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PACS 63.20.kd – Phonon-electron interactions

Abstract – Using the momentum average approximation we study the importance of adding
higher-than-linear terms in the electron-phonon coupling on the properties of single polarons
described by a generalized Holstein model. For medium and strong linear coupling, even small
quadratic electron-phonon coupling terms are found to lead to very significant quantitative changes
in the properties of the polaron, which cannot be captured by a linear Holstein Hamiltonian with
renormalized parameters. We argue that the bi-polaron phase diagram is equally sensitive to
addition of quadratic coupling terms if the linear coupling is large. These results suggest that the
linear approximation is likely to be inappropriate to model systems with strong electron-phonon
coupling, at least for low carrier concentrations.

Copyright c© EPLA, 2013

Introduction. – Coupling of carriers to phonons and
the properties of the resulting quasiparticles, the polarons,
are important for many materials, e.g., organic semicon-
ductors [1], cuprates [2], manganites [3], two-gap super-
conductors like MgB2 [4], etc. In some cases the effective
electron-phonon (el-ph) coupling λ is known quite accu-
rately. For others, like the cuprates, estimates range from
very small (λ∼ 0.3) to very large (λ∼ 10) [5]. One possi-
ble explanation for this is that, especially for stronger
couplings where simple perturbational expressions are no
longer valid, properly fitting the experimental data to
theoretical models can be quite involved [6].
Here we consider another possible explanation, namely

that at strong el-ph coupling, simple theoretical models
may not be valid anymore. All widely used models [7,8]
assume at the outset that the displacements xi of the
atoms out of equilibrium are small enough to justify
expanding the electron-lattice interactions to linear
order in xi. These linear models generically predict the
formation of small polarons or bipolarons at strong
coupling, with the carrier(s) surrounded by a robust
phonon cloud. As a result, lattice distortions 〈xi〉 are
considerable near the carrier(s). Hence, the linear models
are based on assumptions which are in direct opposition
to their predictions.
In this letter we investigate this issue in the single-

polaron limit, relevant for the study of weakly doped

materials like very underdoped cuprates [9] and organic
semiconductors [1], and for cold atoms/molecules simu-
lators [10]. We study the ground-state (GS) of a single
polaron in a generalized Holstein model including el-ph
coupling up to quartic order in xi to test the impor-
tance of the higher-order terms. We find that for strong
linear coupling even very small quadratic terms drasti-
cally change the properties of the polaron. Moreover, we
show that these effects go beyond a mere renormaliza-
tion of the parameters of the linear Holstein model. As
a result, attempts to find effective parameters appropri-
ate for a linear model by using its predictions to fit the
properties of real systems are doomed to failure, as differ-
ent values will be obtained from fitting different proper-
ties. This offers another possible explanation for the wide
range of estimates of the el-ph coupling in some materials.
More importantly, it means that we must seriously recon-
sider how to characterize such interactions when they are
strong. Furthermore, this calls for similar investigations of
the validity of these linear models at finite carrier concen-
trations, since it is reasonable to expect that they also fail
in the strong-coupling limit.
To the best of our knowledge, we present here the

first systematic, non-perturbative study of the importance
of higher-order el-ph coupling terms on single-polaron
properties. We note that in previous work going beyond
linear models, purely quadratic (no linear term) but
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Fig. 1: (Colour on-line) (a) Sketch of a 1D chain of polar
molecules; (b) the potential of the pair with (II) or without
(I) an extra charge carrier (full lines) is approximated by a
polynomial (thick dashed lines)

weak el-ph coupling was discussed for organic metals
using perturbation theory [11], while linear and quadratic
el-ph coupling was studied in the context of high-TC
superconductivity in ref. [12]. A semi-classical study of
some non-linear coupling potentials was carried out in
ref. [13].

Formalism. – We use the momentum average (MA)
approximation to carry out this study. MA was shown
to be very accurate in describing GS polaron properties
for the linear Holstein model, where it satisfies exactly
multiple sum rules and becomes asymptotically exact in
the limit of strong coupling [14]. It is straightforward
to verify that all these considerations remain valid for
the generalized Holstein model: H=Hel+Hph+Hel-ph,
defined as follows. The Holstein Hamiltonian models a
charge carrier in a molecular crystal like the 1D example
sketched in fig. 1(a). A charge carrier introduced in
such a crystal hops between “molecules”, as described by
Hel =

∑
k εkc

†
kck with εk =−2t

∑d
α=1 cos(kα) for nearest-

neighbor hopping on a d-dimensional simple cubic lattice.
Figure 1(b) illustrates how the lattice part is handled.
In the absence of a carrier, the potential has some form
(curve I) which is approximated as a parabola and leads

to Hph =Ω
∑
i b
†
i bi . This describes harmonic oscillations

of each “molecule” about its equilibrium distance R. If
a carrier is present, the potential has some other form
(curve II). The difference between I and II leads to Hel-ph.
Its details are material specific; here we propose two
models and choose a generic form based on them.
The first model assumes that the carrier occupies an

orbital of the ion with opposite charge. The attraction
between them is then some constant, whereas the Coulomb
repulsion between the carrier and the ion of like charge
is U(xi)=

U0ni
1−xi/R=U0ni

∑∞
n=0

(
xi
R

)n
, where ni=1(ni=0)

if the carrier is (is not) present and U0 > 0 is the charac-

teristic energy. Using xi =
√

�

2µΩ (bi+ b
†
i ), where µ is the

reduced mass of the molecule, and truncating the series at
n= 4 leads to

Hel-ph =
4∑
n=1

H(n)el-ph =
4∑
n=1

gn
∑
i

c†i ci(bi+ b
†
i )
n, (1)

where gn = g1ζ
n−1 with ζ =A/R and A=

√
�/(2µΩ) the

zero-point amplitude of the harmonic oscillator.

The second model assumes that the carrier is an electron
(hole) that occupies an anti-bonding (bonding) orbital
of the molecule; all bonding orbitals are initially full
since the parent crystal is an insulator. In both cases the
energy increases by an overlap integral which decreases

exponentially with the distance: U(xi)∼ nie−
R−xi
aB where

aB is the Bohr radius. A Taylor expansion to fourth order
in xi leads again to eq. (1) but now gn/g1 = 2

n−1ζn−1/n!
for ζ = g2/g1 =A/(2aB), where again A=

√
�/(2µΩ).

We define as the linear model the case in which only
g1 �= 0 (i.e., the usual Holstein model); as the quadratic
model the case in which only g1 �= 0, g2 �= 0; and as the
quartic model the case in which all gn �= 0. The case with
only g4 = 0 is not considered because it is unstable.
The linear Holstein model is characterized by two

dimensionless parameters: the effective coupling strength
λ= g21/(2dtΩ), where d is the dimension of the lattice, and
the adiabaticity ratio Ω/(4dt). As long as the latter is
not very small, the former controls the phenomenology,
with the crossover to small-polaron physics occurring for
λ∼ 1 [15]. For ease of comparison, we continue to use these
parameters when characterizing the higher-order models.
For the quadratic model, the new energy scale g2 results in
a third dimensionless parameter ζ = g2/g1. For the quartic
model there are two more parameters gn/g1, n= 3, 4.
Both scale like ζn−1 but with different prefactors. We use
gn/g1 = ζ

n−1 like in the first model since for the second
model the prefactors are less than 1, making these terms
smaller and thus less important.
For specificity, from now we assume ζ > 0 (ζ < 0 is

briefly discussed at the end). As we show below, in this
case we find that while quadratic terms are important
when the linear coupling is large, addition of the n= 3, 4
terms only leads to small quantitative changes and can be
ignored. This justifies a posteriori why we do not include
anharmonic corrections in Hph and/or higher-order terms
with n> 4 in the electron-phonon coupling.
We now describe in detail the MA solution for the

quadratic model. The calculations for the quartic model
are analogous but much more tedious.
We want to find the single-particle Green’s function
G(k, ω) = 〈0|ckĜ(ω)c†k|0〉, where Ĝ(ω) = [ω−H+ iη]−1 is
the resolvent for this Hamiltonian, with η→ 0 a small
positive number and |0〉 the vacuum state. From this
we can extract all the polaron’s GS properties [14].
We rewrite the quadratic Hamiltonian as H=H0+H1,
where H0 =Hel+Hph+ g2

∑
i c
†
i ci (2b

†
i bi +1) while H1 =∑

i c
†
i ci [g1(b

†
i + bi )+ g2(b

†2
i + b

2
i )]. The equation of mo-

tion (EOM) for the propagator is obtained recursively
from Dyson’s identity, Ĝ(ω) = Ĝ0(ω) + Ĝ(ω)H1Ĝ0(ω)
where Ĝ0(ω) = [ω − H0 + iη]−1 is the resolvent for H0.
Using it in G(k, ω) yields the EOM

G(k, ω) =G0(k, ω)

[
1+

2∑
n=1

∑
i

eik·ri√
N
gnFn(k, ω; i)

]
, (2)

where Fn(k, ω; i) = 〈0|ckĜ(ω)c†i (b†i )n|0〉.
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Going beyond the linear electron-phonon coupling approximation

Applying Dyson’s identity to generate EOM for the Fn
propagators results in an infinite system of coupled equa-
tions which involves many other generalized propagators.
MA [14,16] circumvents this complication by making
the approximation G0(i− j, ω;n)≈ δij ḡ0(ω;n) for any
n� 1, where G0(i− j, ω;n) = 1

n! 〈0|ci bni Ĝ0(ω)(b†i )nc†i |0〉.
This is justified because the polaron GS energy lies
below the free-particle spectrum, and for such energies
the free-particle propagator decreases exponentially with
|i− j|. Thus, MA keeps the largest contribution and
ignores the exponentially smaller ones. This becomes
exact in the strong-coupling limit t→ 0. The propaga-
tor ḡ0(ω;n) = [1/g̃0(ω−nΩ− g2)− 2g2n]−1 is that of a
carrier scattered by an on-site potential 2g2n, where
g̃0(ω) =

1
N

∑
k 1/(ω− εk+ iη).

MA allows us to obtain a simplified hierarchy of EOM
involving only the generalized Green’s functions Fn. For
any n� 1, they read

Fn(k, ω; i) = ḡ0(ω;n) ·
[
n(n− 1)g2Fn−2(k, ω; i)

+ng1Fn−1(k, ω; i)+ g1Fn+1(k, ω; i)+ g2Fn+2(k, ω; i)
]
.

Since the arguments of all Fn propagators are the same,
we suppress them in the following for simplicity.
Following the technique introduced in ref. [17], we

reduce this to a simple recursive relation for the vector
Wn = (F2n−1, F2n). The EOM for Wn are γnWn =
αnWn−1+βnWn+1, where the αn, βn and γn are 2× 2
matrices whose coefficients are read off of the EOM,
namely αn|11 = (2n − 1)(2n − 2)g2ḡ0(ω; 2n − 1), αn|12 =
(2n− 1)g1ḡ0(ω; 2n− 1), αn|21 = 0 and αn|22 = 2n(2n −
1)g2ḡ0(ω; 2n), while

βn =

(
g2ḡ0(ω; 2n− 1) 0
g1ḡ0(ω; 2n) g2ḡ0(ω; 2n)

)
, (3)

γn =

(
1 −g1ḡ0(ω; 2n− 1)

−2ng1ḡ0(ω; 2n) 1

)
. (4)

This simple recursive relation for Wn has the solution
Wn =AnWn−1 for any n� 1, where An are 2× 2 matrices
obtained from the infinite continued fraction

An = [γn−βnAn+1]−1 αn. (5)

In practice, we start with AN = 0 for a sufficiently large
cutoff N , chosen so that the results are insensitive to
further increases in it (N ∼ 100 is usually sufficient).
We find A1 =

(
0 a12
0 a22

)
, where a12 and a22 are obtained

after using eq. (5) N − 1 times. As a result, F1 = a12F0,
F2 = a22F0, where G(k, ω) =

∑
i e
ik·ri/

√
NF0(k, ω; i).

Using these in eq. (2) leads to a solution of the expected

form G(k, ω) = [ω− εk−Σ(ω)+ iη]−1, with the MA self-
energy for the quadratic model: Σ(ω) = g1a12(ω)+
g2a22(ω).
The reason why the self-energy is local at this level of

MA is the simplicity of this Hamiltonian, whose vertices
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Fig. 2: GS quasiparticle weight (left panel) and GS average
phonon number (right panel) vs. ζ, in the quadratic (n= 2,
lines) and quartic (n= 4, symbols) models, for various values
of λ and Ω= 0.5t, in one dimension.

are momentum independent; this issue is discussed at
length for the linear Holstein model in ref. [16].
The quartic model is solved analogously. The main

difference is that here the EOM for Fn involves 9 consecu-
tive terms, from Fn−4 to Fn+4. These can also be rewrit-
ten as simple recurrence relations γnWn = αnWn−1+
βnWn+1, but now αn, βn and γn are 4× 4 matrices. Their
expressions are too long to be listed here.

Results and discussion. – To gauge the relevance
of the higher-order el-ph coupling terms we plot in fig. 2
the evolution with ζ of a polaron property that can be
directly measured, namely the quasiparticle weight Z =
m/m∗, where m,m∗ are the carrier and the polaron mass,
respectively. We also show the average phonon number
Nph. The results are for a one-dimensional chain. Results
in higher dimensions are qualitatively similar to these 1D
results for small λ, and become quantitatively similar to
them in the interesting regime of large λ where all of them
converge towards those of the atomic limit t= 0.
First, we note that the ζ = 0 intercepts trace the

predictions of the linear model: with increased coupling λ,
Z decreases while Nph increases as the polaron acquires
a robust phonon cloud [14,15]. From these intercepts, we
estimate that the linear model predicts the crossover to
the small-polaron regime to occur around λ∼ 1.5 for this
adiabaticity ratio and dimension.
The quadratic model, whose predictions are indicated

by lines, shows a very strong dependence of ζ for strong
linear coupling λ� 1.5: here both Z and Nph vary by
about an order of magnitude as ζ increases from 0 to
0.1. For higher ζ, Z and Nph have a slight turnaround
towards smaller/larger values, for reasons explained below,
but are still consistent with a large polaron. These results
indicate that the quadratic term can completely change
the behavior of the polaron in the limit of medium and
large λ. For example, in the quadratic model at λ= 1.5 and
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ζ ∼ 0.1 the polaron is light and with a small phonon cloud,
in total disagreement with the linear model prediction of
a heavy small polaron at this λ.
Of course, this raises the question of how large ζ is. The

answer is material specific, but as an extreme case, let H2
be the unit of the molecular crystal. This case is described
by model two, so ζ ∼ 2A/aB , where aB ≈ 0.5 Å while
A≈ 0.1 Å if we use Ω≈ 0.5 eV appropriate for a H2 mole-
cule [18]. This leads to a very large ζ ∼ 0.4. Other atoms
are heavier but phonon frequencies are usually much
smaller than 0.5 eV, so it is not clear whether A∼ 1/√µΩ
changes much. The Bohr radius (or distance R between
atoms, for model 1) is usually larger than 0.5 Å but not
by a lot, maybe up to a factor 5 for R; thus we expect
smaller ζ in real materials but the change is likely not by
orders of magnitude. Figure 2 shows that values as small
as ζ ∼ 0.05 already lead to significant quantitative changes
in m∗.
Inclusion of cubic and quartic terms (the symbols show

the results of the quartic model) further changes Z and
Nph, but these changes are much smaller for all ζ, of up
to ∼ 10% when compared to the quadratic model values,
as opposed to order of magnitude changes between the
quadratic and the linear models. Thus, these terms are
much less relevant and can be ignored without losing much
accuracy. As discussed, their small effect explains why we
do not consider terms with even higher order n, nor n= 4
anharmonic terms in the phonon Hamiltonian.
To understand the effects of the quadratic term at

large λ, we study it in the atomic limit t= 0 (λ=∞)
where the carrier remains at one site and interacts only
with the phonons of that site. Focusing on this site, its

quadratic Hamiltonian H(2)at =Ωb†b+
∑2
n=1 gn(b

†+ b)n

is well studied in the field of quantum optics, where it
describes so-called squeezed coherent states [19]. The
extra charge changes the origin and spring constant
of the original harmonic oscillator which means that
the Hamiltonian is easily diagonalized by changing
to new bosonic operators γ† = ub†+ vb+w, where
u, v and w are such that H(2)at =Ωatγ†γ+E(at)GS . We

find Ωat =
√
Ω(Ω+4g2), u=

√
(Ω+2g2+Ωat) /(2Ωat),

w= g1
√
Ω/Ω3at and v= sgn(g2)

√
(Ω+2g2−Ωat) /(2Ωat).

From these, we obtain EatGS =− g
2
1Ω

Ω2at
+ 12 (Ωat−Ω), N (at)ph =

1
2 [
Ω+2g2
Ωat

− 1]+ g21
(Ω+4g2)2

and Zat =
1
u
exp
[−w2 (1− v

u

)]
.

The latter result requires the expansion of the squeezed
coherent states in the number state basis [20].

Figure 3 shows Zat and N
(at)
ph vs. ζ (thick lines), which

agree well with the corresponding λ= 2 results of fig. 2.
In particular, for ζ→ 0 we find Ωat =Ω+2g1ζ +O(ζ2),
N
(at)
ph =

g21
Ω2

[
1− 8g1Ω ζ +O(ζ2)

]
, explaining their linear

increase/decreases for small ζ.
The slight turnaround of the Z and Nph curves at larger

values of ζ is also observed in the atomic limit of the

quadratic model. The reason is that the first term in N
(at)
ph

increases whereas the second term decreases with ζ. As
discussed above, for small ζ the second term dominates
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Fig. 3: (Colour on-line) Zat (left), and N
(at)
ph (right) vs. ζ,

for g1 =
√
2 and Ω= 0.5 (full lines). The dashed lines show

the mean-field estimates, while the dot-dashed lines show the
results of fitting g̃/Ω̃ to exactly reproduce the other quantity.
See text for more details.

and the overall number of phonons decreases. For large ζ,
however, the second term vanishes whereas the first term
diverges as

√
g2 =

√
ζg1. Hence, as ζ increases N

at
ph has a

minimum, and then starts to increase with ζ. Basically,
here the g2(b

†2+ b2) coupling dominates over the linear
coupling g1(b

†+ b) and changes the trend.
This leads us to pose the question whether these

exact results of the quadratic atomic model can be fit

well by an effective linear model H(1)at = Ω̃b†b+ g̃(b†+ b),
for some appropriate choice of the effective parame-
ters Ω̃, g̃. One way to achieve this is with a mean-field
ansatz b†2 ≈ 2〈b†〉b†−〈b†〉2, with 〈b†〉 the GS expecta-
tion value of b†. The self-consistency condition 〈b†〉=
−(g1+2g2〈b†〉)/(Ω+2g2) leads to the mean-field esti-
mates Ω̃MF =Ω+2g2, g̃MF = g1− 2g1g2/(Ω+4g2). Thus,
for small ζ = g2/g1, Ω̃MF increases whereas g̃MF decreases
with increasing ζ so the effective coupling λ̃= g̃2/(2dtΩ̃)
decreases with ζ. This is consistent with the observed
move away from the small-polaron limit with increas-
ing ζ. Quantitatively, however, these mean-field results
(dashed lines in fig. 3) are not very accurate for small ζ,
and fail to capture even qualitatively the correct behavior

when ζ	 1, since here N (at)ph →∞ while N (MF )ph = g̃2MF/

Ω̃2MF→ 0.
In fact, there is no choice for effective linear parameters
g̃ and Ω̃ that reproduces the results of the quadratic
model. This is because in the linear model, both Z̃ and
Ñph are functions of g̃/Ω̃ only. Figure 3 shows that

if one chooses this ratio so that N
(at)
ph = Ñph, then Z̃

(dot-dashed line in the left panel) disagrees with Zat,
and vice versa. Even more significant is the fact that
even if one could find a way to choose g̃, Ω̃ so that the
overall agreement is satisfactory for all GS properties,
the linear model’s prediction for higher energy features
would still be completely wrong. For example, it would
predict the polaron+one-phonon continuum to occur at
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EGS+Ω̃ instead of the proper EGS+Ω threshold. Since
in the atomic limit the predictions of the quadratic model
cannot be reproduced with a renormalized linear model,
we conclude that this must hold true at finite hopping t
as well, at least for large λ where the quadratic terms are
important.
So far we discussed moderate values of the adiabaticity

ratio Ω/t= 0.5, as well as the anti-adiabatic (atomic) limit.
MA predicts similar results in the adiabatic limit Ω/t→ 0
for large λ, where it remains accurate, but is unsuitable
to study small and moderate couplings [16]. We expect
that here the quadratic coupling is essential even for small
couplings λ→ 0, because the term 2g2

∑
i b
†
i bi ensures that

phonons are gapped even though Ω= 0.
So far we also only discussed the case ζ > 0. The

behavior of models with ζ < 0 can be glimpsed at from
the exact results in the atomic limit. For small negative
ζ, the results listed above show that the average phonon

number N
(at)
ph increases with |ζ| while the qp weight Zat

decreases fast, i.e., the polaron moves more strongly into
the small-polaron limit. This is in agreement with the MA
predictions for the quadratic model (not shown). Here,
however, we must limit ourselves to values |ζ|<Ω/(4g1)
so that Ωat remains a real quantity (a similar threshold
is found for the full quadratic model. Note that the value
of this threshold decreases with increasing λ). For values
of |ζ| above this threshold the quadratic model becomes
unstable. This, of course, is unphysical. In reality, here
one is forced to include higher-order (anharmonic) terms
in the phonon Hamiltonian Hph since they guarantee the
stability of the lattice if the quadratic terms fail to do so.
Such anharmonic terms may have little to no effect in the
absence of the carrier, but clearly become important in its
presence, in this limit. They can be treated with the same
MA formalism we used here. Their effects, as well as a full
analysis of all possible signs of the non-linearities and the
resulting polaron physics will be presented elsewhere. For
our current purposes, it is obvious that in the case ζ < 0,
higher-order terms in el-ph coupling also play a key role in
determining the polaron properties unless λ is very small,
and therefore cannot be ignored.
The results presented so far clearly demonstrate the

importance of non-linear el-ph coupling terms if the linear
coupling λ is moderate or large, through their significant
effects on the properties of a single Holstein polaron.
A reasonable follow-up question is whether such

dramatic effects are limited to the single-polaron limit or
are expected to extend to finite carrier concentrations.
While the limit of large carrier concentrations remains
to be investigated in future work, here we present strong
evidence that quadratic terms are likely to be equally
important at small but finite carrier concentrations.
Of course, for finite carrier concentrations one needs

to supplement the Hamiltonian with a term describing
carrier-carrier interactions. The simplest such term is an
on-site Hubbard repulsion HU =U

∑
i ni↑ni↓, and gives

rise to the Hubbard-Holstein Hamiltonian. The linear
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Fig. 4: Estimate of the bipolaron phase diagram in 1D for
Ω/t= 0.5 and for different values of ζ, based on second-order
perturbation theory in t. In all four panels, the solid lines
show the transition from S0 (on-site) stable bipolarons to S1
(nearest-neighbor) stable bipolarons, while the dashed lines
show the unbinding transition above which bound polarons
are unstable. Note that panels (c) and (d) have a significantly
rescaled y-axis. See text for more details.

version of this Hamiltonian has been studied extensively
by a variety of numerical methods [15]. In particular,
for low carrier concentrations and focusing on the small-
polaron/bipolaron limit, the phase diagram has been
shown to consist of three regions: i) for large λ and
small U , the deformation energy favors the formation
of on-site bipolarons, also known as the S0 bipolarons;
ii) increasing U eventually makes having two carriers at
the same site too expensive, and the S0 bipolarons evolve
into weakly bound S1 bipolarons, where the two carriers
sit on neighboring sites. The binding is now provided
by virtual hopping processes which allow each carrier to
interact with the cloud of its neighbor. However, at smaller
λ and larger U this binding mechanism is insufficient to
stabilize the S1 bipolaron, and instead one finds iii) a
ground state consisting of unbound polarons.
This phase diagram has been found numerically in

1D [21] and 2D [22] for the linear Hubbard-Holstein
model. Some results in 3D have also become available
very recently [23]. In 1D and 2D, the separation lines
between the various phases are found to be close to those
estimated using second-order perturbation theory in the
hopping t, starting from the atomic limit [21,22]. This
is expected since for large linear coupling λ, the results
always converge toward those predicted by the atomic
limit.
Since the quadratic Hamiltonian can be diagonalized

exactly in the atomic limit, we use second-order pertur-
bation theory to estimate the location of the separation
lines for various values of ζ > 0. The results are shown
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in fig. 4. Panel (a) shows the rough phase diagram for
ζ = 0, in agreement with the asymptotic estimates shown
in refs. [21,22] (note that the definition of the effective
coupling used in those works differs by various factors from
our definition for λ). Panels (b)–(d) show a very signifi-
cant change with increasing ζ. Even the presence of an
extremely small quadratic term ζ = 0.01 moves the two
lines to considerably lower U values, as shown in panel (b),
while for ζ = 0.05 and 0.1, the bipolarons are stable only
in a very narrow region with small values of U (note that
the vertical axes are rescaled for panels (c) and (d)).
The dramatic change with increasing ζ in the location

of these asymptotic estimates for the various bipolaron
transitions/crossovers strongly suggests that non-linear
el-ph coupling terms remain just as important in the limit
of small carrier concentrations as they have been shown to
be in the single-polaron limit. In particular, these results
suggest that the presence of non-linear el-ph coupling
terms leads to a significant suppression of the phonon-
mediated interaction between carriers, so that the addition
of a small repulsion U suffices to break the bipolarons
into unbound polarons (whose properties are also strongly
affected by the non-linear terms, as already shown).
The Holstein model is the simplest example of a g(q)

model, i.e., a model where the electron-phonon interac-
tion depends only on the momentum of the phonon. Phys-
ically, such models appear when the coupling to the lattice
manifests itself through a modulation of the on-site energy
of the carrier. The Fröhlich model is another famous exam-
ple of g(q) coupling. Models of this type are found to have
qualitatively similar behavior, with small polarons forming
when the effective coupling increases. These small polarons
always have robust clouds, with significant distortions of
the lattice in their vicinity. We therefore expect that non-
linear terms become important for all such models at suffi-
ciently large linear coupling.
To summarize, we have shown that non-linear terms in

the el-ph coupling must be included in a Holstein model if
the linear coupling is large enough to predict small-polaron
formation, and that doing so may very significantly change
the results. We also argued that these changes cannot
be accounted for by a linear Holstein model with renor-
malized parameters. These results show that we have
to (re)consider carefully how we model interactions with
phonons (more generally, with any bosons) in materials
where such interactions are expected to be strong, at
least for low carrier concentrations and for models where
this coupling modulates the on-site energy of the carriers.
Whether this is also true in the metallic regime and/or for
other types of models remains an open question.
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[8] Fröhlich H., Adv. Phys., 3 (1954) 325.
[9] Mishchenko A. S. and Nagaosa N., Phys. Rev. Lett.,
93 (2004) 036402; Mishchenko A. S. et al., Phys. Rev.
Lett., 100 (2008) 166401 and references therein.

[10] Herrera F. and Krems R. V., Phys. Rev. A, 84 (2011)
051401; Hague J. P. and MacCormick C., New J.
Phys., 14 (2012) 033019; Stojanovic V. M. et al., Phys.
Rev. Lett., 109 (2012) 250501; Herrera F. et al., Phys.
Rev. Lett., 110 (2013) 223002.

[11] Entin-Wohlman O., Gutfreund H. and Weger M.,
Solid State Commun., 46 (1983) 1; J. Phys. C: Solid State
Phys., 18 (1985) L61.

[12] Crespi V. H. and Cohen M. L., Phys. Rev. B, 48 (1993)
398.

[13] Kenkre V. M., Phys. D, 113 (1998) 233.
[14] Goodvin G. L., Berciu M. and Sawatzky G. A., Phys.

Rev. B, 74 (2006) 245104.
[15] Fehske H. and Trugman S. A., in Polarons in Advanced

Materials, edited by Alexandrov A. S. (Canopus,
Bath/Springer-Verlag, Bath) 2007, pp. 393–461.

[16] Berciu M. and Goodvin G. L., Phys. Rev. B, 76 (2007)
165109.

[17] Moeller M., Mukherjee A., Adolphs C. P. J.,
Marchand D. J. J. and Berciu M., J. Phys. A: Math.
Theor., 45 (2012) 115206.

[18] Herzberg G., Phys. Rev. Lett., 23 (1969) 1081.
[19] Gerry C. C. and Knight P. L., Introductory Quantum

Optics (Cambridge University Press) 2005.
[20] Stoler D., Phys. Rev. D, 1 (1970) 3217; 4 (1971) 1925;

Yuen H. P., Phys. Rev. A, 13 (1976) 2226.
[21] Bonca J., Katrasnik T. and Trugman S. A., Phys.

Rev. Lett., 84 (2000) 3153; Barisic O. S. and Barisic
S., Eur. Phys. J. B, 85 (2012) 111.

[22] Macridin A., Sawatzky G. A. and Jarrell M., Phys.
Rev. B, 69 (2004) 245111.

[23] Davenport A. R., Hague J. P. and Kornilovitch
P. E., Phys. Rev. B, 86 (2012) 035106.

47003-p6


