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Phonon-assisted carrier motion on the Wannier-Stark ladder
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It is well known that at zero temperature and in the absence of electron-phonon coupling, the presence of an
electric field leads to localization of carriers residing in a single band of finite bandwidth. We implement the
self-consistent Born approximation (SCBA) to study the effect of weak electron-phonon coupling on the motion
of a carrier in a biased system. At moderate and strong electron-phonon coupling, we supplement the SCBA,
describing the string of phonons left behind by the carrier, with the momentum average approximation to describe
the phonon cloud that accompanies the resulting polaron. We find that coupling to the lattice delocalizes the
carrier, as expected, although long-lived resonances resulting from the Wannier-Stark states of the polaron may
appear in the spectrum in certain regions of the parameter space. The approach we propose here can also be used
to implement and check the validity of simple variational approximations.
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I. INTRODUCTION

It has long been known1,2 that carriers in a clean one-
dimensional tight-binding band become localized3 if a uniform
electric field E is applied, since this breaks the free-particle
continuum into a sequence of equally spaced discrete levels
separated by the electric potential energy between consecutive
sites δ = eaE, where e is the carrier’s charge and a is the
lattice constant. This discrete spectrum is the Wannier-Stark
(WS) ladder.4

While the ladder has been observed in semiconductor super-
lattices and in cold-atom systems,2 it is not seen in the spectra
of regular crystalline solids. The absence of localization is
easily understood in metals because the Fermi sea electrons
screen out the electric field and carriers move ballistically
as described by the Buttiker-Landauer theory5 (if correlations
can be neglected). In insulators, however, the electric field is
not screened out and therefore the band is “tilted.” Here, the
absence of localization is attributed to coupling to the lattice:
a carrier can emit phonons6 and thus lower its energy to slide
along the chain, as sketched in Fig. 1. Most previous work on
this problem assumes incoherent tunneling between sites.6 For
example, this is routinely done when modeling carrier transport
in organic solar cells, based on the belief that those organic
semiconductors are so disordered as to destroy coherence.7

While this assumption awaits validation, an understanding
of the full quantum dynamics, which should be relevant in
clean(er) systems,8 is still needed.

The quantum problem was studied numerically in Ref. 9,
with a variational solution assuming that phonons appear only
on the same site or to the left (uphill) of the carrier. In Ref. 10,
analytic and numerical results were obtained for the spectrum
of a finite chain for weak electron-phonon (e-ph) coupling and
small hopping t � δ, while in Ref. 11 the authors investigated
the time evolution of the wave function once the electric field
is turned on.

The method we propose here is similar in spirit to that
used in Ref. 9; however, we use a different assumption to
calculate analytically the Green’s function for this problem.
Unlike in Ref. 9, we do not restrict the direction of motion of
the carrier, but instead we assume that the phonons left behind

by the carrier can only be absorbed in inverse order to that
in which they were emitted. This leads to only noncrossed
diagrams being summed in such processes, which is the
essence of the self-consistent Born approximation (SCBA).
For the nonbiased system (δ = 0), SCBA is known to be
accurate only at weak e-ph coupling. For moderate and
strong e-ph coupling, we use SCBA to describe this string of
phonons left behind as the carrier moves to lower energies, and
combine it with the momentum average (MA) approximation
to describe the phonon cloud that accompanies the carrier,
turning it into a polaron. MA has been shown to provide a
rather accurate description of the polaron properties for any
e-ph coupling strength in an unbiased system, as long as the
energy of the optical phonons, �, is not too small.12

We argue that taken together, these approximations allow
us to understand the local density of states (LDOS) in such a
system if the bias δ is not large compared to �. Our results
uncover the evolution of the LDOS as the e-ph coupling is
turned on, confirming that delocalization occurs as soon as
such coupling is present. However, for strong e-ph coupling
and smaller biases, very sharp resonances can appear in the
spectrum and are understood as being due to WS-like states
for the polaron, which, however, can tunnel into extended
states located further downhill. We believe that these results
supplement those presented in Refs. 9–11 to improve our
understanding of the quantum dynamics in this system. The
formalism we propose here can also be easily modified to
implement other variational descriptions to check for their
validity, as we exemplify for two particular cases. Other
possible generalizations are discussed at the end.

The paper is organized as follows: Section II describes the
model and the formalism we use to calculate the propagators
and resulting LDOS. The results are presented in Sec. III, while
Sec. IV contains a summary and some further discussions.

II. MODEL AND FORMALISM

The model Hamiltonian we study is described by

H = He + Hph + Ve-ph, (1)
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FIG. 1. (Color online) Carrier motion on the WS ladder. The
horizontal axis is the chain, with sites shown as dots. The vertical
axis is the energy. Several WS eigenstates are shown, each centered
at the site (red dot) with the same on-site energy. The probability
distribution is sketched for two of these. Green arrows show part
of the evolution, with the carrier arriving on the −nδ level from a
higher one upon phonon emission; it then hops towards the right
and eventually emits another phonon to move on the −mδ level,
etc. If phonons are absorbed in reverse emission order when the
carrier retraces its steps, then only noncrossed diagrams are generated.
Crossed diagrams are for processes shown by the dashed line, where
phonons are not absorbed in reverse emission order.

where

He = −t
∑

n

(c†ncn+1 + H.c.) +
∑

n

εnc
†
ncn

describes nearest-neighbor hopping of the carrier on a one-
dimensional (1D) chain biased by the applied electric field, so
that the on-site energies are εn = −neaE = −nδ. (The spin
is trivial and we ignore it for simplicity.) There is an Einstein
phonon mode

Hph = �
∑

n

b†nbn

(for simplicity, we take h̄ = 1 in the following). Finally,

Ve-ph = g
∑

n

c†ncn(b†n + bn)

is the Holstein model13 for e-ph coupling. As usual, cn and
bn are annihilation operators for the carrier and phonons,
respectively, at site n of the chain. Also as customary, we will
gauge the strength of the e-ph coupling with the dimensionless
effective coupling:

λ = g2

2t�
,

appropriate for 1D models.12

The quantity of interest is G(n,z) = 〈0|c0Ĝ(z)c†n|0〉, where
|0〉 is the vacuum and Ĝ(z) = [z − H]−1 is the resolvent at
z = ω + iη, where η → 0 controls the artificial lifetime ∼1/η

of the carrier. This is the Fourier transform of G(n,τ ) ∼
	(τ )〈0|c0e

−iHτ c
†
n|0〉, i.e., the amplitude of probability for

the carrier to move from site n to site 0 in a time τ and
so that all phonons emitted in the meantime have been
reabsorbed. If such a process is very unlikely, then G(n,z) →
0. From the Lehmann representation,14 we know that the local
density of states (LDOS) A(n,ω) = − 1

π
ImG(n,z) is finite at

energies ω = Eα in the one-carrier spectrumH|φα〉 = Eα|φα〉,
provided that the overlaps 〈0|c0|φα〉〈φα|c†n|0〉 do not vanish.
As will become apparent soon, our method to calculate G(n,z)
also gives the generalized propagators,

Fk(n; nk, . . . ,n1; z) = 〈0|c0Ĝ(z)c†nb
†
nk

· · · b†n1
|0〉, (2)

whose meaning and usefulness mirror those of G(n,z).

A. No e-ph coupling: λ = 0

We first calculate G0(n,z) = 〈0|c0Ĝe(z)c†n|0〉 for He, i.e.,
when there is no e-ph coupling. Taking appropriate matrix
elements of the identity Ĝe(z)(z − He) = 1 gives the equations
of motion (EOM):

(z − εn)G0(n,z) = δn,0 − t[G0(n − 1,z) + G0(n + 1,z)].

(3)

These are solved easily if we recognize that G0(n,z) → 0
for sufficiently large |n| because the electron cannot move
arbitrarily far in a finite lifetime 1/η. As a result,

G0(n,z) = A(z − εn)G0(n − 1,z) if n > 0
(4)

G0(n,z) = B(z − εn)G0(n + 1,z) if n < 0,

where we define the continued fractions,

A[f (z)] = −t

f (z) + tA[f (z + δ)]
(5)

B[f (z)] = −t

f (z) + tB[f (z − δ)]
.

These quantities are calculated iterationally starting from a
cutoff A(z + Nδ) = B(z − Nδ) = 0 for a sufficiently large N .
Because for δ �= 0 all eigenstates are localized, a cutoff N ∼
20 usually suffices. If the electric field is turned off, δ = 0, they
can be found analytically to be A(z)|δ=0 = −B(−z)|δ=0 =
−z/2t + √

z/2t + 1
√

z/2t − 1 so that |A(z)| < 1, |B(z)| < 1,
if Im(z) = η > 0. Finally, using the n = ±1 results of Eq. (4)
in Eq. (3) leads to

G0(0,z) = 1

z + t[A(z + δ) + B(z − δ)]
, n = 0

G0(n,z) = A(z + nδ) · · · A(z + δ)G0(0,z), n > 0

G0(n,z) = B(z − nδ) · · · B(z − δ)G0(0,z) n < 0.

If δ = 0, this gives the usual results for a tight-binding model.15

For δ �= 0, it is easy to check that the WS energies En = nδ

are indeed poles of G0(n,z). Full mapping onto the analytic
solution16 can also be verified.17

B. Weak e-ph coupling, λ � 1: SCBA

For g �= 0, the EOM acquire additional terms because of
phonon emission and absorption. In particular, now

(z − εn)G(n,z) = δn,0 − t[G(n − 1,z) + G(n + 1,z)]

+ gF1(n; n; ω). (6)

Exact EOM for Fk,k � 1 of Eq. (2) can be easily derived;
however, the resulting infinite system of coupled equations is
too complicated, and thus approximations are needed.
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Physically, we expect the carrier to leave phonons behind,
as sketched in Fig. 1, in order to move down the ladder. The
more probable processes, leading to diagrams with the largest
contributions, are like those shown by full lines: phonons are
emitted when needed to move between different ladder states
and are absorbed in reverse order if the carrier goes back. A
process leading to a crossed diagram is shown by the dashed
lines and should have a low probability because the ladder
states are localized. Note that here we assume that the phonons
left behind are typically not spatially very close to one another.
This is a reasonable assumption if � > δ. Below, we will also
gauge the validity of this assumption in the case where � ∼ δ.

The assumption that the contribution of crossed diagrams
can be ignored is the essence of the self-consistent Born
approximation (SCBA). For weak coupling λ � 1, SCBA
is known to be a reasonable approximation in the unbiased
system with δ = 0.12 This is another reason to expect that
its generalization to the biased case, provided here, should
continue to work well for small λ.

By keeping only noncrossed diagrams, SCBA assumes that
phonons are absorbed in inverse order to their emission order,
i.e., if phonons were previously emitted (in this order) at sites
n1, . . . ,nk , then, at this point, either another phonon is emitted
or only the one at nk can be absorbed. For this to be possible,
these phonons must be distinguishable. This is automatically
the case if they are located at different sites. If there are multiple
phonons emitted at the same site, we will treat them as if they
belong to different phonon modes so that they continue to be
distinguishable. As we show below, this is implicitly assumed
to be true for SCBA in the unbiased system with δ = 0. It
should remain a reasonable assumption for the biased case as
well if � > δ, since, as already discussed, we do not expect,
with high probability, multiple phonons to be located at the
same site. Below we provide a way to gauge the validity of
this approximation.

After imposing these restrictions, the EOM for the
generalized propagator Fk(n; nk, . . . ,n1; z), k � 1, read

(z − εnk
− k�)Fk(nk; nk, . . . ,n1; z)

= −t [Fk(nk − 1; nk, . . . ,n1; z) + Fk(nk + 1; nk, . . . ,n1; z)]

+ gFk−1(nk; nk−1 . . . ,n1; z)

+ gFk+1(nk; nk,nk,nk−1 . . . ,n1; z), (7)

if n = nk; while for n �= nk ,

(z − εn − k�)Fk(n; nk, . . . ,n1; z)

= −t [Fk(n − 1; nk, . . . ,n1; z) + Fk(n + 1; nk, . . . ,n1; z)]

+ gFk+1(n; n,nk, . . . ,n1; z). (8)

In other words, if the carrier is at the site n = nk where the
last emitted phonon resides, it can either hop away, absorb
that phonon, or create another phonon (treated as if it belongs
to a different mode) at the same site. If the carrier is at a
site n �= nk , it can hop away or emit a new phonon, but
absorption of one of the existing phonons is not allowed by
the noncrossing condition.

Remarkably, these EOM can be solved analytically by
noting that for any k � 0, we must have

Fk+1(n; n,nk, . . . ,n1; z)

= σ (z − εn − k�)Fk(n; nk, . . . ,n1; z). (9)

Mathematically, this is because if k and n are large enough,
then these propagators must eventually vanish. Truncating
the EOM at any k + 2 (k can be arbitrarily large) leads to a
form similar to Eq. (9). This ansatz turns Eq. (8) into a simple
recurrence equation like Eq. (3), thus Fk(nk + 1; nk, . . . ,n1; z)
= A[z − εnk+1 − k� − gσ (z − εnk+1 − k�)] Fk (nk,nk, . . . ,

n1; z), and Fk(nk − 1; nk, . . . ,n1; z) = B[z − εnk−1 − k� −
gσ (z − εnk−1 − k�)]Fk(nk,nk, . . . ,n1; z). Using these in
Eq. (7) leads to an equation consistent with the ansatz of
Eq. (9), from which we find

σ (z) = g

z − � − gσ (z − �) + tA[z + δ − � − gσ (z + δ − �)] + tB[z − δ − � − gσ (z − δ − �)]
. (10)

The solution of this equation can be calculated iterationally
starting from σ (z) ≈ g/(z − �) as |z| → ∞.

Physically, Eq. (9) means that the amplitude of probability
for an additional phonon to be emitted depends only on the
energy of the electron, and not on the detailed locations of the
previously emitted phonons. Using the ansatz for k = 1 into
Eq. (6) leads to

G(n,ω) = G0[n,ω − gσ (ω)], (11)

and we recognize �SCBA(ω) = gσ (ω). It is straightfor-
ward to verify that for δ = 0, this is the expected
solution �SCBA(ω) = g2

N

∑
q GSCBA(k − q,ω − �), where

GSCBA(k,ω) = 1/ [ω + iη − εk − �SCBA(ω)].12 One can now
obtain the SCBA values for other propagators Fk .

To check the validity of this approximation, we can
use the same framework to implement other variational
schemes and compare the results. For example, the solution

of Ref. 9 can be trivially implemented by setting in the EOM
Fk(n; nk, . . . ,n1,ω) = 0 if n < nk , i.e., the carrier cannot be to
the left of the last emitted phonon (this automatically implies
n1 � · · · � nk). As a result, the corresponding self-energy
(which we label as “Ref. 9” in the following) has B ≡ 0 in
Eq. (10). A priori, we do not expect this approximation to be
that good for very small biases where the effective probabilities
for the carrier to hop uphill vs downhill are not that different.

A wider variational space can be achieved by allowing the
electron to go anywhere but keeping the additional restriction
n1 � · · · � nk , i.e., the electron can move to the left of existing
phonons but it cannot emit additional phonons while there.
Since this is one of the ways to obtain multiple phonons
at the same site, this approximation allows us to gauge the
importance of contributions from configurations with multiple
phonons at the same site. Mathematically, the corresponding
EOM for this variational approximation (which we label “var”
in the following) are obtained by removing the last term in
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Eq. (8) when n < nk . Its solution is like Eq. (10) but with
B(z − δ − �) in the denominator (since no new phonons
are emitted when the carrier moves to the left of existing
phonons, the contribution from such paths is not renormalized
by the self-energy gσ ). Various other possibilities can be
implemented similarly by only keeping terms in the EOM
consistent with those assumptions, but we stop here.

C. Moderate and large e-ph coupling: MA + SCBA

For stronger electron-phonon coupling, the probability to
have multiple phonons at the same site must increase. This is
known to be the case even for the unbiased system because the
electron creates a robust phonon cloud that accompanies it as it
moves through the system. The resulting dressed quasiparticle
is, of course, the polaron. In the biased system, one would ex-
pect the polaron to move down the ladder with its robust cloud.

In such conditions, we expect that the approximation made
above, of treating multiple phonons that happen to be at the
same site as if they belong to different modes, will become
quantitatively inaccurate because of normalization factors. To
see why, consider a state with n bosons at the same site. If they
belong to the same mode, it is described by |n〉 = b†,n/

√
n!|0〉,

and we have b|n〉 = √
n|n − 1〉, etc. However, if we treat the n

bosons as belonging to n distinct modes with one boson each,
then there are no normalization factors. For small n ∼ 1, this
makes little difference, but this is no longer the case if many
bosons are likely to occur at the same site.

Thus, at moderate and large λ, the e-ph coupling has two
consequences: one is to lead to the formation of the polaron
with its robust cloud and the other is to allow it to move to
lower energies by leaving phonons behind. The number and
typical locations of the phonons left behind is controlled by the
ratio �/δ and therefore is not very sensitive to the strength of
the coupling. As a result, we expect these processes to continue
to be well described by the SCBA scheme, i.e., by assuming
that these phonons are only involved in noncrossed diagrams.

However, at any point, the electron can start building a
larger cloud in its vicinity (the polaron cloud). Since this cloud
typically contains many phonons, it is unlikely that the electron
will abandon it and move away to start building another robust
cloud, at least not in the case � � δ that we consider here.
Instead, the electron will reabsorb these cloud phonons and
then move to another location (maybe leaving one phonon
behind) and start creating another robust polaron cloud, similar
to how it moves in an unbiased system.

In the unbiased system and for moderate and large e-ph
coupling, it has been shown that the momentum average
(MA) approximation12 provides an accurate description of
the polaron properties as long as � is not very small. For
the Holstein model, MA has been shown to correspond to the
variational approximation of assuming that the polaron cloud
has all its phonons at one site.18 This variational space can
be enlarged systematically to check its validity. While for the
Holstein model this approximation is already very reasonable,
for more complicated models of e-ph coupling one needs
to allow the polaron cloud to spread over multiple adjacent
sites.19

Here we implement an MA + SCBA approximation which
assumes that a one-site polaron cloud can only be built at
the location of the last emitted phonon, and that while a
cloud with two or more phonons is present the electron will
not emit/absorb phonons in other locations, consistent with
MA. At the same time, phonons not in the cloud can only
be absorbed in the inverse order to that in which they were
emitted, as described by SCBA.

Mathematically, we implement this as follows. The EOM
remain unchanged as long as nk �= nk−1, i.e., no cloud is being
built. Equations (8) and (9) are supplemented with additional
equations for the propagators with multiple phonons at site nk .
Specifically, for any p � 1, and using the shorthand notation
{n}p+1 ≡ nk, . . . ,nk,nk−1, . . . ,n1 where the first p + 1 sites
are all nk , we have20

[z − εnk
− (k + p)�]Fk+p(nk; {n}p+1; z) = −t[Fk+p(nk − 1; {n}p+1; z) + Fk+p(nk + 1; {n}p+1; z)]

+ (p + 1)gFk+p−1(nk; {n}p; z) + gFk+p+1(nk; {n}p+2; z), (12)

for n = nk; while for n �= nk ,

[z − εn − (k + p)�]Fk+p(n; {n}p+1; z) = −t[Fk+p(n − 1; {n}p+1; z) + Fk+p(n + 1; {n}p+1; z)]. (13)

These additional equations can be solved trivially and give

Fk+1(nk; nk,nk,nk−1, . . . ,n1; z) = σMA[z − εnk
− (k + 1)�]Fk(nk; nk, . . . ,n1; z), (14)

where

σMA(z) = 2g

z + tA(z + δ) + tB(z − δ) − 3g2

z−�+tA(z−�+δ)+tB(z−�−δ)− 4g2

...

. (15)

The ansatz of Eq. (9) remains unchanged if the last two phonons are not at the same site, and is supplemented by Eq. (14) if the
last two phonons are at the same site. The rest of the solution proceeds as before and we find

σ (z) = g

z − � − gσMA(z − �) + tA[z + δ − � − gσ (z + δ − �)] + tB[z − δ − � − gσ (z − δ − �)]
. (16)
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Again, we will check this approximation against the
variational predictions that do not allow the electron to move
to the left of the rightmost phonon (labeled as “Ref. 9”), and
respectively allow it to do so but not to emit additional phonons
to the left of the rightmost one (labeled as “var”). These
are implemented just as before. Another approximation we
implement, which will be labeled as “MA + SCBA dressed,” is
obtained by replacing A(z) → A[z − gσ (z)],B(z) → B[z −
gσ (z)] everywhere in Eq. (15). As its name suggests, this
approximation allows the electron to start building additional
noncrossed strings of phonons, which may include one-site
larger clouds, while the original cloud is present, because it is
obtained by replacing bare propagators with full propagators in
Eq. (15). By comparing it to the MA + SCBA results, we will
be able to gauge whether the assumption that such processes
can be ignored is correct.

III. RESULTS

A. Weak-coupling limit: SCBA

We begin by analyzing a system with a small bias and
small e-ph coupling, using the SCBA approximation. Typical
results are shown in Fig. 2, which plots the n = 0 LDOS for
various values of g, with (thin black line) and without (thick
red line) an electric field δ = 0.1 for � = t = 1. The LDOS at
other sites is given by A(n,ω) = A(0,ω − εn), i.e., it is shifted
by nδ.

Figure 2(a) shows the g = 0 results. As expected, the biased
system’s LDOS shows discrete peaks at ω = mδ marking the
WS ladder. Some of these peaks are hard to see because their
wave function is very small at site n = 0. This is progressively
the case for peaks with energies |ω| > 2.5t because of their
localized nature. The LDOS of the unbiased system is the usual
1D result, with a continuum of states for |ω| � 2t .

As we turn the e-ph coupling on in Figs. 2(b)–2(d), the
former WS states acquire a finite lifetime (their width is
no longer controlled by η, but instead is significantly larger
even for g = 0.1; see change in the vertical scale), showing
that these states are no longer localized. This proves that
coupling to the lattice indeed results in delocalization. As λ

increases, the peaks continue to broaden and start to merge
into a smooth continuum. This occurs in an asymmetric way,
with higher-energy states converging faster towards a smooth
LDOS, while the lower-energy states still show considerable
LDOS variation.

This may seem surprising at first, but the reason becomes
clear when we compare with the LDOS for δ = 0 (thick
red line), which has two features: a polaron band at low
energies ω ∈ [EGS,EGS + �] (EGS is the polaron ground-
state energy) and the polaron+one-phonon continuum for
ω > EGS + �.18 Arrows mark the transition between the two
features, which is barely visible on this scale for g = 0.1,0.2
(for the latter case, it is shown more clearly in the inset). States
in the polaron band describe the coherent, infinite-lifetime
quasiparticle (the polaron) consisting of the carrier and its
phonon cloud. In contrast, the polaron+one-phonon continuum
contains incoherent states with finite lifetime, describing the
scattering of the polaron on one or more phonons that do not
belong to its cloud.
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FIG. 2. (Color online) A(0,ω) vs ω for λ = 0, 0.005, 0.02, and
0.25 and t = 1,� = 1,η = 0.005. The thin black line shows results
for δ = 0.1�, while the thick red line is for δ = 0. Arrows mark the
top of the polaron band; also see inset.

At first, one may expect that turning on an electric field
should have a very different effect on the two types of states:
the incoherent states at high energy should remain delocalized
since the polaron already has enough energy to leave phonons
behind and can continue to do so when the bias is applied.
However, at low energies, one may expect to see a WS ladder
describing the localization of the polaron. Indeed, if here the
polaron carries all the phonons in its cloud, then it cannot leave
any of them behind, and therefore the electric field should
localize it just like it does with a bare particle. However,
because the LDOS at site n is shifted downward by nδ, it
follows that such localized WS states could tunnel into the
continuum that appears at the same energies for sufficiently
large n > 0. In other words, such states cannot be localized,
instead they are at most resonances with a width controlled
by the tunneling rate. If this is large compared to δ, then the
resonances merge into a smoother LDOS, as we see for these
parameters. Indeed, as shown below, individual resonances
spaced by δ can be recovered by increasing δ and/or by
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FIG. 3. (Color online) Comparison between the SCBA LDOS
and those predicted by the “Ref. 9” and “var” approximations (see
text for more details) for parameters as in Fig. 2.

increasing the e-ph coupling, which makes the polaron very
heavy and therefore greatly decreases its tunneling rate.

Before looking at other parameters, we compare the results
of SCBA with those of the other two variational approxima-
tions discussed. This comparison is shown in Fig. 3 for two
values of g. For the lower value, we see very good agreement
between all three curves, confirming that here it is indeed very
unlikely for the electron to return to past emitted phonons. As g

increases, however, the approximation of Ref. 9 becomes less
accurate, while the variational approximation, which allows
the electron to move to the left of the existing phonons but
not to emit other phonons there, is still extremely accurate
at low energies (here the two curves are indistinguishable).
This shows that it is not likely for the electron to return and
emit more phonons to sites where it already emitted phonons
in the past, validating our assumption that sites with multiple
phonons are very few for these parameters.

In Fig. 4, we show results for similarly small e-ph couplings
but a much larger bias, δ = �. Here, the broadening of the
former WS states into resonances as the e-ph is turned on
is very clearly visible, with their width increasing with λ.
Because δ is so large, these resonances have not yet merged
into a continuum even at higher energies (this occurs at larger
e-ph coupling, as shown below, but larger λ is not reliably
described by SCBA). The comparison with the other two
variational approximations, shown in Fig. 4(d), again confirms
better agreement with the assumption that the electron is free
to move everywhere as long as it does not emit more phonons
to the left of the last emitted one.

The results in Figs. 4(b) and 4(c) should be compared
with the two lower curves in Fig. 4 of Ref. 9, which plot the
current (not the LDOS) vs ω in a smaller range ω ∈ [−0.7,1.7],
and also show gaps around ω = ±0.5,1.5 that decrease with
increasing λ. Their gaps are smaller and, in fact, are nearly
closed for g = 0.5, in agreement with the results of Fig. 4(d),
which compares the three approximations. Figure 4(d) sug-
gests that the variational approximation of Ref. 9 overestimates
the tunneling rate, resulting in broader peaks, although we
must note that unlike SCBA, in Ref. 9 sites with multiple
phonons are treated with the proper normalization factors.
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FIG. 4. (Color online) (a)–(c) A(0,ω) vs ω for λ = 0, 0.045 and
0.125 and t = 1,� = 1,η = 0.005. The thin black line shows results
for δ = �, while the thick red line is for δ = 0. (d) Comparison of
the three approximations (see text for details).

Despite these fairly minor quantitative differences, however, it
is clear that qualitatively all three approximations describe
similar behavior, increasing our confidence that the exact
solution is not too different.

B. Moderate and strong coupling: MA + SCBA

We now turn on the e-ph coupling and use the MA + SCBA
method to study the results (for the weak couplings discussed
previously, there is no difference between the MA + SCBA
vs the SCBA results, as expected since at weak couplings no
robust phonon cloud forms).

In Fig. 5, we show results for the small bias δ = 0.1�,
but much larger λ values. Consider first the results in the
unbiased case (thick red lines), which now show the polaron
band moving towards lower energies and becoming narrower
as λ increases, as expected since the polaron becomes more
stable but heavier. In Figs. 5(c) and 5(d), for λ = 1.5 and 2,
respectively, the band associated with the second bound state21

is also visible below the continuum.12

For a finite bias, the MA + SCBA results confirm our ex-
pectations discussed above, namely, that for heavier polarons,
the tunneling rates are significantly decreased since moving
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FIG. 5. (Color online) LDOS for the small bias δ = 0.1� when
t = � = 1, but much larger e-ph couplings λ = 0.5,1,1.5,2. The
thick red lines show the LDOS for δ = 0. The insets zoom into the
low-energy sectors.

towards the right to tunnel into the continuum becomes a very
slow and therefore much less likely process. Indeed, for the
larger λ values, these tunneling rates are so small that the
spectrum (at energies corresponding to the polaron band) looks
like a WS ladder with the proper spacing δ between resonances,
as seen more clearly in the insets. At higher energies, the LDOS
mimics the unbiased LDOS somewhat better, although it still
has a significant “peaky” structure due to tunneling out of the
resonances lying further uphill.

In Fig. 6, we compare the MA + SCBA results for λ = 2
with the other approximations described above. In particular,
in Fig. 6(a), we compare the low-energy sector of the
n = 0 LDOS to that predicted by the dressed MA + SCBA
approximation. The two curves are very similar, apart from
a tiny shift due to the further renormalization of the polaron
cloud allowed by the dressed approximation, which lowers its
energy. However, it is clear that this is a very small effect,
validating the assumption that a description of the phonon
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FIG. 6. (Color online) Comparison between MA + SCBA and
the various other approximations described in the text, for λ = 2 and
10δ = � = t = 1.

configuration in terms of a one-site polaron cloud plus a
string of phonons left behind so that the polaron can lower
its energy is reasonable. Figure 6(b) shows the predictions of
the other two approximations, in very good agreement with
MA + SCBA, at least at lower energies. This is not surprising
since while the robust polaron cloud is present the electron is
not expected to spend much time away from the cloud site,
therefore additional restrictions on its motion should indeed
have little consequences.

Finally, in Fig. 7, we show results for cases with large
bias δ = � and strong coupling of up to λ = 2. Individual
resonances associated with different WS-like states again
become visible at larger λ (in particular, see the feature
appearing at � below the polaron band), but are much broader
than for the small bias. This agrees with the trends observed at
weak couplings and is expected since a larger bias must lead
to increased tunneling rates even for these heavy polarons.

Comparison between the different approximations, dis-
played in Fig. 7(d), again shows good agreement. This suggests
that the assumption implemented in SCBA to describe the
phonons left behind, as the polaron moves further downhill, is
still reasonable for a bias δ ∼ �. In other words, a phonon is
left behind every few sites, with low probability for multiple
phonons left at the same site or for phonons emitted later to
be to the left of phonons emitted earlier. For significantly
larger bias δ, one expects this assumption to start to fail,
since in this case the carrier will need to emit many phonons
at each site in order to lower its energy enough to be able
to delocalize effectively. As a result, such cases cannot be
described accurately by the approximations we presented here.

IV. SUMMARY AND DISCUSSIONS

To summarize, we have implemented the SCBA to describe
the string of phonons left behind by a carrier in a biased system
in order to lower its energy to become delocalized. We argued
that the SCBA should provide a reasonable description for
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FIG. 7. (Color online) LDOS for the large bias δ = � when t =
� = 1, but much larger e-ph couplings λ = 0.5,1,1.5,2. The thick
red lines in panels (a)–(c) show the LDOS for δ = 0. Panel (d) also
shows the predictions of the other approximations discussed in the
text.

these processes if the bias is not too large. Increased coupling,
however, also results in the dressing of the carrier by a phonon
cloud that accompanies it as it moves through the system. Here
we used the simplest variational MA flavor to describe this

cloud, combining it with SCBA to describe the phonons left
behind. We also showed how this formalism can be modified
to implement various other variational guesses that one might
want to test and used two possible versions to validate our
hypotheses for certain parameter ranges.

Our results allow us to study the evolution of the spectrum
as the bias and/or the e-ph couplings are turned on. It is worth
noting that this Hamiltonian is rather unusual in that it has an
unbounded spectrum if the chain is infinite: moving further
along the chain will lower the energy an arbitrary amount.
However, we can calculate the LDOS and use it to understand
the states available in the vicinity of one site. This can then
be combined with the knowledge that at other sites the LDOS
looks similar, apart from the appropriate energy shift, to gain
a global understanding of its evolution.

We find that e-ph coupling always delocalizes the carrier,
although for large coupling and small biases one can observe
sharp peaks in the spectrum, which may be mistaken for
localized states. As we argue, they are, in fact, resonances
because of tunneling into delocalized states available further
downhill.

While this method has been used here to study a clean
1D chain, both SCBA and MA can be straightforwardly
generalized to higher dimensions, allowing this formalism to
be used to investigate problems that become progressively
more difficult to study by numerical means.12 Other types
of e-ph coupling can also be studied by similar means,19 so
that one could also investigate the relevance of the detailed
modeling of the coupling to the lattice on the behavior of
the carrier. Finally, the addition of Anderson disorder is also
straightforward to implement in this approach and would open
a way to investigate the competition between the localization
promoted by disorder and the delocalizing effects of the
e-ph coupling, away from perturbational regimes. Indeed, we
believe that the method we have proposed and developed here
can be used to efficiently, yet quite accurately, study a varied
range of interesting problems.
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