite η. They signal the appearance
of quasiparticle bound states, characterized by exponential
decay of the quasiparticle’s wave function ψb(r) away from
the impurity. The inset verifies that this is true even for the
smallest U : the height of the “shoulder”-like feature appearing
at the bottom of the band in the main figure scales like 1/η

and evolves into a separate Lorentzian for small enough η,
showing the presence of a bound state below the continuum.

The bottom panel shows the effective attraction at the
impurity site Ueff(r = 0,ω) = Re[ε(r = 0,ω) − ε(ω)], i.e., the
difference between the effective onsite potential at the impurity
site and that at sites far away from the impurity (or in the
clean system). Not surprisingly, Ueff(r = 0,ω) ≈ U , although
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FIG. 4. (Color online) (Top) LDOS at the impurity site for various
values of U . The dashed line is the DOS in the clean system, times
4. At finite U , a single bound state splits from the continuum and its
binding energy increases with U . Curves are shifted vertically to help
visibility. (Bottom) The effective onsite energy at the impurity site is
essentially equal to U . Parameters are t = 6, J̄ = 1, and η = 10−3.

a small dependence of ω is observed if the scale is significantly
expanded.

The exponential decay of the quasiparticle’s wave function
can be checked explicitly by calculating the amplitude of these
bound states at various distances r, which is easily done if we
note that at ω = ωpeak the dominant term in the Lehmann
representation is

G0,r(ω = ωpeak) ≈ 1

iη
ψb(0)ψb(r)∗. (21)

Figure 5 shows the ratio |ψb(r)/ψb(0)| = |G0,r(ω =
ωpeak)/G0,0(ω = ωpeak)|. The dots are the numerical values,
while the lines are exponential fits. Those corresponding to
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FIG. 5. (Color online) Relative amplitude of the wave functions
corresponding to three of the bound states shown in Fig. 4, at various
distances from the impurity site. Lines are exponential fits. States
with bigger binding energies have shorter decay lengths.

larger binding energies (more negative ωpeak) are more tightly
bound to the impurity and therefore decay faster, as expected.
This agrees with the larger quasiparticle weight of these states
at r = 0 (see Fig. 4). All these results are quite reasonable.

B. Quasiparticle and impurity on different sublattices

We now investigate the more interesting case with the
impurity and the quasiparticle located on different sublattices.
To this end, we construct the Green’s function Gx,R(ω) in
which x and R are on the quasiparticle’s sublattice [the rotated
frame XY is centered to the right of the impurity, see Fig. 2(b)].
In particular, we are interested in the LDOS on this sublattice
closest to the impurity ρ(r = x; ω) = −ImGx,x(ω)/π .

The equations of motion for Gx,R(ω) are derived as before,
however, now the equations for F1 and F3 are modified by
the presence of the impurity if R is close enough to it. This
leads to equations of motion for Gx,R(ω) that are similar to
those in Eq. (20), but with different values for the effective
hoppings and onsite energies close to the impurity. We solve
these equations using the same method, but note that now the
number of distinct GFs is higher due to the lower symmetry
of this case.

In Fig. 6, we plot ρ(r = x; ω) for various values of U . The
appearance of Dirac delta peaks shows that bound states exist
in this case as well. A comparison with ρ(r = 0; ω) in Fig. 4
for the same value of U shows that these peaks have different
energies, therefore, they are distinct states. This is further
confirmed by the fact that up to three bound states appear
here for sufficiently large U , as opposed to only one when the
quasiparticle and the impurity were on the same sublattice.

These bound states exist in spite of the fact that the impurity
is not located on the sublattice in which the quasiparticle
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FIG. 6. (Color online) (Top) LDOS ρ(r = x; ω) with curves
shifted vertically to help visibility; (bottom) Ueff (r = x; ω) at the
quasiparticle’s sublattice site located nearest to the impurity. Up to
three bound states split from the continuum upon increasing U . The
presence of the impurity at r = 0 induces a finite effective onsite
attraction at r = x, whose value is significantly smaller than U

(bottom). Parameters are t = 6, J̄ = 1, and η = 10−3.
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propagates. As noted above, within a naive picture, one does
not expect this: the quasiparticle should not be trapped by an
onsite impurity located on the other sublattice. This shows
that the quasiparticle does not interact with the bare disorder,
but with a renormalized one. This comes about because the
quasiparticle’s effective motion on one sublattice is made
possible via hopping of the hole through the other sublattice,
when the hole and impurity can interact. Indeed, we define the
effective onsite attraction

Ueff(x; ω) = Re[ε(x; ω) − ε(ω)|,
which again compares the effective onsite energy near the
impurity to that of sites far away from the impurity (or the clean
system). This quantity is plotted in the lower panel of Fig. 6 for
various values of U . It is finite even though the bare disorder at
this site is zero. Ueff(x; ω) is much weaker than U , as expected
since it is an indirect effect; this explains why the binding
energies for these peaks are much smaller than in the previous
case. Retardation effects (dependence on ω) are now clearly
visible, especially for the larger-U values. They are due to the
spin defects accompanying the hole: in order to interact with
the impurity, the hole must hop onto its sublattice, however,
its ability to do so depends on the structure of the surrounding
cloud of spin defects. At low energies, the probability for the
hole to visit the impurity is further suppressed by the energy
cost of the spin defects generated during hopping, explaining
why Ueff becomes weaker at these energies. A similar effect has
been predicted for hole-doped CuO ladders with nonmagnetic
impurities that affect the propagating holes even if they do not
lie in their path.24

Perturbation theory to zero order in t suggests that there
should be a finite threshold for U in order for bound states to
appear. It can be estimated by comparing the hole’s energy at
any other site in the lattice, 4J̄ + O(t2), to its minimum energy
at the impurity site, 10J̄ − U + O(t2) (the increased energy
is due to the presence of at least one spin defect). If U < 6J̄,
this implies that it should not be energetically favorable for the
hole to be at the impurity site. Including t2 corrections does not
change this: a finite threshold value is still predicted. However,
we do not see any such threshold in the full calculation. This
emphasizes again the importance of the (higher-order) loop
processes in describing the actual behavior.

As noted, a total of three bound states emerge upon
increasing the impurity attraction U . Further increase of U

increases their binding energy, but it does not give rise to more
bound states. One can identify the nature of these bound states
by comparing their amplitudes on the four neighboring sites of
the impurity 〈r = u|ψb〉. These are extracted from Gx,u(ω =
Eb), just as we did in Eq. (21). For the lower peak, we find the
same value of 〈ψ1

b |u〉 for all u, implying s-wave symmetry. A
state with s-wave symmetry is expected to have the strongest
binding to the impurity since, to the leading order in hopping,
all of its four segments meet constructively on the impurity. For
the upper peak, 〈ψ3

b |x〉 = −〈ψ3
b |y〉 = 〈ψ3

b |−x〉 = −〈ψ3
b |−y〉,

i.e., this state has d-wave symmetry. The middle state has px

symmetry: 〈ψ2
b |x〉 = −〈ψ2

b |−x〉 and 〈ψ2
b |y〉 = 〈ψ2

b |−y〉 = 0.
It has a degenerate twin bound state with py symmetry, which
has zero amplitude at r = x and therefore it does not appear
in Gx,x(ω). Since the full lattice has rotational symmetry
about the impurity, the resulting bound states are expected
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U = -2J

FIG. 7. (Color online) Relative amplitude of the upper and lower
bound states for U = −2J̄, at various distances from the impurity
site. Lines are exponential fits.

to mirror this symmetry as well. The spatial profile of s- and
d-wave states is presented in Fig. 7. It shows that they have
very similar decay lengths, consistent with their fairly similar
binding energies and with the fact that their corresponding
peaks in Fig. 6 have similar quasiparticle weights. The px

state, however, is expected to have about twice larger weight
as it is divided between only the x and −x lobes, whereas
the s and d states have weights equally distributed in all four
directions. Again, this is consistent with its spectral weight
shown in Fig. 6.

Figure 8 shows the hole’s binding energy Eb for the s states
as a function of the hopping t , when U = −J̄. It exhibits quite

0 2 4 6 8
t/J

0.00
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0.06

E
b/J

different sublattice

0.00

0.25

0.50

0.75

1.00

E
b/J

same sublattice

FIG. 8. (Color online) Binding energy of the s-wave bound state
at U = −J̄ vs t/J̄, when the quasiparticle and the impurity are on the
same sublattice (top panel) and different sublattices (bottom panel).
The smaller binding energy at strong hopping is due to the reduction
in the quasiparticle’s effective mass, which makes it harder to trap.
When the quasiparticle and the impurity are on different sublattices,
the enhancement of Ueff at small t dominates over the effective mass
decrease, explaining the growth of the binding energy here.
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FIG. 9. (Color online) The gap between the px and either of the s

or d states, for a fixed U . Its enhancement as a function of t/J̄ reflects
the rotational kinetic energy gain of the quasiparticle as it becomes
lighter with increasing t .

different trends in the two cases. As the hopping becomes
stronger, the kinetic energy of the quasiparticle is increased
(its effective mass decreases). A lighter quasiparticle is harder
to trap and this explains why its binding energy at fixed U gets
weaker when it is on the same sublattice with the impurity
(top panel).

When the quasiparticle is on the other sublattice (bottom
panel), it interacts with the impurity by virtue of Ueff which is
dynamically generated and therefore strongly depends on t . At
t = 0, the hole is locked at a lattice site and is unaware of the
presence of impurity, therefore, Eb = 0. As t is increased, Ueff

is enhanced as the hole is able to visit the impurity, whereas
the quasiparticle’s effective mass is reduced as it gains more
kinetic energy. The former tends to increase the binding energy
while the latter reduces it, and it is their competition that
sets the dependence of binding energy on hopping. The initial
growth of Eb implies that the enhancement of Ueff dominates
over the reduction of effective mass at small t . However, since
Ueff is weaker than U for all t (Fig. 6), further increase of the
hopping makes the hole too light to be easily trapped by Ueff

and the binding energy eventually starts to decrease. While
only the binding energy of the s-wave state is shown in the
lower panel of Fig. 8, all three peaks exist for small t , although
they are energetically very close to each other. With increasing
t they move closer to and eventually merge into the continuum
such that, at the highest t considered in Fig. 8, the s-wave state
is the only existing bound state.

The energy gaps between the three bound states (when all
are present) are nearly identical. Figure 9 shows its evolution
with t at a fixed value U = −J̄. Since this must be due to
differences in the rotational kinetic energy, it is expected to
increase with t , as the quasiparticle’s effective mass decreases.
This is indeed the observed behavior.

V. SUMMARY AND CONCLUSIONS

We investigated the effect of a nonmagnetic impurity on
the motion of a hole in a 2D square Ising AFM. The resulting

quasiparticle, which propagates on one sublattice, is confirmed
to form bound states around the impurity. This is true both
when the hole and impurity are on the same sublattice and
when they are on different ones. The latter occurs because of
the renormalization of the effective onsite energy which results
in finite effective attraction at the sites next to the impurity that
can be visited by the quasiparticle. This also explains why a
total of (up to) three bound states with s, p, and d symmetries
were found in this case, as opposed to only one s-wave state in
the case when the quasiparticle is on the same sublattice with
the impurity. In this latter case, the impurity is located in the
node of p and d symmetry states, therefore, such states do not
see it and can not be bound to it. (In reality, a nonzero Ueff

arises at sites different from those occupied by the impurity,
but given the longer distance to the impurity site, this is not
large enough to bind new states).

Bound states with s, p, and d symmetries have also
been observed near an inert vacancy in a Heisenberg AFM.
However, in that case, it is the distortion of the magnetic
environment around the vacancy that binds the hole.15,16 Such
a distortion is only possible in a Heisenberg model and comes
from a local modification of the spin fluctuations. In an Ising
AFM, an inert site would have no effect on the AFM order
of the other sites. Moreover, if the hole is not allowed to
visit this inert impurity site, there are no Trugman loops
including it so the hole loses kinetic energy when located
in that neighborhood. As a result, we expect that in an Ising
AFM, an inert impurity like that of Ref. 15 would repulse the
hole. Bound states could only appear if a sufficiently strong
exchange was turned on between the hole and the inert spin,
so that the exchange energy gained through it compensated
for the loss of kinetic energy. Such a model was analyzed in
Ref. 16, although for the Heisenberg model it was found that
bound states persist only if this exchange with the inert site
is rather weak. All these differences show that the underlying
reasons for the appearance of bound states are very different
in these other models. This is further substantiated by the
fact that while a sublattice dependence is observed in Refs. 15
and 16, it consists of a variation of the spectral weight but this is
associated with the same eigenstates. By contrast, in our model,
the two sublattices show different spectra of bound states.

This result is important because it suggests that two very
different patterns of bound states should be observed with
scanning tunneling microscopy (STM) in such systems, even
if only one type of impurity is present. Note that we assumed
that the impurity is located directly at (or above) a lattice
site. If, on the other hand, the impurity was located either
halfway between two sites or in the center of the plaquettes,
then it would not break the symmetry between the two
sublattices and only one pattern of bound states should appear.
These cases can be studied by similar means as presented
here.

A major simplifying factor of this problem was the
assumption of an Ising AFM. If spin fluctuations are turned
on, in a Heisenberg AFM, a major difference is that the
hole no longer needs to go twice around closed loops in
order to become delocalized: spin fluctuations can remove
pairs of neighboring spin defects, thus cutting the string short
and releasing the hole. As a result, one expects a significant
decrease in the effective mass of the quasiparticle, which
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is indeed observed.19 However, it is interesting to note that
if there is true long-range AFM order in the plane (as is
the case in cuprates, due to coupling between planes), the
resulting quasiparticle should continue to primarily reside on
one sublattice because spin fluctuations can only remove pairs
of spin defects and spin conservation would continue to make
the two sublattices inequivalent. This suggests that the results
we present here, which are directly traceable to the fact that
the quasiparticle lives on one sublattice, could be relevant
for the Heisenberg AFM as well, although it is impossible
to say a priori if the effective attraction generated when
the quasiparticle and impurity are on different lattices would
suffice to bind states (we would still expect s-symmetry bound
states to appear if the quasiparticle and impurity are on the
same sublattice). A followup of this issue would be interesting.

In the broader context, these results confirm the view that
coupling to bosonic degrees of freedom renormalizes not just
a quasiparticle’s dispersion, but also the effective disorder it
sees. If the latter were not the case, no bound states could
arise when the quasiparticle lives on a different sublattice
than the impurity. Similar large and nontrivial renormalization
of the disorder seen by a dressed quasiparticle, arising from
its coupling to bosons, was also demonstrated for lattice
polarons.25
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APPENDIX: EQUATIONS OF MOTION FOR G0,R(ω)

Here, we present the details of the calculations that lead to
Eq. (10), which relates the various G0,R(ω) GFs. Equation (9)
enables us to eliminate F3 from Eq. (8) to obtain

F2(R,u,v) − t2ḡ2g3F2(R + u + v, − v, − u)

= −t ḡ2F1(R,u) (A1)

and

F2(R + u + v,−v,−u) − t2ḡ2g3F2(R,u,v)

= −t ḡ2F1(R + u + v, − v), (A2)

where ḡ2 = 1/(ω − 14J̄ − t2g3 + iη) and Eq. (A2) results
from Eq. (A1) after changing the coordinates R → R + u + v,
u → −v, v → −u. Solving the coupled equations (A1) and
(A2), we find

F2(R,u,v) = γ1F1(R,u) + γ2F1(R + u + v,−v), (A3)

in which γ1 = −t ḡ2/[1 − (t2ḡ2g3)2] and γ2 = t2ḡ2g3γ1.
Using this in Eq. (7) gives

F1(R,u) = −t ḡ1

[
G0,R + γ2

∑
v⊥u

F1(R + u + v,−v)

]
, (A4)

in which ḡ1 = 1/(ω − 10J̄ + 2tγ1 + iη) and the sum includes
the two nearest-neighbor vectors ±v along the direction
perpendicular to u. With a proper change of coordinates, each
F1 on the right-hand side of Eq. (A4) can be expressed in terms
of a component of G and new F1’s. For example,

F1(R + u + v,−v) + t ḡ1G0,R+u+v

= −t ḡ1γ2[F1(R + 2u, − u) + F1(R,u)] (A5)

and

F1(R + u − v,v) + t ḡ1G0,R+u−v

= −t ḡ1γ2[F1(R + 2u, − u) + F1(R,u)], (A6)

which results after applying either of R → R + u ± v,
u → ∓v, v → u to Eq. (A4), respectively. The additionally
introduced F1 can be written in terms of the existing ones by
doing R → R + 2u, u → −u on Eq. (A4):

F1(R + 2u, − u) + t ḡ1G0,R+2u

= −t ḡ1γ2[F1(R + u + v, − v) + F1(R + u − v,v)]. (A7)

The four equations (A4) to (A7) can be simultaneously solved
for the four F1’s in terms of the existing components of G. In
particular, we find

F1(R,u) = ζ1G0,R + ζ2G0,R+2u + ζ3[GR+u+v + GR+u−v],

(A8)

where ζ1 = −t ḡ1[1 − 2(t ḡ1γ2)2]/[1 − 4(t ḡ1γ2)2], ζ2 =
−2t ḡ1(t ḡ1γ2)2/[1 − 4(t ḡ1γ2)2], and ζ3 = −t ḡ1γ2(ζ1 + ζ2).
Finally, using this in Eq. (6) results in the equation of motion
for the GF:

G0,R(ω) = ḡ0(ω)

[
δR,0 − t1(ω)

∑
δ

G0,R+δ(ω)

− t2(ω)
∑

ξ

G0,R+ξ (ω)

]
, (A9)

and its various coefficients are given in the text following
Eq. (10).

These effective hoppings and onsite energies are identical
to those derived for the clean system in Refs. 20 and 21. In the
presence of disorder, the solution proceeds similarly but now
the various g functions acquire dependence on the location
since their argument is shifted by U if R = 0. This leads to
dependence on location (and even direction of hopping) for the
effective hopping and onsite energies, at sites close enough to
the impurity.
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