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We propose two new methods to calculate exactly the spectrum of two spin- 12 charge carriers moving in

a ferromagnetic background, at zero temperature. We find that if the spins are located on a different

sublattice than that on which the fermions move, magnon-mediated effective interactions are very strong

and can bind the fermions into low-energy bipolarons with triplet character. This never happens in models

where spins and charge carriers share the same lattice, whether they are in the same band or in different

bands. This proves that effective one-lattice models do not describe correctly the low-energy part of the

two-carrier spectrum of a two-sublattice model, even though they may describe the low-energy single-

carrier spectrum appropriately.
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When studying properties of complex materials with
ions on several sublattices it is customary to use simplified,
one-lattice Hamiltonians to describe their low-energy
physics. For example, instead of a two-sublattice model
for the CuO2 plane including both Cu 3dx2�y2 and O 2p

orbitals [1], many prefer a one-band Hubbard model on the
Cu (sub)lattice. States in this simpler model are Zhang-
Rice singlets (ZRS), i.e., bound singlets between a hole at a
Cu site and a doping hole delocalized over its four O
neighbors with the same dx2�y2 symmetry [2].

Such a composite object may describe well the low-
energy quasiparticle, although this is still debated [3].
Less clear is whether a model based on such states that
mix together charge and spin degrees of freedom, can
properly describe quasiparticle interactions, especially
those mediated through spin fluctuations. Most oxides
have at least one phase with long-range magnetic order,
and magnon exchange is believed by some to be a key
component determining their properties, e.g., as the main
‘‘glue’’ for pairing in cuprates, which likely controls the
value of Tc [4].

Here we show that effective one-lattice models severely
underestimate the magnon-mediated attraction between
carriers, compared to their two-sublattice ‘‘parent’’ model.
The magnetic background is chosen as ferromagnetic
(FM). This is much simpler than an antiferromagnetic
(AFM) background, but it allows for exact solutions.
Thus, any qualitative differences are inherent to the models
themselves. Moreover, our conclusions are relevant to the
modeling of carriers in AFM backgrounds, and raise seri-
ous questions about the ability of ZRS-like constructs to
correctly describe low-energy, two-carrier states.

Our models are sketched in Fig. 1. For simplicity, we
address the one-dimensional (1D) case; generalizations are
straightforward. Model I is the ‘‘parent,’’ two-sublattice,
two-band model. Model II is a two-band, single lattice
effective model. Model III is an even simpler one-band
effective model.

In models I and II, one band hosts the spin S degrees of
freedom, described by

H s ¼ �J
X

i

ð ~Si � ~Siþ1 � S2Þ:

This favors a FM ground state jFMi ¼ j þ S; . . . ;þSi for
the undoped system. Spin- 12 doping charge carriers occupy

states in another band. In model I, this is located on a
different sublattice, for example like in a CuO chain with
spins on Cu and holes on O sites. In model II, they are on
the same lattice. In both cases carriers are described by a
Hubbard model

H c ¼ �t
X

i;�

ðcyiþ1þ�;�ciþ�;� þ H:c:Þ þU
X

i

n̂iþ�;"n̂iþ�;#;

where � ¼ 1
2 for model I, � ¼ 0 for model II, ciþ�;� is the

annihilation operator for a carrier of spin� from site iþ �,

and n̂iþ�;� ¼ cyiþ�;�ciþ�;�.

Interactions between charges and spins are described by
the simplest exchange model. In model I, a carrier interacts
with its two neighbor spins

H ðIÞ
ex ¼ J0

X

i

~siþ1
2
ð ~Si þ ~Siþ1Þ;

while for model II there is on-site exchange

I II III

FIG. 1 (color online). Models I and II have two bands: one
occupied by spins (arrows), and one (empty circles) hosting
carriers introduced by doping (filled circles, with arrow showing
the spin). In the ‘‘parent’’ model I, these are on different
sublattices. In model II, they are on the same lattice. Model III
has one band which hosts both spins (arrows) and ZRS-like
polaron cores (filled circle).

PRL 108, 216403 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
25 MAY 2012

0031-9007=12=108(21)=216403(5) 216403-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.216403


H ðIIÞ
ex ¼ J0

X

i

~si � ~Si:

Here ~siþ� ¼ 1
2

P
�;�c

y
iþ�;� ~���ciþ�;�, where ~� are Pauli

matrices. We set @ ¼ 1 and the lattice constant a ¼ 1.
The one-band model III is described by the Hubbard

Hamiltonian H c projected onto the appropriate subspace,
e.g., Sztot ¼ NS� 1

2 if one spin down carrier is added.

We set S ¼ 1
2 (higher S is discussed elsewhere [5]), and

first review the one-carrier case. If � ¼" , the T ¼ 0 prob-
lem is trivial in models I and II: spin flips are impossible;

therefore, the eigenstates cyk"jFMi have energy Ek" ¼ �k þ
�J0, where � ¼ 1

2 ð� ¼ 1
4Þ in model I (II), and �k ¼

�2t cosðkÞ is the free carrier dispersion. Model III has a
serious problem: it cannot distinguish an undoped system
from one doped with spin up carriers.

The interesting case is for a carrier injected with spin
down. In model III, this is trivial; the ‘‘hole’’ moves freely
with energy �k. The exact solution (in any dimension) for

the Green’s function G#ðk;!Þ ¼ hFMjck;#Ĝð!Þcyk;#jFMi
where Ĝð!Þ ¼ ½!þ i��H ��1 is the resolvent for
H ¼ H s þH c þH ex, has long been known for
model II [6]. Its generalization to two-sublattice models
was proposed recently [7]. The off-diagonal part of

H ex mixes cyk#jFMi, of energy Ek# ¼ �k � �J0, with the

continuum of one-magnon states cyk�q"S
�
q jFMi of energy

Ek�q;" þ�q. Here, S
�
q ¼ ð1= ffiffiffiffi

N
p ÞPie

iqRiS�i is the magnon

creation operator and �q ¼ 2Jsin2ðq=2Þ is the spin-wave

dispersion. Also, S�i ¼ Sxi � iSyi is the spin-lowering op-
erator and N ! 1 is the number of sites on either
sublattice.

The interesting case is J0 > 0: hybridization pushes the
discrete state further below the continuum, resulting in a
low-energy, infinitely lived quasiparticle (spin polaron),
discussed next. If J0 < 0, the low energy states are the
incoherent continuum describing the scattering of the car-
rier off a free magnon [6]. One cannot further simplify the
description of such states.

Returning to the spin polaron that is the low-energy
quasiparticle for J0 > 0, its structure can be understood

in the limit J0 � t, J. We start with model II. H ðIIÞ
ex is

minimized by an on-site singlet between the carrier and its

spin, jsii ¼ ð1= ffiffiffi
2

p Þðcyi# � cyi"S
�
i ÞjFMi, with all other spins

in the FM state. The energy of this degenerate state is

H ðIIÞ
ex jsii ¼ � 3

4 J0jsii. Hopping lifts the degeneracy, and

to first order in t; J, the polaron energy is

EðIIÞ
P ðkÞ � � 3

4
J0 þ 1

2
�k þ J

2
(1)

with jPII; ki ¼ ð1= ffiffiffiffi
N

p ÞPie
ikRi jsii. Thus, the spin polaron

is an on-site singlet between the charge and its local spin
(or a bound state of the carrier with a magnon at the same
site) that moves with an effective hopping t=2 suppressed

by the magnon cloud overlap. The last term is the FM
exchange energy lost in the magnon’s presence.
Similar considerations apply to model I. Again, we only

discuss the case J0 > 0 which has a low-energy quasipar-
ticle. Because of the two-sublattice structure, the ground

state of HðIÞ
ex is the three-spin polaron (3SP) j3SPiiþ1

2
¼

½ ffiffiffiffiffiffiffiffi
2=3

p
cy
iþ1

2;#
� cy

iþ1
2;"
ðS�i þ S�iþ1Þ=

ffiffiffi
6

p �jFMi, of energy

H ðIÞ
exj3SPiiþ1

2
¼ �J0j3SPiiþ1

2
[8]. It describes a bound

state between the carrier and a magnon on either neighbor-
ing spin. Hopping lifts the degeneracy, resulting in

jPI; ki ¼ ð1= ffiffiffiffi
N

p ÞPie
ikðRiþ1=2Þj3SPiiþ1

2
with energy

EðIÞ
P ðkÞ � �J0 þ 5

6
�k þ J

6
: (2)

In Fig. 2 we compare the exact spectra, calculated as in
Refs. [6,7], with these asymptotic expressions (lines) for
models I and II. The agreement is excellent for large J0
and remains reasonable even down to J0 � t, showing
that this singlet or 3SP description of the spin polaron
is robust. Figure 2(a) also shows another quasiparticle
below the continuum. This is based on a higher eigenstate

of HðIÞ
ex . (For more details, see [7]. Here we focus only on

the low-energy physics.) Based on this, it is clear that
if we are only interested in the low-energy spin down
quasiparticle, we can map model I onto II and III,
after some rescaling of parameters. The mapping from

model I to II is obvious if we rewrite jPI; ki ¼
ð1= ffiffiffiffiffiffiffi

2N
p ÞPie

ikRi½dyk;i;# � dyk;i;"S
�
i �jFMi, i.e., a singlet-type

FIG. 2 (color online). (a) Model I, and (b) model II density of
states �#ðk;!Þ ¼ � 1

	 ImG#ðk; !Þ. Contour plots show exact

results. Full lines are Eqs. (1) and (2), while dashed lines mark
the expected onset of the continuum, atminqðEk�q;" þ�qÞ. Here
J=t ¼ 0:05, J0=t ¼ 5, �=t ¼ 0:02.
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state like jPII; ki, except that the carrier is in the ‘‘on-site’’

orbital dyk;i;� ¼ ð1= ffiffiffi
3

p Þðeik=2cy
iþ1

2;�
þ e�ik=2cy

i�1
2;�
Þ.

Thus, jPI; ki is the direct analog of the ZRS: in the k ¼ 0
ground state, the carrier occupies a linear combination of
neighbor orbitals with the same s-type symmetry as the
orbital giving rise to the Si spin, with which it locks in a
singlet. (If the orbitals had other symmetries, the hopping
matrices would be different and the phases would change

accordingly [7].) Like in the ZRS, dyk;i;� is not orthogonal

to its neighbor dyk;i�1;�. Unlike the ZRS, these ‘‘on-site’’

states depend on k. This ensures the normalization of
jPI; ki in the entire Brillouin zone, unlike for the ZRS
whose normalization diverges at k ¼ 0 [2].

Nevertheless, if we ignore such complications and re-
place dk;i;� ! ci�, model I maps onto model II as far as

the low-energy quasiparticle is concerned. Mapping to
model III is the next step of replacing the ZRS with a
‘‘hole’’ which lives in the same band as the spins of the
undoped system. Since model III has a quasiparticle band
in the Sztot ¼ ðN � 1Þ 12 sector, it can also be mapped onto

the quasiparticle band of model I, after rescaling.
The important question is whether this mapping between

low-energy sectors carries on to cases with more carriers.
We consider the two-carriers case, and show that model I
has low-energy states which have no equivalent in
models II and III. Specifically, magnon-mediated interac-
tions can stabilize a low-energy bound pair in model I, if J0
is sufficiently large. Such states never occur at low energies
in model II, and are impossible in model III. This proves
that modeling the proper lattice structure is essential to
correctly describe magnon-mediated interactions.

The two-particle problem also has several cases. The
trivial one is for two spin up carriers. In models I and II the
carriers behave like non-interacting particles, with eigen-

states cyk"c
y
k0"jFMi of energy Ek;" þ Ek0;". Model III does not

distinguish this case from an undoped system.
The most interesting case is when one carrier is injected

with spin up and the other with spin down. We analyze it in
detail for models I and II, and then briefly discuss the case
where both carriers are injected with spin down. We solve
the problem exactly using two new methods.

The first method calculates two-particle Green’s func-
tions in momentum space. Because of translational invari-
ance, total momentum is conserved so nonvanishing matrix

elements are Gðk; q; q0; !Þ ¼ hk; qjĜð!Þjk; q0i, where

jk; qi ¼ cyk
2þq;"c

y
k
2�q;#jFMi is a two-particle state with total

momentum k. Momentum q is not conserved: on-site
scattering changes it, as do magnon-mediated interactions.
In the latter, the spin down carrier flips its spin creating a
magnon, followed by absorption of the magnon by the
other (initially spin up) carrier. The magnon’s momentum
is, thus, transferred from one carrier to the other, and their
spins are exchanged. It is precisely this effective interac-
tion that interests us.

Because only one-magnon states are accessible from the
original state, we obtain a closed system of equations of
motion for these Green’s functions. This is rather similar to
the single-carrier case [6,7]; however, the solution is now
less trivial. In the Supplemental Material [9] we present the
steps to reduce it to a closed equation that can be efficiently
solved for a finite chain with N � 100. However, this
becomes costly in higher dimensions, and may not general-
ize to other cases (e.g., more carriers).
We also propose a real-space solution for the infinite

chain which allows us to find the symmetry of the
pair (singlet vs triplet), and also generalizes to more
carriers. It is based on the few-particle solution of
Ref. [10]. Our case is more complex because when
present, the magnon also counts as a ‘‘particle.’’ Thus,
the system switches between having the carriers in

states like jk;ni¼ ð1= ffiffiffiffi
N

p ÞPie
ikðRiþ�þn

2Þcyiþ�;"c
y
iþ�þn;#jFMi

and three ‘‘particle’’ configurations jk; n;mi ¼
ð1= ffiffiffiffi

N
p ÞPie

ikðRiþ�þn
2Þcyiþ�;"c

y
iþ�þn;"S

�
iþmjFMi. Exchange

connects propagators Gðk; n; n0; !Þ ¼ hk; njĜð!Þjk; n0i
to Gðk; n; n0; m;!Þ ¼ hk; njĜð!Þjk; n0; mi, and vice versa.
The solution of these equations is described in [9].
Poles of these propagators mark the two-carrier spec-

trum. Figure 3 shows Aðk; n; n0; !Þ ¼ � 1
	 ImGðk; n; n0; !Þ

for k ¼ 0, n ¼ n0 ¼ 1 and J0 ¼ 20t, chosen so large to
simplify the task of identifying features.
The expected features in the spectrum of model I are

the following. (i) A continuum describing states where the
spin down carrier forms a polaron of momentum k0 and the
spin up carrier has momentum k� k0. These states span

fEðIÞ
P ðk0Þ þ Ek�k0;"gk0 so the band edges are known from

single-carrier results. Using Eq. (2) and ignoring small J
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FIG. 3 (color online). Spectral weight Aðk ¼ 0; n ¼ n0 ¼
1; !Þ for model I (a) and II (b). Expected continua locations
are marked, as are triplet (T) and singlet (S) bipolarons (arrows).
Here J0=t ¼ 20, J=t ¼ 0:05, �=t ¼ 0:1 and U=t ¼ 0; 1; 5.
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corrections, the band edges are here expected at �13:7t
and �6:3t (dashed lines), in good agreement with the
results. (ii) A continuum fEk0;" þ Ek�k0�q;" þ�qgk0;q de-

scribing states comprised of two spin up carriers and a
free magnon. Expected band edges at 16t and 24t (dashed
lines) show again good agreement. (iii) If there is a higher
energy polaron state, like in Fig. 2(a), it will also generate a
continuum. Here, its edges should be at 9t and 11t. It is not
seen in Fig. 3(a) because of vanishing overlap with the
jk ¼ 0; n ¼ 1i state, but it appears in momentum-space
Green’s functions [9].

Any states outside these continua are bound states,
‘‘glued’’ through magnon exchange. Five such bipolarons
appear in Fig. 3(a) (the apparent overlap between S1 and
S3 with their nearby continua is due to the broadening
� ¼ 0:1t). For k ¼ 0, the real-space solution allows us to
identify two as triplets and the others as singlets (see
arrows). For finite k, there is no definite symmetry: these
bound states have finite overlap with both singlet and

triplet configurations, such as
P

ie
ikRiðcy

iþ1
2;"
cy
iþ1

2þn;# �
cy
iþ1

2;#
cy
iþ1

2þn;"ÞjFMi.
Consider now the low-energy bipolaron. Its largest over-

lap is with the configurations sketched in Fig. 4, hybridized
through the J0 exchange. It is the ability of both carriers to
interact with the same spin to exchange the magnon, that
stabilizes this state. This also explains why it is a triplet at
k ¼ 0 (symmetric combination is favored), and its insen-
sitivity to U: unlike singlets, triplets do not permit double
occupancy. This bipolaron forms if J0=t > 6:5, and is quite
light [5].

Model II has different behavior; see Fig. 3(b). Again, a
polaronþ spin up carrier continuum, and a magnonþ two
spin up carriers continuum, are expected and observed. If
J0 is sufficiently large that the two do not overlap, a bound
state appears between them, at !�U. This bipolaron is a
singlet at k ¼ 0, quite similar to the S2 state in model I. It
has very little weight in the jk ¼ 0; n ¼ 1i configuration,
which is why we had to magnify the peaks. Most of its
weight is on the on-site (n ¼ 0) configuration [9]. No
tripletlike bound states appear, and no low-energy bipo-
laron is possible for any values of the parameters. This is
not so surprising, since in this model only one carrier can
interact with a given spin or magnon. If the carriers are on
the same site they form a singlet which has no interactions
with the local spin. If they are on neighboring sites, mag-
non exchange (now controlled by J, not by J0 as in Fig. 4)
is too weak to stabilize a low-energy bipolaron. Thus,
model II simply cannot describe the low-energy physics

of model I in this sector. Model III fails as well, since it
does not distinguish between a spin up carrier and a lattice
spin.
We also considered the two spin down carrier states.

For models I and II, the t ¼ 0 solutions suggest that the
lowest energy feature is the two-polaron continuum.
This is reasonable, since each carrier can bind its own
magnon to create a polaron. Simultaneous interaction of
one carrier with two magnons is impossible in model II,
and while possible, it is energetically unfavorable in
model I, so low-energy bipolarons do not appear in
this sector. Turning on hopping further favors the con-
tinuum, since polarons are lighter than a bipolaron [5].
In model III, no interactions are possible between two
‘‘holes’’, since they simply reshuffle the FM spins as
they move. This is why we have not investigated this
case in more detail.
To summarize, we extended the exact solution for a

single charge in a FM background to cases with two or
more carriers, and discussed in detail the nontrivial case
where one carrier is injected with spin up and the other
with spin down. The low-energy physics depends essen-
tially on the model. If the spins are intercalated between
the carrier sites, magnon exchange is enhanced and can
bind low-energy bipolarons. If spins and carriers live on
the same lattice, such low-energy states are impossible. If
spins and carriers live in the same band, there are no
magnon-exchange interactions in any of the allowed
cases. These three models have very different low-energy
states in the two-particle sector, even though their one-
particle sectors can be mapped onto one another.
This shows that in order to properly describe magnon-

mediated interactions, one must use the proper sublattice
structure, not simpler effective one-lattice models. While
our work is for a FM background, it is directly relevant
for AFM backgrounds as well, since the magnon ex-
change is a rather local process. Based on our results,
for a CuO2 lattice one should expect strong magnon-
mediated interactions between two holes located at neigh-
bor O sites, through their common Cu (the 2D analog of
Fig. 4). A one-band model based on ZRSs simply cannot
describe this process, and is therefore likely to severely
underestimate the role of magnons as the ‘‘glue’’ for
pairing.
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