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Variational approach for calculating Auger electron spectra: Going beyond
the impurity approximation
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We propose a variational method to calculate the two-hole propagators relevant for Auger spectroscopy in
transition-metal oxides. This method can be thought of as an intermediary step between the full solution (which
is difficult to generalize to systems with partially filled bands) and the impurity approximation. Like the former,
our solution has full translational invariance, and like the latter, it can be generalized to certain types of systems
with partially filled bands. Here we compare both our variational approximation and the impurity approximation
against the exact solution for a simple one-dimensional model with filled bands. We show that when the energies
of the eigenstates residing primarily on the transition-metal ions do not overlap with those of the eigenstates
residing primarily on oxygen ions, both approximations are valid but the variational approach is superior.
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I. INTRODUCTION

Spectroscopic measurements are a powerful set of tools
for probing various aspects of many-body physics.1,2 Among
these, Auger electron spectroscopy (AES) provides infor-
mation about the local atomic multiplet structure, on-site
interaction strengths, and the crystal fields.3–5 In transition-
metal oxides, the AES of the transition element can be
supplemented by the O KLL Auger spectra, resulting in
additional information about the O on-site repulsion energy as
well as interactions between holes located on nearest-neighbor
transition-metal and O ions.6 Such information is vital for
understanding correlated materials, which is why AES has
been the subject of sustained research for a long time.

The Auger process consists of the decay of a core hole
into two final-state holes (initially located at the atomic site
where the original core hole was created by the high-energy
x ray) plus an Auger electron, and is mediated by on-site
Coulomb interactions. One of the most studied cases has
these two final-state holes residing in the valence band and
goes by the name of core-valence-valence (CVV) Auger
spectroscopy. From a theoretical point of view, the easiest
case to handle has a full valence band except for the two Auger
holes. The central quantity of interest is the two-hole Green’s
function, which for an otherwise full band can be calculated
within the two-step approximation using the Cini-Sawatzky
theory.7–9 The resulting two-hole spectral function, multiplied
by momentum-dependent matrix element factors, provides the
theoretical predictions for AES.10 Many extensions have been
proposed to incorporate various aspects such as dynamical
screening,11–13 off-site interactions,14 overlap effects,15–17 and
one-step formulation.18 We refer the reader to a recent
review19 for more details. These efforts have led to spectacular
success in explaining AES for materials such as Cu and
Cu2O.

However, the problem of understanding AES for systems
with a partially filled valence band, such as the oxides
of transition elements Ni, Co, Fe, Mn, etc., remains open
because the two-hole spectral function is very challenging

to compute in this case. This is because in the presence of
other holes the dynamics of the two additional holes is a
complicated many-body problem, whereas in an otherwise
full band the two holes interact only with one another (if we
ignore electron-hole excitations between the valence and the
conduction bands), i.e., this is a two-body problem. Limited
success has been achieved employing variants of the bare
ladder approximations20 and assuming low hole density in the
bands. A completely different approach is to use the Anderson
impurity approximation, whose underlying idea is as follows:
in transition-metal (TM) oxides, the transition-metal atoms are
typically connected to each other through oxygen ligands. The
simplest example in one dimension is sketched in Fig. 1(a), and
has transition-metal atoms intercalated with O atoms. In the
impurity approximation,21–24 the full problem is simplified to
that of a single transition-metal atom coupled to the bath of O,
as sketched in Fig. 1(b). This greatly simplifies the calculation
and is a reasonable step towards understanding local multiplet
structures. However, because the symmetry of the problem
is lowered, momentum-resolved spectral weights cannot be
calculated.

Here, we propose a variational approach for finding the two-
hole Green’s functions needed for AES, which can be thought
of as an intermediary step between the impurity approximation
and the full lattice calculation. Like the former, it has a reduced
Hilbert space and can therefore be generalized to (some)
systems with partially filled bands. Like the latter, it has full
translational invariance so that momentum-resolved spectral
weights can be calculated. We argue that the location of the
spectral weight component ignored within our approximation
can be inferred a priori, but should be small for materials
where AES is a useful probe. Moreover, the variational space
can be systematically enlarged to check the relevance of some
of the neglected terms.

In this paper, we present the underlying idea and the
general formalism of this variational approach, which is based
on a recently developed method to calculate many-particle
Green’s functions.25–27 Here, we apply it to the simple model
sketched in Fig. 1 and assume otherwise full bands, so that we
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FIG. 1. (Color online) (a) Sketch of the one-dimensional (1D)
periodic Anderson model. TM and O represent transition-metal and
O ions, respectively. (b) In the impurity approximation, an impurity
TM ion is coupled to the 1D “bath” of O.

can benchmark it against the exact solution available in this
case. For completeness, we also show impurity approximation
results for this model. This allows us to gauge the advantages
and disadvantages of both of these approximations and to
understand for what regions in the parameter space they are
valid. This information will guide us, in future work, to use this
method for appropriate systems where the transition elements
have partially filled d orbitals.

The paper is organized as follows. In Sec. II we define
the Hamiltonians and in Sec. III we discuss the methods
to calculate two-hole propagators exactly and with the two
approximations. In Sec. IV, we present the exact results
and compare them with those predicted by our variational
approximation as well as the impurity approximation for
two different topologies of coupling between the impurity
and the bath of O. Section V contains the summary and
conclusions. Some of the details are presented in the two
Appendices.

II. HAMILTONIAN

A. The periodic Anderson model

The periodic one-dimensional (1D) Anderson model shown
in Fig. 1(a) is defined by the Hamiltonian

HP = HTM + HO + Hhyb,

where HTM describes the TM atoms, which for simplicity are
assumed to have only two (spin-degenerate) states each, and
is given by

HTM = U
∑

i

nd,i,↑nd,i,↓ + �
∑
i,σ

nd,i,σ .

The O “bath” is described by a 1D Hubbard model,

HO = −t
∑
i,σ

(c†i,σ ci+1,σ + H.c.) + UO

∑
i

ni,↑ni,↓,

while the TM-O hybridization is described by

Hhyb = −V
∑
i,σ

[d†
i,σ (ci,σ + ci−1,σ ) + H.c.].

Here, all creation operators are electron creation operators,
with ciσ and di,σ the operators for O and TM orbitals,
respectively, with the convention that the ith TM atom is placed
to the left of the ith O atom. As usual, nd,i,σ = d

†
iσ diσ , niσ =

c
†
iσ ciσ . For bookkeeping purposes, we assume that there are

N TM and N O sites, but in the final calculation, we let

N → ∞. Because the method we introduce below is based
on a real-space representation, the addition of longer-range
interactions, such as repulsion between holes residing on
neighboring TM and O sites, is trivial to implement. This
model assumes that only the σ -bonding O 2p orbitals pointing
towards the TM neighbors are relevant. Generalization to
models that include more O and/or TM orbitals, as well as
lattices in higher dimensions, is discussed below.

For AES in a system with full bands, we start from the
completely full ground state |�〉P = ∏

i,σ d
†
i,σ c

†
i,σ |0〉 of energy

EP
� = N (2� + U + UO), and create two holes. Because the

periodic Hamiltonian is invariant to translations and because
we want to describe states where the two holes can be
at the same site, we choose two-hole basis states with
a total momentum k and zero-spin projection,25 namely,
|k,n,dd〉 = 1√

N

∑
i e

ik(Ri+na/2)di,↑di+n,↓|�〉P if both holes are

on TM sites, |k,n,dc〉 = 1√
N

∑
i e

ik(Ri+na/2)di,↑ci+n,↓|�〉P and

|k,n,cd〉 = 1√
N

∑
i e

ik(Ri+na/2)ci,↑di+n,↓|�〉P if one hole is on
a TM site and the other is at an O site, and finally |k,n,cc〉 =

1√
N

∑
i e

ik(Ri+na/2)ci,↑ci+n,↓|�〉P if both holes are in the O

bath. Here, a is the lattice constant and n = −N
2 + 1, . . . ,N

2
takes all possible values consistent with the periodic boundary
conditions. Taken together, these states constitute a full basis
for the Hilbert subspace containing states with total momentum
k and zero-spin projection.

The aim is to find the propagator

Gdd (k,0,ω) = 〈k,0,dd|ĜP (ω)|k,0,dd〉,
where ĜP (ω) = [ω + iη − (HP − EP

� )]−1 is the resolvent
for HP because its associated spectral weight Add (k,0,ω) =
− 1

π
Im[Gdd (k,0,ω)], which has poles at energies ω =

E2h(k) − EP
� for any two-hole eigenstate with total momentum

k and energy E2h(k), is proportional to the momentum-
resolved spectral intensity measured by AES. As discussed
below, our solution also provides the values of many other
propagators beside Gdd (k,0,ω), from which other useful
information can be gleaned.

B. Anderson impurity problem

The impurity approximation is a variational approximation
where the holes are not allowed on any TM ions apart from
the original one; this is equivalent to excluding all such
orbitals from the variational space. As a result, the full periodic
problem is reduced to the Anderson impurity problem sketched
in Fig. 1(b), and its Hamiltonian becomes

HI = HTM,I + HO + Hhyb,I ,

where

HTM,I = Und,↑nd,↓ + �
∑

σ

nd,σ

describes the impurity TM site, the O bath is described by HO

as before, and

Hhyb,I = −V
∑

σ

[d†
σ c1,σ + d†

σ c0,σ + H.c.]

is their hybridization, with the impurity taken to be located
between the bath O labeled 0 and 1. Here, again, all operators
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are electron operators and d†
σ is the creation operator for the

orbital of the TM impurity site.
The filled-band ground state is now |�〉I =∏

σ d†
σ

∏
i c

†
i,σ |0〉 and its corresponding energy is

EI
� = 2� + U + NUO. To calculate AES-relevant spectra,

we consider two-hole excitations in this ground state by
removing two electrons with opposite spins. Since invariance
to translations is lost, the generic real-space states of
interest are now |iσ ,jσ ′〉 ≡ ciσ cjσ ′ |�〉I ,|dσ,iσ ′〉 = dσ ciσ ′
|�〉I , and |dd〉 = d↑d↓|�〉I . Now we are primarily
interested in calculating the two-hole impurity
Green’s function Gdd (ω) = 〈dd|ĜI (ω)|dd〉, where
ĜI (ω) = [ω + iη − (HI − EI

�)]−1, and its corresponding
two-hole spectral function Add (ω) = − 1

π
Im[Gdd (ω)].

III. METHOD

We begin with the exact solution for the periodic Anderson
model. To find the propagator of interest to us, Gdd (k,0,ω),
we generate its equation of motion (EOM) from the iden-
tity ĜP (ω)(ω − HP + EP

� + iη) = Î . Calculating its diagonal
matrix element for |k,0,dd〉, we find

(ω + 2� + U + iη)Gdd (k,0,ω)

= 1 + V
[
e

ika
2 Gcd (k,1,ω) + Gcd (k,0,ω)

+ e
ika
2 Gdc(k, − 1,ω) + Gdc(k,0,ω)

]
,

where Gαβ(k,n,ω) = 〈k,0,dd|ĜP (ω)|k,n,αβ〉 for α,β = c,d.
In other words, because the Hamiltonian links the state
|k,0,dd〉 to states with one hole on a TM site and one on
a neighboring O, the EOM links Gdd (k,0,ω) to propagators
corresponding to such states. Their EOM can be generated
similarly, and we obtain an infinite sequence of coupled linear
equations.

To solve it, we couple the propagators with holes at the
same distance n in a vector,

Vn =

⎛
⎜⎜⎜⎝

Gdd (k,n,ω)

Gdc(k,n,ω)

Gcd (k,n,ω)

Gcc(k,n,ω)

⎞
⎟⎟⎟⎠ ,

and note that for any n �= 0, the EOM can be grouped in the
simple recurrence relation

γnVn = βnVn+1 + αnVn−1

for any given k and ω. Here, γn, βn, and αn are simple 4 × 4
matrices that are read off directly from the EOM. We note
that one can always group the EOM in such simple recurrence
relations, even for models which allow longer-range hopping26

and/or in higher dimensions.27 For n = 0, the recurrence
relation also has an inhomogeneous term,

γ0V0 = X + β0V1 + α0V−1,

where XT = (1,0,0,0) for this problem. The solution of
such recurrence relations has been discussed extensively
elsewhere.25–27 Briefly, we must have Vn → 0 as |n| → ∞
because the Fourier transform of these propagators are the
amplitudes of probability to have the two holes evolve from

being on the same TM site to being n sites away from
each other, in a given time. As |n| → ∞, this becomes
very unlikely, and the presence of the broadening η which
introduces an artificial lifetime 1/η makes it even less so.
As a result, for n � 1, we have Vn = An(k,ω)Vn−1, where
An = [γn − βnAn+1]−1αn is calculated starting with AM = 0
for a sufficiently large cutoff M . Similarly, for n � −1, we
have Vn = Bn(k,ω)Vn+1, where Bn = [γn − αnAn−1]−1βn is
calculated starting with B−|M| = 0. Using V1 = A1V0 and
V−1 = B−1V0 in the n = 0 equation gives

V0 = [γ0 − β0A1(k,ω) − α0B−1(k,ω)]−1 X.

This gives us Gdd (k,0,ω) as the top entry in V0. All other
n = 0 propagators, as well as those with |n| < M , can also
then be calculated efficiently. Projecting on a different state
than 〈k,0,dd| simply requires using a different X, so other
propagators can be found easily.

In principle, this method generalizes straightforwardly to
lattices in any dimension and with any topology, so no
approximations should be necessary. In practice, however,
the computational cost quickly becomes prohibitive. For
instance, for models with nearest-neighbor hopping in higher
dimensions, one must group together in Vn all propaga-
tors where the holes are separated by nxaêx + nyaêy + · · ·
with |nx | + |ny | + · · · = n, i.e., with the same Manhattan
distance.27 As a result, the dimension of Vn increases roughly
like nd−1. Adding more orbitals at the TM/O sites will
further amplify the problem by increasing in a combinatorial
fashion the number of possible propagators with the same
(nx,ny, . . .) separation. As a result, while the solution can
still be cast in terms of continued fractions of matrices, their
dimensions increase quickly with n, resulting in significant
computational costs. This is why efficient approximations are
needed.

As already mentioned, one much-employed option is the
impurity approximation. Its solution for Gdd (ω) can also be
formulated in terms of continued fractions of matrices (we
present the details in the Appendix, since we are not aware of
a prior similar solution for this problem). This approximation
reduces the number of possible propagators by removing all
but one TM site from the problem. As a result, there is now
only one state with both holes at the impurity TM site, as
opposed to N2 in the full periodic problem (i.e., including all
allowed total momenta), and only 2N combinations with one
hole at the TM and one at an O site, as opposed to 2N2 options
in the full problem. The number of states associated with both
holes in the O bath is not changed.

The total number of distinct propagators is therefore
reduced from 4N2 in the full problem to (N + 1)2 in the
impurity limit, suggesting that the latter is considerably
more efficient. However, the full problem can be solved
individually for each of the allowed N total momenta, since
the translational invariance guarantees that propagators with
different momenta do not mix. Thus, one needs to solve N

distinct problems with 4N propagators each, as discussed
above. In the impurity problem, loss of translational invariance
means that all propagators are coupled to one another through
the EOM. From this perspective, it is far less clear that using
the impurity approximation is computationally more efficient,
although to fully settle this, one needs to take into account
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all other possible symmetries and the effects of the truncation
(for large system, the cutoff M � N/2). In practice, the O
bath is often replaced by a featureless density of states (we do
not make this further approximation in our calculations). This
certainly makes the impurity problem very efficient, but it also
loses all information regarding the role of the O bath topology,
on top of the loss of ability to momentum resolve the AES
spectral weights.

From this analysis, it is clear that a better strategy would
be to lower the total number of propagators while maintaining
translational invariance. This is the basis for our proposed
variational method. Our proposal is to remove the propagators
which have the holes at different TM sites. This is equivalent
to excluding these states from the Hilbert space, which is
why this is a variational approximation. Mathematically, this
is easily achieved by setting Gdd (k,n,ω) ≡ 0 for all n �= 0
in the EOM discussed above, leading to vectors Vn, n �= 0
of dimension three instead of four. Of course, the saving is
not big for this simple case, but it becomes considerable in
higher dimensions and/or for more TM orbitals. Because its
variational space is significantly larger than that of the impurity
approximation, this method is also guaranteed to be more
accurate.

Physically, what this means is that both holes start at the
same (any) TM site. Eventually, both hop into the O bath and
move through the system, but whenever they happen to both
hop back to TM sites they must go to the same TM ion. For
systems with strong correlations, i.e., where the states with
the holes at the same TM site are at quite different energies
from states with the holes as different TM sites, this should be a
reasonable approach and is close to the intuitive picture of what
happens in AES. In a way, one could view this as a “lattice
of impurities.” Besides maintaining translational invariance,
this method has the added benefit that we can infer a priori
the effect of removing these states, as we discuss in the next
section. Moreover, if need be, one can also systematically add
some of these states back into the calculation—for example,
starting with the states where the holes belong to neighboring
TM sites only. Their importance can therefore be assessed
quantitatively. Generalization to systems with partially filled
TM orbitals is also less computationally costly than for the
full solution. More discussion on the meaning and relevance
of this approximation is presented below.

IV. RESULTS

A. The periodic Anderson model

We start by discussing the full periodic model. Besides
providing the test case against which we compare the vari-
ational and the impurity approximations, this also allows us
to understand the various features of these spectra and their
dependence on the various parameters. Since the origin of
some of these various features is model independent (for
example, the location of the continua in the AES spectrum
is always obtained from the self-convolution of the one-hole
spectrum), spectra with qualitatively similar features should
be expected in more realistic models.

To understand the dependence of the AES spectral weight
Add (k,0,ω) on the various parameters, we start by setting
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FIG. 2. (Color online) AES spectral weights Add (k,0,ω) for the
full periodic model vs ω for k ∈ [0,π/a]. The curves are shifted
vertically with increasing k. In all cases, t = V = 1, U = UO =
0, η = 0.05, while (a) � = 0, (b) � = 5, and (c) � = −5. The small
vertical lines indicated the expected locations of band edges. See text
for more details.

U = UO = 0, t = V = 1, and varying �. Momentum-
resolved results are shown in Fig. 2 for uniformly spaced values
of k from 0 to π/a.

To make sense of these fairly complicated spectra, we note
that these parameters correspond to a noninteracting system.
As a result, the two-hole spectra must be convolutions of
single-hole spectra, which are easy to calculate (note that
single-hole spectra can also be obtained experimentally from
angle-resolved photoemission). Straightforward calculations
show that a hole of momentum k introduced in the state |�〉P
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has two possible eigenenergies:

E
(±)
1h (k) = 1

2

{
− U − � − UO + 2t cos(ka)

±
√

[U + � − UO + 2t cos(ka)]2 + 16V 2 cos2
ka

2

}
.

(1)

If � is sufficiently large, these correspond to either having
the hole preponderantly on the TM sites (i.e., a TM-like band)
or in an O-like band. Note that the electron correlation energies
U,UO enter here because the single hole is introduced in an
otherwise full band.

The convolution of these two one-hole continua result
in three two-hole continua, covering the ranges E

(γ δ)
2h (k) ∈

{E(γ )
1h (k − q) + E

(δ)
1h (q)| − π

a
< q � π

a
} for δ,γ = ±. Their

band edges are shown by small vertical markers in Fig. 2; each
band has a different color. These expected band edges indeed
agree perfectly with the features seen in the AES spectral
weight (a broadening η = 0.05 was used in the spectral weight,
accounting for the apparent “overflow” at band edges).

For � = 0, the two upper bands overlap partially, and
the spectral weight is distributed fairly equally between
all features. For � = ±5, most of the weight is in the
lowest/highest continuum which contains states with both
holes in the TM-like band and thus has the highest overlap with
the state |k,0,dd〉 of interest to AES. This band is centered at
−2�, which is the change in energy if two holes are removed
from TM sites if there was no hybridization, V = 0, and in
the absence of correlations, U = UO = 0, and is fairly narrow
since the holes cannot hop directly between TM sites. The
middle continuum, with one hole in the TM-like band and one
in the O-like band, has less weight but is still visible. It is
centered around −�, i.e., the energy cost for removing one
electron from the TM site, and is broader because the O-like
band has significant bandwidth. The third continuum, with
both holes in the O-like band, has very little overlap with the
state |k,0,dd〉 and is therefore only visible when the scale is
significantly expanded, as shown in the insets. It is centered
around the origin (for UO = 0) and is the broadest of the three
features because holes can hop directly between O sites. In
the limit V → 0, the maximum bandwidth of this continuum
should be 8t , when k = 0. We see that hopping on and off the
TM sites, controlled by V , has a significant influence on this
bandwidth when V ∼ t .

While one can set any values for parameters in a theoretical
study, physically it makes sense to focus on cases where the
low-energy states favor having the extra holes at the TM sites,
so that AES is maximally sensitive to the TM parameters.
Simple arguments, listed in Appendix B, show that this implies
� > 2t + UO.

As a result, we set � = 5 and investigate the role of the
on-site correlations. Figure 3(a) shows Add (k,0,ω) for U =
5,UO = 0, while Fig. 3(b) is for U = 5,UO = 3. Comparing
Fig. 3(a) with Fig. 2(b), we see that the lowest band with
the two holes in the TM-like bands has shifted by about 2U

and is now centered around −2(� + U ), as expected since
−(� + U ) is the energy cost for removing an electron from
a TM site (if there was no hybridization with the O bath).
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FIG. 3. (Color online) AES spectral weights for the full periodic
model Add (k,0,ω) vs ω for k ∈ [0,π/a]. The curves are shifted
vertically with increasing k. In all cases, t = V = 1, � = 5, η =
0.05, while (a) U = 5,UO = 0 and (b) U = 5,UO = 3. The small
vertical lines indicated the expected locations of band edges. See text
for more details.

Similarly, the middle band is shifted by about U to around
−� − U , while the upper band with the two holes in the
O bath is essentially unchanged. Apart from these expected
shifts, we see that most spectral weight has moved from the
lowest band (where it was for U = 0) into a new discrete peak
that has appeared ∼U above it. This weakly dispersing peak
describes (anti)bound states with both holes at the same TM
site, hence the large overlap with |k,0,dd〉. Indeed, it is located
close to −2� − U , where it would be expected to appear in
the absence of hybridization with the O bath. For our simple
model, this peak represents the “multiplet structure” associated
with the TM element. It will evolve into a genuine multiplet
upon inclusion in the model of more orbitals at the TM site.

Correlations at the O site have similar effects, as shown
in Fig. 3(b). Since the cost of removing an electron from the
O ion is now lowered by UO, the central band shifts by an
additional −UO, while the upper band shifts by an additional
−2UO. On the other hand, the lowest band with the two holes in
the TM-like band is essentially unchanged, while the multiplet
peak is shifted to slightly lower energies due to level repulsion
with the central continuum. Correlations at O sites also produce
an (anti)bound discrete state with both holes at the same O site
which is pushed above the upper continuum. However, it has
very little weight and can only be seen on a greatly expanded
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scale, as shown in the inset, as a small peak located just above
the highest-energy band edge.

To summarize, the location of the continua in the
momentum-resolved AES spectrum must agree with the self-
convolution of the one-hole spectrum, which can be obtained
from angle-resolved photoemission spectroscopy (ARPES).
Additional discrete peaks (or strong sharp resonances, if these
happen to fall inside another continuum) indicate the presence
of on-site correlations, and allow one to find various on-site
parameters from the corresponding multiplet structure.28 Of
course, because the projection is on the |k,0,dd〉 state, the
spectral weight is large for states which predominantly have
both holes at the same TM site. As discussed in the previous
section, it is trivial with our method to project on other states,
for example, with both holes at the same O site. While the
spectrum is unchanged, this will shift the spectral weight
between the different features.

B. Variational approximation

In Figs. 4 and 5, we present data obtained with our
variational approximation for the same sets of parameters. As
before, the vertical markers show the expected location of the
band edges, based on the convolution of the one-hole spectra.

Starting with the uncorrelated case in Fig. 4, we see that
this variational approximation is very poor when � = 0, in
Fig. 4(a). While the overall spectral range is in fair agreement
with that predicted by the two-hole convolutions, inside this
interval there is significant disagreement. In particular, the
variational calculation predicts spectral weight at energies that
should be gapped. This disagreement is not surprising, since
in this case we are projecting out states that have energies very
similar to the states we keep, and this is not a sensible strategy.

As shown in Figs. 4(b) and 4(c), the situation improves
when � is large enough to separate a TM-like band from
the O-like band. In this case, the agreement for the two less
visible bands is reasonable, even though the projection may
slightly over/underestimate the location of the band edges and
it produces additional structure within the bands, especially
the central one. This is not surprising since one expects a
fair amount of hybridization between states in the central
continuum, which have one hole in the TM-like band and
one in the O-like band, with the states with the two holes at
different TM sites that are projected out.

Finally, the continuum with the two holes in the TM-like
bands is replaced by discrete peaks located at roughly the
correct energy. The disappearance of this continuum is ex-
pected, since we projected out precisely the states responsible
for generating it, i.e., with holes at different TM sites. In
the absence of correlations, the state with both holes at the
same TM site has a similar energy, hence the peak. Similar
conclusions hold for � = −5.

If we turn on the correlations, this multiplet-structure
peak moves away from the continuum. Indeed, as shown
in both panels of Fig. 5, now the low-energy continuum
with the two holes in the TM-like band is completely
absent from the variational results, but the important feature,
i.e., the high-weight multiplet-structure peak, is essentially
indistinguishable from that predicted by the full solution. The
higher-energy continua show some additional structure within
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FIG. 4. (Color online) Same as in Fig. 2, but the AES spectral
weight is obtained with the variational approximation.

this variational calculation, but since this structure also appears
in the absence of correlations, there is little danger of confusing
it with real features induced by the correlations.

To summarize, for parameters likely relevant for the real
materials, i.e., when the TM-like and O-like bands are
sufficiently well separated, the variational approximation does
a very good job of capturing the multiplet structure due to
TM on-site correlations. One of the continua is projected out,
but it has little weight and its location is a priori known
from the one-hole spectrum. The higher-energy continua are
reproduced at roughly the correct locations, but with some
additional features, which, however, also appear in the absence
of correlations. With some care, one can use this more efficient
calculation to understand most, if not all, of the important
physics contained within these spectra.
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FIG. 5. (Color online) Same as in Fig. 3, but the AES spectral
weight is obtained with the variational approximation.

C. Impurity approximation

For comparison, we also present AES spectra obtained
with the impurity approximation. Since here the translational
invariance is lost, we can only show one Add (ω) curve for
each set of parameters. This can be roughly thought of as a
momentum-integrated spectral weight.

(1) Trivial topology: We begin with the simpler impurity
model sketched in Fig. 6(a), where the TM impurity is
connected to two independent semi-infinite half chains.

If � is sufficiently large, the single-hole spectrum consists
of a discrete peak (hole localized at TM site) and a continuum
(hole in the O-band). As a result, the two-hole convolution
consists of three features: (i) a discrete state with both holes at

(a)
V V

TM

O OOO

(b)
VV

TM

O O OO

tt

t t t

FIG. 6. (Color online) Two ways to connect the impurity to the O
bath: (a) trivial and (b) nontrivial topology. The latter can be reduced
to the former if one considers the three central ions enclosed by the
box to form an effective “impurity.”

FIG. 7. (Color online) Impurity spectral function Add (ω) vs ω for
the trivial topology of Fig. 6(a) with t = V = 1 and (a) � = 5, U =
2,5,10, UO = 0, and (b) � = −10,−5,2, U = 5, UO = 0.

the TM site (the multiplet), (ii) a continuum of states with one
hole occupying the TM impurity state and the other moving
freely in the O bath, and (iii) the two-hole continuum with both
holes in the O bath, which here spans the interval [−2UO −
4t, − 2UO + 4t], irrespective of the value of V .

Results shown in Fig. 7 for several sets of parameters indeed
show these features, although the two-hole continuum can only
be observed on a magnified scale.

(2) Nontrivial topology: Results for similar parameters, but
for the nontrivial topology of Fig. 6(b), are shown in Fig. 8.
Here the impurity forms a ring with its two neighbor O sites.
This nontrivial topology can support more impurity states
localized on the ring than the trivial topology discussed above,
so one may expect a more complex two-hole spectrum.

In Fig. 8(a), we plot Add (ω) for t = V = 1, U = UO = 0,
and � = 0,5. The � = 0 spectrum shows two broad reso-
nances in the two-hole continuum plus a discrete peak above
it. These are understood in terms of the ring multiplet. For these
parameters, the isolated ring has three two-hole eigenstates at
−2t,t,4t . The two broad resonances are associated with the
former two, while the latter falls at the upper edge of the
continuum and is pushed above it by level repulsion. States
with one hole on the ring and the other in the bath overlap with
the two-hole continuum. For � = 5 (thick black line), there
are two one-hole ring eigenstates at −5.32t,1.32t , resulting in
three two-hole ring eigenstates at −10.63t,−4t,2.63t . The
latter two fall inside the two-hole continuum, so only the
former is visible as a discrete peak. The continua with one
hole on the ring and one in the bath span [−7.32t,−3.32t]
and [−0.68t,3.32t], respectively. Only the former is (partially)
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FIG. 8. (Color online) Impurity spectral function Add (ω) vs ω for
the nontrivial topology of Fig. 6(b) with t = V = 1 and (a) � = 0,5
and U = UO = 0, (b) � = 5, U = 2,5,10, UO = 0.
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FIG. 9. (Color online) Impurity spectral function Ad↑,d↓(ω) vs ω

for (a) the trivial topology and (b) the ring topology, with t = V =
1, � = U = 5, and UO = 0,1,3.

distinct from the two-hole continuum, and is visible in the
spectrum. Very little weight is left in the two-hole continuum,
which is not visible on this scale. The effect of correlations,
shown in Fig. 8(b), can be explained with similar arguments.

Interestingly, these results are qualitatively like those of
Fig. 7(a) for the trivial topology because the additional states
in the ring multiplet fall inside the two-hole continuum and
are washed out into broad, low-weight resonances. This is
certainly true for U � t,|�| � t , when the TM states become
(to zero order in perturbation theory) eigenstates of the ring,
with the remaining ring eigenstates involving only O sites and
therefore being located inside the two-hole continuum.

(3) Bath correlation effects: In Fig. 9, we briefly show the
effect of adding on-site repulsion at the O sites in the impurity
approximation. Figure 9(a) is for the trivial topology while
Fig. 9(b) is for the ring topology. The main effect of UO is to
shift the continuum with one hole in the bath to lower energies
by UO, as expected. This leads to a stronger hybridization
with the discrete peak, which is consequently pushed to lower
energies as well. The weights in these features also vary, but
the two-hole continuum remains invisible on this scale.
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FIG. 10. (Color online) Momentum-integrated AES spectral
weight 1

N

∑
k Add (k,ω) for the exact solution (full line) and our

variational approximation (dashed line) compared to the prediction
of the impurity approximation with trivial topology (dot-dashed line),
for t = V = 1, U = � = 5, UO = 0.

To summarize, we find that the results for the two topologies
are rather similar if |�| and/or U are large compared to t,V (if
this is not the case, the impurity approximation is not valid).
In this limit, the impurity approximation is quite successful
in reproducing the location of the multiplet peak, as shown in
Fig. 10 where we compare Add (ω) for the trivial topology (dot-
dashed line) against 1

N

∑
k Add (k,ω) for the exact solution (full

line) and our variational approximation (dashed line) for � =
U = 5,UO = 0. The multiplet peak disperses very weakly for
these parameters so all three curves show what looks like a
discrete peak at low energies. As expected, the variational
approximation provides a more accurate estimate of the peak
position. The impurity approximation is also less successful in
predicting the correct bandwidth for the continuum visible at
higher energies; when analyzing experimental data, this may
result in wrong values assigned to the hopping parameters.
Figure 10 confirms that our variational approximation is more
accurate than the impurity approximation.

V. DISCUSSION AND CONCLUSIONS

In this work, we introduced a variational approach to calcu-
late two-hole Green’s functions needed for AES spectroscopy
and applied it to a simple 1D model with otherwise full
bands, so that we can compare its predictions against the
exact solution available for this case. We also calculated the
results in the impurity approximation for two different ways
of connecting the impurity to the O bath.

Both approximations are reasonable to use only if the
single-electron parameters are such that one-hole eigenstates
with the hole primarily at the TM site (i.e., of TM character)
are energetically well separated from those with the hole
primarily in the O band. If this is not true, then the basis states
projected out in these approximations are energetically close
to those kept within the calculation, and the results are not
sensible.

If the above-mentioned condition is satisfied, our varia-
tional approximation is superior to the impurity approxima-
tion. Not only does it produce momentum-resolved results,
but the location of the continua that appear in the AES
spectrum is in fair agreement with that expected from the
convolution of the one-hole spectra, unlike for the impurity
approximation. The superiority of our method can also be
justified as follows: both methods are variational, since both
limit the basis of allowed two-hole states. Our method has
a much bigger variational space, therefore it has to be more
accurate. The results presented here confirm it.

Since the one-hole spectrum can be obtained from ARPES
measurements (and, from a theoretical perspective, can be
calculated with methods analogous to those we use here
to find the two-hole propagator), a combination of the two
spectroscopies can be used to determine which features in
the two-hole spectrum come from this convolution. Any
other features must be due to on-site correlations, and can
therefore help pinpoint the values of various on-site interaction
energies.

The method of Ref. 25 can be extended straightforwardly
to compute Green’s functions for problems with three or more
holes. As a result, it can certainly be used to solve impurity-
type problems where the TM has a partially filled d shell while
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the O band is completely full prior to the Auger process. If the
TM has a 3dn,n < 10, configuration, then after the Auger
process there are 12 − n holes in the impurity problem. While
computational times depend on n and on how complicated the
O bath is (how many 2p orbitals per O, and in what dimension),
at least some of the higher-n cases should be solvable exactly.
One can make further progress using the fact that processes
where very many more than two holes hop into the O bath
should be energetically very costly (otherwise, the ground state
would have partially filled O bands to begin with). As a result,
one could systematically increase the number of holes allowed
to hop into the bath starting from two, until convergence is
reached. This may allow one to investigate all possible n values
within the impurity approximation, if convergence is reached
fast enough.

Similar considerations apply to our variational method,
because the total number of basis states it includes (for
each fixed value of k) is smaller but comparable to that
for the impurity approximation. As a result, one should get
more accurate and momentum-resolved results at comparable
computational costs.

Of course, not all oxides have full O 2p bands, although
many do for at least some particular doping (e.g., an insu-
lating parent compound). We envision using this method to
extract information about crystal-field splitting and on-site and
nearest-neighbor interactions from Auger spectroscopy on this
compound. If further doping that results in partially filled O
2p bands does not result in significant additional screening
of these short-range interactions, then these values would be
relevant over the entire doping range.

In conclusion, we believe that this method proposes an
efficient way to make progress on understanding AES spectra
for systems where the d orbitals of the TM are only partially
filled, so long as the states of TM character are not too close
to the filled O states. Such work is now in progress.
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APPENDIX A: CONTINUED-FRACTION SOLUTION FOR
THE IMPURITY APPROXIMATION

For technical reasons which will become apparent soon, it
is more convenient to group the TM and the two O sites it
directly hybridizes with together into “site” 0, and to index
the O atoms to its right/left as ±1,±2, etc. The two O inside
site 0 will be called “a” and “b,” respectively. This indexing is
shown in Fig. 11. Amongst other things, this indexing makes
it easy to study the two situations depicted in Figs. 11(a) and
11(b), where the hopping between the two central O is turned
off/on.

We use the operator identity (ω + EI
� + iη − HI )ĜI (ω) =

Î to generate EOMs for the Green’s functions. For
example, for any |i| > 1,|j | > 1, this results in [ω +EI

� +
UO(2 − δi,j ) + iη]Gi↑,j↓(ω) = tGi↑,j+1↓(ω) + tGi−1↑,j↓(ω) +
tGi↑,j−1↓(ω) + tGi+1↑,j↓(ω), where Giσ,jσ ′ (ω) =
〈dd|ĜI (ω)|iσ,jσ ′〉. In other words, it links together
propagators where the holes are at a distance |i − j | = n

(b)

−1 1

d
VV

(a)

−1

a b

a b 1

d
V V

0

0

tt

t t t

FIG. 11. (Color online) Actual indexing of the O sites used in this
work. The three central atoms comprise “site” 0.

apart to propagators where the holes are n ± 1 sites apart.
This allows us to rewrite these equations of motion as simple
recurrence relations by grouping together in a vector Vn all
the propagators where the holes are n sites apart. Note that
this is true for states with a hole at site 0 and one at any site
|n| � 1, which also enter into Vn and only link to propagators
in Vn±1.

To be more precise, let

V σ,σ ′
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

.

.

Giσ ;i+n,σ ′ (ω)

Gi−1,σ ;i+n−1,σ ′ (ω)

Gi−2,σ ;i+n−2,σ ′ (ω)

.

.

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

be a vector of infinite length which contains all the propagators
with the holes n sites apart. Of course, there are three entries
replacing the (0,n) entry, corresponding to sites a,b,d, and
similarly for (−n,0). Further, we note that for n � 1, the
ordering of the spins is preserved under hopping, since the
leftmost hole cannot pass by the rightmost hole with one hop.
Thus, we can write a recurrence relation for these vectors, for
any n � 1, as(

γn 0
0 γn

) (
V

↑↓
n

V
↓↑
n

)
=

(
αn 0

0 αn

) (
V

↑↓
n−1

V
↓↑
n−1

)

+
(

βn 0

0 βn

)(
V

↑↓
n+1

V
↓↑
n+1

)
, (A1)

where γn, αn, and βn are very sparse matrices, whose elements
can be read off from the equations of motion as in the periodic
case. Further, as before, the tridiagonal form of the recurrence
relation admits a continued fraction solution for these vectors.
The rest of the procedure is the same as for the periodic case.

1. Truncation schemes of continued fractions

(i) For this method to work, we need to truncate the
continued fraction at a large interhole separation M , both for
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the periodic and impurity cases. In the periodic system, we start
out by creating two holes on a TM site. The two holes can now
delocalize in the system. However, the broadening η introduces
a finite lifetime (∼1/η) so that 〈k,0,dd|GP (ω)|k,n,αβ〉 −→ 0
as n −→ ∞. Thus, for a large enough n = M , we can truncate
the continued fraction for the V vectors by setting VMc+1 to
zero.

For the impurity problem, this is justified because
Giσ ;i+n,σ ′ (ω) is the Fourier transform of the amplitude of
probability that the two holes move from the impurity (TM) site
to the sites i,i + n within a time τ . The larger n is, the less likely
this process becomes, hence the smaller these propagators
must be. This is certainly true for the energy ranges spanned by
eigenstates that favor having the holes on the impurity (TM)
site, since then they are unlikely to wander very far away
from it. However, this is also true even if the holes preferred
the O bath. This is because the broadening η is equivalent
to introducing a finite lifetime ∼1/η for the holes, so they
cannot move arbitrarily far in a finite time τ . Of course, in this
latter case, the appropriate cutoff M increases as η decreases.
In practice, for both cases, we increase M until the results
become insensitive to further changes.

(ii) A further truncation is necessary for the impurity
problem. This is because, with the ordering of the propagators
used for the Vn vectors, we have the additional complication
that all of these vectors, and therefore all of the sparse matrices
αn,βn,γn, are infinitely dimensional. In order to calculate the
continued fractions, we need to truncate the size of these
vectors, as well. The reasons discussed above justify doing this
if |i| � 1 and/or |i + n| � 1. We use the following truncation
procedure: for a fixed separation n between the holes, the
maximum distance that either of the two holes is allowed
to travel away from the TM is Rc + n, i.e., we truncate
V σ,σ ′

n at GRc,σ ;Rc+n,σ ′ (ω) at the top and G−Rc−n+1;σ ;−Rc+1,σ ′ (ω)
at the bottom. Again, Rc is increased until results become
independent of its value. As a final comment, we note that
there are other ways of grouping the propagators into vectors
so that the equations of motion still lead to a simple recur-
sive relation. Different schemes have various computational
advantages and disadvantages, but they all convergence to
the correct answer if the cutoffs are sufficiently large. This
converged result is equivalent to the exact solution computed

by the Cini-Sawatzky theory for the Anderson impurity
problem.

APPENDIX B: CHOICE OF PARAMETERS

For simplicity, we discuss the impurity approximation first
and the full periodic system second.

For the impurity approximation, if we ignore the TM-bath
hybridization, V → 0, then if both holes are at the TM site, the
energy of the state is EI

� − 2� − U ; if one hole is at the TM
site and one is in the O bath, the minimum energy of such states
is EI

� − � − U − 2t − UO. Finally, if both holes are in the O
bath, the minimum energy of such states is EI

� − 4t − 2UO. As
a result, the state with both holes at the TM atom is favorable
energetically if � > 2t + UO and 2� + U > 4t + 2UO. The
second condition is automatically satisfied if the first one holds,
since the TM on-site interaction is repulsive, U > 0.

The condition � > 2t + UO implies that AES should
be more useful for Mott insulators than for charge-transfer
materials.29 To see this, consider one-electron removal states
from the ground state (GS). If the hole is removed from
the TM site, the energy of the state is EI

� − � − U , while
if it is removed from an O site, the minimum energy is
EI

� − 2t − UO. The latter is energetically more expensive than
the former if � > 2t + UO. This makes sense because if the
material was a charge-transfer insulator, the additional holes
would prefer to stay in the O bath and AES would be less
sensitive to the TM-atom-specific properties.

The analysis for the periodic system is very similar for
V → 0 because the energy differences between states having
(i) both holes at the same TM site, (ii) one hole at a TM site
and one in the O bath, and (iii) both holes in the O bath are
precisely the same as for the impurity case. Because of this
and also in order to be able to meaningfully compare with
impurity approximation results, we use the same parameters
in both cases.

Note that in the periodic system, we can also have (iv) the
two holes at different TM sites. For V = 0, these states has
energy EP

� − 2� − 2U and are always energetically favored
compared to having both holes at the same TM site. Of
course, these are the states projected out in our variational
calculation.
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