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Trapping of three-dimensional Holstein polarons by various impurities
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We study the bound states of a three-dimensional Holstein polaron near various kinds of single impurities,
using the momentum-average approximation. We show that the electron-phonon coupling is responsible for a
strong renormalization of the impurity potential, resulting in an effective potential with significant retardation
effects, which describes essential physics ignored by “instantaneous” approximations. The accuracy of our
approximation is gauged by comparison with results from diagrammatic Monte Carlo for the case of an impurity
that modifies the on-site energy of the electron. We also discuss impurities that modify the local strength of the
electron-phonon coupling as well as isotope substitutions that change both the electron-phonon coupling and the
phonon frequency, and contrast and highlight the difference between these cases.
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I. INTRODUCTION

The challenge to understand the effects of disorder on
the behavior of particles strongly coupled to bosons from
their environment is commonly encountered in correlated
electron systems. For example, high-Tc cuprates are doped
antiferromagnetic insulators in which, beside strong coupling
to magnons, ARPES measurements have also provided ev-
idence for strong electron-phonon coupling.1 At the same
time, charge carriers moving in the CuO2 layers are subject
to random disorder potentials from the adjacent dopant layers.
Substituting only a few percent of the Cu atoms with impurities
suppresses superconductivity by localizing the low-energy
electronic states.2 Inhomogeneities in the superconducting gap
measured in high-resolution tunneling experiments have been
attributed to atomic scale disorder in the phonon energy and the
electron-phonon coupling strength in these materials.3 Organic
semiconductors are another class of materials where interplay
between disorder and electron-phonon coupling is believed to
be important in determining their properties, and are currently
under active investigation.4–6

Although the results we present here are valid for any type
of bosons (so long as they can be modelled as dispersionless
Einstein modes), for simplicity in the following we restrict
our discussion to optical phonons. The result of the interplay
between disorder and coupling to such phonons depends on
their relative strengths. Disorder that is considered weak for
free electrons can be strong enough to localize a polaron,
that is the dressed quasiparticle which consists of the electron
together with its cloud of phonons, because of its heavy
effective mass. On the other hand, whereas in the weak
disorder regime electron-phonon coupling hinders the motion
of electrons, such coupling actually facilitates the electron
mobility in the strongly disordered regime where the Anderson
localization prevails.7

Certain aspects of this problem have been studied with var-
ious approximations, most of which rely on sophisticated non-
perturbative methods8 such as the statistical dynamic mean-
field theory (DMFT),9,10 or dynamical coherent potential
approximation (DCPA).11,12 The underlying meaning of these
approximations and their accuracy is rather hard to gauge. On

the computational side, refined versions of the approximation-
free diagrammatic Monte Carlo (DMC) technique13 and of the
continuous quantum Monte Carlo algorithm14 have recently
been applied to the problem of a Holstein polaron near a
single impurity. While essentially exact, such calculations
require significant computational resources and cannot be
easily generalized to other couplings, for example.

Here, we study the bound state formation for a three-
dimensional Holstein polaron in the presence of an impurity,
using a generalization of the momentum average (MA) ap-
proximation to inhomogeneous systems.15 MA was originally
developed to study homogeneous systems with various types of
electron-phonon coupling.16–18 It is a nonperturbative method
that sums in a closed-form expression all the self-energy
diagrams up to exponentially small corrections that are
neglected. The method can be systematically improved,19

therefore providing a fast yet accurate way to scan a vast
range of parameters. The method can be used to study all
possible types of disorder for various types of electron-phonon
coupling. Here, we use it to consider different types of disorder
due to single impurities, namely, a variation in the on-site
energy, in the electron-phonon coupling and/or in the phonon
energy are separately considered. The accuracy of this method
is demonstrated for the former case by comparison with
available DMC results.

Unlike most other theoretical approximations, MA has the
important benefit that its structure reveals the essential physics
of such problems. It is well known that electron-phonon
coupling leads to the dressing of the particle, resulting in a
polaron with a larger effective mass. What MA reveals is
that the electron-phonon coupling is also responsible for a
renormalization of the disorder potential. This renormalization
can be very large and has strong retardation effects. Moreover,
the renormalized potential can have a finite-range even if the
bare disorder is on-site only. The single impurity problem
provides us with a simple test case to understand the effects of
this renormalization, and to accurately compare and contrast
the behavior of the polaron in the presence of various types of
local disorder. Such results are a necessary first step in order
to gain the intuition needed for understanding the behavior of
more complicated systems.
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The paper is organized as follows: in Sec. II, we describe
our method and discuss its meaning (full details are provided
in Appendix). Section III presents our results for the three
types of impurities, and Sec. IV contains the summary.

II. MOMENTUM AVERAGE APPROXIMATION FOR
INHOMOGENEOUS SYSTEMS

For completeness, we present the MA formalism for the
general case of random on-site disorder plus inhomogeneities
in both the coupling and the phonon frequencies. A simpler
case (with only on-site disorder) has been briefly discussed in
Ref. 15. The Hamiltonian is

H = Hd + V̂el-ph = H0 + V̂d + V̂el-ph, (1)

whereHd describes the noninteracting part of the Hamiltonian,
and for convenience is further divided into

H0 = −t
∑
〈i,j〉

(c†i cj + H.c.) +
∑

i

�ib
†
i bi,

which contains the kinetic energy of the particle and the energy
of the boson modes (h̄ = 1), plus

V̂d =
∑

i

εic
†
i ci

describing the on-site disorder. The interaction part

V̂el-ph =
∑

i

gic
†
i ci(b

†
i + bi)

describes the (possibly inhomogeneous) Holstein-like
coupling20 between the particle and the bosons. Here, i indexes
lattice sites—the lattice can be in any dimension, and of finite
or infinite extent. The operators ci and bi describe, respectively,
particle and boson annihilation from the corresponding state
associated with lattice site i. The spin of the particle is ignored
because it is irrelevant in this case, but generalizations are
straightforward.21 For simplicity, we assume nearest-neighbor
hopping; this approximation can also be trivially relaxed.
Depending on the model of interest, the on-site energies
εi , electron-phonon couplings gi and phonon frequencies �i

can be assumed to be random variables. As detailed below,
our results here will focus on single on-site impurities such
as εi = −Uδi,0, but the formalism applies for any model
consistent with Eq. (1).

Our goal is to calculate the single-polaron Green’s function
in real space:

Gij (ω) = 〈0|ciĜ(ω)c†j |0〉 =
∑

α

〈0|ci |α〉〈α|c†j |0〉
ω − Eα + iη

, (2)

where |0〉 is the vacuum, Ĝ(ω) = [ω − H + iη]−1 is the
resolvent with η → 0+, and Eα , |α〉 are single polaron
eigenenergies and eigenstates of the Hamiltonian, H|α〉 =
Eα|α〉. Knowledge of this Green’s function allows us to find
the spectrum from the poles, and the local density of states
(LDOS) measured in scanning tunneling microscopy (STM)
experiments, ρ(i; ω) = − 1

π
ImGii(ω).

To calculate this quantity, we use repeatedly Dyson’s
identity: Ĝ(ω) = Ĝd (ω) + Ĝ(ω)V̂el-phĜ

d (ω), where Ĝd (ω) =
[ω − Hd + iη]−1 is the resolvent for the noninteracting

system. The first equation of motion generated this way
reads

Gij (ω) = Gd
ij (ω) +

∑
l

glF
(1)
il (ω)Gd

lj (ω), (3)

where

Gd
ij (ω) = 〈0|ciĜd (ω)c†j |0〉 (4)

are, in principle, known quantities and we have introduced the
generalized Green’s functions:

F
(n)
ij (ω) = 〈0|ciĜ(ω)c†j b

†n
j |0〉.

Note that F
(0)
ij (ω) = Gij (ω). Next, we generate equations of

motion for these generalized Green’s functions. For any n � 1,
we find

F
(n)
ij (ω) =

∑
l �=j

glG
d
lj (ω − n�j )〈0|ciG(ω)c†l b

†
l b

†n
j |0〉

+gjG
d
jj (ω − n�j )

[
F

(n+1)
ij (ω) + nF

(n−1)
ij (ω)

]
. (5)

This equation relates F (n) not only to other Green’s
functions of a similar type, but also introduces new propagators
with phonons at two different sites. Equations of motions can
be calculated for these new generalized Green’s functions,
linking them to yet more general Green’s functions, and
so on and so forth. The resulting hierarchy of coupled
equations describes the problem exactly, but is unmanageable.
Approximations are needed to simplify it and find a closed-
form solution.

The main idea behind the MA approximations is to
simplify this set of equations by neglecting exponentially
small contributions in each equation of motion. At the simplest
level—the so-called MA(0) approximation—we ignore the first
term in Eq. (5) for any n � 1. This is reasonable at low-
energies like the ground state (GS), ω ∼ EGS, where ω − n�j

is well below the energy spectrum of Hd and, therefore,
Gd

lj (ω − n�j ) is guaranteed to decrease exponentially with
increasing distance |l − j |. As a result, here we keep the
largest l = j propagator, and ignore exponentially smaller
l �= j contributions. Although this is the simplest possible such
approximation, it is already accurate at low energies, as shown
in the results section. It can also be systematically improved, as
discussed below. First, however, we complete this MA(0)-level
solution.

The simplified equation of motion now reads

F
(n)
ij (ω) = gjG

d
jj (ω − n�j )

[
F

(n+1)
ij (ω) + nF

(n−1)
ij (ω)

]
.

On physical grounds, we know that F
(n)
ij (ω) must vanish

for sufficiently large n, because its Fourier transform is the
amplitude of probability that a particle injected in the system
will generate n phonons in time t , and this must vanish for
large enough n. As a result, these recursive equations admit
the solution:

F
(n)
ij (ω) = An(j,ω)F (n−1)

ij (ω),

where the continued-fraction,

An(j,ω) = ngjG
d
jj (ω − n�j )

1 − gjG
d
jj (ω − n�j )An+1(j,ω)

, (6)
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can be efficiently evaluated starting from a cutoff ANc
(j,ω) =

0 for a sufficiently large Nc. Generally speaking, this cutoff
Nc must be much larger than the average number of phonons
expected at site j ; in practice, the cutoff is increased until
convergence is reached to within the desired accuracy. Substi-
tuting F

(1)
ij (ω) = A1(j,ω)Gij (ω) in Eq. (3) leads to a closed

system of linear equations for the original Green’s function:

Gij (ω) = Gd
ij (ω) +

∑
l

Gil(ω)glA1(l,ω)Gd
lj (ω). (7)

This equation has a similar structure to the equation linking
the disorder Green’s function to the free-particle propaga-
tor G

(0)
ij (ω) = 〈0|ci[ω + iη − H0]−1c

†
j |0〉 (in the absence of

coupling to phonons), which is depicted diagrammatically in
Fig. 1(a), and which reads

Gd
ij (ω) = G

(0)
ij (ω) +

∑
l

Gd
il(ω)εlG

(0)
lj (ω). (8)

This analogy shows that coupling to phonons renormalizes
the on-site disorder εl → εl + glA1(l,ω). Note that A1(l,ω)
depends not only on the local phonon frequency �l and
coupling gl , but also on all the bare on-site energies εi through
the disorder propagators Gd . This is the simplest example of
the emergence of a renormalized potential for this problem,
that is made very transparent within the MA approximation.

While Eq. (7) can be solved directly for a finite-size
system, we can improve its efficiency and reveal a different
physical interpretation by explicitly removing the “average”
contribution due to the electron-phonon interactions. Let g

and � be the average values of the gi,�i distributions. We
assume that the on-site energy average ε = 0 (a finite value

FIG. 1. (Color online) Diagrammatic expansion for (a) the disor-
der Green’s function Gd

ij (ω) (bold red line), (b) the polaron Green’s

function in a clean system G
(0)
ij (ω̃) (double thin line), and (c) the

“instantaneous” approximation for the polaron Green’s function in
a disordered system, Gd

ij (ω̃) (double bold red line). The thin black
lines depict free electron propagators, the wriggly lines correspond
to phonons, and scattering on the disorder potential is depicted as the
dashed lines ending with circles. See text for more details.

results in a trivial shift of all energies). Then, let

An(ω) = ngg0(ω − n�)

1 − gg0(ω − n�)An+1(ω)
(9)

be the continued fractions corresponding to these average
parameters, where we use the short-hand notation

g0(ω) = G
(0)
ii (ω) = 1

N

∑
k

1

ω − εk + iη

for the on-site free propagator (in the absence of disorder, this
quantity becomes independent of the site). It is given by the
momentum average of the free propagator, where εk is the
free-particle dispersion.

The “average” renormalization of the on-site energy is now
recognized to represent the corresponding MA(0) self-energy
for a “clean” system, i.e., a homogeneous system with average
coupling and phonon frequency


MA(0) (ω) = gA1(ω),

see, for instance, Eqs. (11) and (12) of Ref. 19.
Introducing the effective disorder potential

v0(l,ω) = glA1(l,ω) − 
MA(0) (ω), (10)

Eq. (7) can be rewritten as

Gij (ω) = Gd
ij (ω̃) +

∑
l

Gil(ω)v0(l,ω)Gd
lj (ω̃), (11)

where ω̃ = ω − 
MA(0) (ω). This energy renormalization, ω →
ω̃, reflects the fact that processes describing the formation of
the polaron in the “clean” system have been explicitly summed.

Besides being numerically more efficient, since now
v0(j,ω) contains only the fluctuations from the (not necessarily
small) average value included in ω̃, Eq. (10) reveals a different
interpretation for the effects of the interplay between disorder
and electron-phonon coupling.

Consider first the meaning of Gd
ij (ω̃), which would be the

solution if we could ignore v0(j,ω). In the absence of on-site
disorder this term equals G

(0)
ij (ω̃), i.e., the expected solution

for a polaron in the clean system, depicted diagrammatically in
Fig. 1(b) [of course, the exact self-energy is here approximated
by 
MA(0) (ω)]. Comparing Figs. 1(a) and 1(b), it follows that
Gd

ij (ω̃) is the sum of the diagrams shown in Fig. 1(c).
At first sight, this seems to be the full answer for this

problem, since these diagrams sum the contributions of all
the processes in which the polaron scatters once, twice,
etc., on the disorder potential. This is certainly the answer
obtained in the limit of an “instantaneous” approximation
valid when � → ∞, i.e., when the ions are very light and
respond instantaneously to the motion of electrons. In this
case, one can perform a Lang-Firsov transformation and
after an additional averaging over phonons, one obtains an
approximative effective Hamiltonian:6,14,22

Hinst = −t∗
∑
〈i,j〉

(c†i cj + H.c.) +
∑

i

(
εi − g2

�

)
c
†
i ci , (12)

where t∗ = te
−g2

�2 is the renormalized polaron hopping and
−g2/� is the polaron formation energy (for simplicity, here
we assume that the phonon energies and electron-phonon
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coupling are homogeneous, gi → g,�i → �). The Green’s
function of this Hamiltonian is also given by Fig. 1(c), if the
polaron propagator is approximated by

G
(0)
ij (ω̃) → 1

N

∑
k

eik·(Ri−Rj)

ω − ε∗
k + g2

�
+ iη

,

where ε∗
k is the renormalized kinetic energy. Of course, using

the full expression of G
(0)
ij (ω̃) is preferable since the self-energy


MA(0) (ω) describes much more accurately the overall energy
shift and effective mass renormalization than those asymp-
totic expressions, besides also including the quasiparticle
weight.

That Gd
ij (ω̃) cannot be the full answer becomes obvious if

we consider what happens when we rewrite the clean polaron
propagators in terms of free particle and phonon lines, i.e.,
we substitute the expansion of Figs. 1(b) in 1(c). Doing
so reveals that within this “instantaneous” approximation,
scattering of the electron on the disorder potential is allowed
only when no phonons are present, see expanded details in
Fig. 1(c). However, we know that for moderate and large
electron-phonon coupling, the probability to find no phonons
in the system is exponentially small, therefore the processes
summed in Fig. 1(c) have very low probabilities.

What is missing in Fig. 1(c) are diagrams describing
the scattering of the electron on the disorder potential in
the presence of the phonons from the polaron cloud. Their
contribution is included through the renormalized potential
v0(l,ω) in the second term of Eq. (11). Indeed, the full MA
solution shows that the polaron scatters not on the bare disorder
εl , but on the renormalized disorder potential

ε∗
l (ω) = εl + v0(l,ω), (13)

as depicted in Fig. 2(a). The diagrammatic expansion of the
additional term v0(l,ω), shown in Fig. 2(b), verifies that it
indeed describes the effective scattering in the presence of
arbitrary numbers of phonons.
Taken together, the diagrams summed in Fig. 2 represent
all possible contributions to the polaron propagator in the
disordered system. The MA(0) approximation consists in

FIG. 2. (Color online) (a) Diagrammatic expansion for the full
MA solution Gij (ω) (thick dashed blue line) in terms of the clean
polaron Green’s function (double thin line) and scattering on the
renormalized disorder potential ε∗

l (ω), depicted by dashed lines ended
with squares. (b) Diagrammatic expansion of ε∗

l (ω). For more details,
see text.

discarding exponentially small contributions from each of
these diagram, as already discussed. MA(0) also has an exact
variational meaning, namely, of assuming that the polaron
cloud can have phonons only on a single site, in direct analogy
with the clean case.19,23 It is quite remarkable that all the
diagrams corresponding to this variational approximation can
still be summed analytically in closed form, even in the
presence of disorder.

As is the case for the clean system, MA can be systemat-
ically improved by keeping more contributions to Eq. (5). In
particular, at the MA(1) level, we also treat the equation for
the F (1) functions exactly, and make the MA approximation of
discarding exponentially small off-diagonal propagators only
for n � 2. The logic here is that the propagators appearing in
F (1) have the highest energy, therefore the slowest exponential
decay. The MA(1) equations can also be solved in closed form.
The details are presented in Appendix. The final solution looks
identical to Eq. (11), except the renormalized energy is now
ω̃ = ω − 
MA(1) (ω) while the renormalized potential v0(l,ω) is
replaced by a more complicated, yet more accurate expression
v1(l,ω). The meaning of all these quantities, however, is the
same.

To summarize, MA reveals that the role of electron-phonon
coupling is two-fold. On one hand, it renormalizes the
quasiparticle properties due to polaron formation, just like
in a clean system (as revealed by the explicit appearance of
the “clean” system self-energy). However, this coupling also
renormalizes the disorder potential experienced by the particle,
εl → ε∗

l (ω). As we show next for various types of disorder, this
renormalization is nontrivial in that it has strong retardation
effects, and has significant consequences. “Instantaneous”
approximations completely ignore this renormalization, and
therefore miss essential physics. To be fair, in practice the
“instantaneous” approximations are usually implemented in
an improved, variational form,22,24 which is certain to be much
more accurate. However, this leads to the necessity to calculate
the variational parameters through a self-consistent loop,
making the improved version computationally as complicated
as DMFT and DCPA, which also have self-consistency loops.
In contrast, MA gives a closed analytical expression for all
quantities of interest, in a formulation whose meaning is
very transparent, and whose accuracy can be systematically
improved.

III. POLARON NEAR A SINGLE IMPURITY

We now apply the general formalism described above to
the simplest type of “disorder”, namely an otherwise clean
3D simple cubic lattice with a single impurity. Impurities
which modulate the on-site energy, the strength of the
electron-phonon coupling and/or the phonon frequency are
separately considered. We investigate under what conditions
such impurities can trap the polaron.

As a reference case, we first review here briefly the solution
in the absence of electron-phonon coupling. In this case, the
impurity can only modulate the on-site potential, εi = −Uδi,0,
and the Hamiltonian reduces to

Hd = −t
∑
〈ij〉

(c†i cj + H.c.) − Uc
†
0c0 = H0 + V̂d . (14)
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For this form of V̂d , Eq. (8) reads

Gd
ij (ω) = G

(0)
ij (ω) − UGd

i0(ω)G(0)
0j (ω) (15)

and is trivially solved to find

Gd
ij (ω) = G

(0)
ij (ω) − U

G
(0)
i0 (ω)G(0)

0j (ω)

1 + UG
(0)
00 (ω)

. (16)

Of course, because of translational and time reversal
symmetry, G

(0)
ij (ω) = G

(0)
i−j,0(ω) = G

(0)
j−i,0(ω), etc.

The LDOS at the impurity site is then found to be

ρ(0; ω) = − 1

π
ImGd

00(ω) = ρ0(0; ω)

|1 + UG
(0)
00 (ω)|2

,

where ρ0(0; ω) = − 1
π

ImG
(0)
00 (ω) is the LDOS in the clean

system (equal to the DOS, because of translational invariance).
As a result, a bound state below the continuum, signalled by
a delta-function peak in ρ(0; ω), occurs if and only if the
denominator of Eq. (16) vanishes. For a 3D simple cubic
lattice, this means that an impurity bound state appears if there
is an energy E < −6t such that ReG(0)

00 (E) = −1/U [below
the continuum the imaginary part of G

(0)
00 (E) vanishes]. This

equation can be solved graphically to find that a bound state
appears for any U � Uc = −1/ReG(0)

00 (−6t) ∼ 3.96t .
In the presence of electron-phonon coupling, the equations

are more complicated, but the idea is the same: we calculate
the LDOS at the impurity site and compare it to the DOS of
the clean system. If the former has a peak below the threshold
of the latter, then a bound state exists at that energy. We then
vary U to find the critical value above which a bound state is
guaranteed. More details about the impurity state, such as its
localization length, statistics for the phonon cloud, etc., can be
extracted from the LDOS at sites in the neighbourhood of the
impurity. Here, we focus on identifying when bound impurity
states are stable.

A. Impurity changing the on-site energy

The Hamiltonian describing this case is

H = T̂ + �
∑

i

b
†
i bi + g

∑
i

c
†
i ci(bi + b

†
i ) − Uc

†
0c0, (17)

where T̂ is the electron’s tight-binding Hamiltonian. We are
interested in the attractive impurities, U > 0, when an impurity
state can be bound near the impurity site. To find the LDOS at
the impurity site, we need to solve Eq. (11) to find G00(ω). Note
that now Gd

ij (ω) is known, being given by Eq. (16). The free-

particle propagators G
(0)
ij (ω) = 1

N

∑
k

e
ik·(Ri−Rj)

ω−εk+iη
, where for the

simple cubic lattice εk = −2t
∑3

i=1 cos ki , can be calculated
by doing the integrals over the Brillouin zone. A more efficient
approach, which we use, is discussed in Ref. 25.

In this case, the renormalized impurity potential decays fast
at sites away from the impurity, because Gd

ll(ω) → G
(0)
ll (ω)

when |l| → ∞, so that A1(l,ω) → A1(ω). Physically, this is
because the impurity has less and less influence at sites far
from where it is located. Mathematically, this follows from
Eq. (16) and the fact that G

(0)
l0 (ω) decreases exponentially with

the distance between site l and the origin, at energies below
the free particle continuum, of interest here. As a result, in Eq.
(11) we only need to sum over sites l close to the impurity, and
the system can be solved very efficiently.

The appropriate value for this cutoff varies depending on the
various parameters, but generically it decreases as the energies
of interest become lower. Again, mathematically this is due to
the exponential decrease of the free-particle propagator with
distance, and the fact that this decrease becomes faster as ω →
−∞. Physically, this can be understood as follows. First, let us
explain why is the renormalized disorder potential nonlocal,
even though the bare impurity potential is local. The answer
is provided by the diagrams that contribute to it, see Fig. 2(b).
Consider, for simplicity, the MA(0) approximation. In this case,
all phonon lines appearing in these diagrams start and end at
the site l for which v0(l,ω) is being calculated—this is the site
where the phonon cloud is located. However, the electron is
found with various probabilities away from the polaron cloud,
so it can scatter on the impurity if this is located within the
“radius” of the polaron, where the electron resides. In other
words, the range of the renormalized potential is controlled
by the polaron size. From medium to large couplings, as the
polaron becomes smaller, the renormalized potential becomes
more local. At small couplings, though, the distance between
the electron and its phonon cloud can be appreciable, and the
range of the potential increases.

In Fig. 3(a), we plot ρ(0,ω) over a wider energy range,
for several values of U , within MA(0). The dashed line shows
the DOS of the clean system, multiplied by 100 for visibility.
For U/t = 1.8,1.9, the impurity attraction is not sufficient
to bind a state below the continuum, although the LDOS is
pushed toward the lower band edge. For U = 1.95t , there is
a peak just below the continuum. Because of the finite value
of η, the two features are not completely separated and the
continuum onset looks like a “shoulder”, however, lowering
η allows us to clearly separate the two features (not shown).
Finally, for U = 2t , the bound state peak is clearly below the
continuum, so in this case Uc ≈ 1.95t . This Uc value equals
that obtained in DMC, although our energies are overall higher
than the exact DMC values shown in Fig. 3(e), as expected for
a variational approximation. At the MA(1) level the agreement
with DMC is significantly improved since all features move
toward lower energies, see Fig. 3(c). The critical value Uc ≈
1.95t at which an impurity state appears below the continuum
is little affected, however, by this overall shift of the spectral
weights.

The dependence of the bound state energy on the cutoff is
shown in Figs. 3(b) and 3(d) for MA(0) and MA(1), respectively,
for the case with U = 2t , � = 2t , and the effective coupling
λ = g2/(6t�) = 0.8. At these energies, keeping only the local
part in MA(0), i.e., setting v0(l,ω) → δl,0v0(l,ω), is already a
very good approximation. Including the correction from the six
nearest-neighbor sites (lc = 1) lowers the energy somewhat,
but the contribution from the second nearest-neighbor sites
(lc = 2) is no longer visible on this scale for either the MA(0)

or the MA(1) results.
Repeating this process for other values of the parameters,

we trace Uc in the parameter space. This is shown in Fig. 4,
for �/t = 0.5,2,4,8 and various effective couplings. The MA
results (filled symbols) are in good quantitative agreement with
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FIG. 3. (Color online) LDOS at the impurity site ρ(0,ω) in
units of 1/t vs the energy ω/t for (a) MA(0) with lc = 0 for
U = 1.8,1.9,1.95, and 2.0. The dashed line shows the DOS for the
clean system times 100, (b) MA(0) at U/t = 2 and cutoffs in the
renormalized potential lc = 0,1,2. (c) and (d) are the same as (a) and
(b), respectively, but using MA(1). Panel (e) shows DMC results from
Ref. 13, for same parameters as (a) and (b). Other parameters are
� = 2t, λ = 0.8, and η/t = 10−3.

the DMC results (empty symbols) for larger � � 1 values.
(These are MA(0) results for cutoff lc = 0. Using MA(1) and/or
increasing the cutoff changes the values of Uc by less than
1% everywhere we checked). For the smaller frequencies
such as � = 0.5t , MA is known to become quantitatively
less accurate at intermediary couplings,16,19 and indeed, here
we see a discrepancy with the DMC data even for the MA(1)

results. To improve the quantitative agreement here, one should
use a two- or three-site MA variational approximation for the
phonon cloud, as discussed in Refs. 18.

As expected, when λ → 0, Uc goes toward the expected
critical value in the absence of electron-phonon coupling,
of roughly 3.96t . As the effective coupling increases Uc

decreases, but the lines never intersect the y axis: Uc = 0
is impossible, since the polaron cannot be trapped (localized)
in a clean system as long as it has a finite effective mass, i.e.,
for any finite value of λ.

The decrease of Uc with increasing λ is expected, and is
usually attributed to the fact that the effective polaron mass
increases with λ, and this makes it easier to trap near the

0 1 2 3 4
U

c
/t

0

1

2

3

4

5

6

λ

Ω = .5t (MA
1
)

Ω = 2t (MA
0
)

Ω = 4t (MA
0
)

Ω = 8t (MA
0
)

Ω = .5t (DMC)
Ω = 2t (DMC)
Ω = 4t (DMC)
Ω = 8t (DMC)

FIG. 4. (Color online) Phase diagram separating the regime
where the polaron is mobile (below the line) and trapped (above
the line). The effective coupling is λ = g2/(6t�) and the critical
trapping potential Uc is shown for several values of �/t . The MA
results (filled symbols) compare well with the DMC results of Ref. 13
(empty symbols).

impurity.13 However, we claim that this is not the full story,
and that the renormalization of the trapping potential also plays
a nontrivial role.

Consider, first, the Hamiltonian of Eq. (14), which describes
the impurity problem in the absence of electron phonon
coupling. The binding energy of the impurity state (once
formed) is a monotonic function of the only dimensionless
parameter of this problem: EB/t = f (U/t) for any U/t �
Uc/t ≈ 3.96. If one views the polaron as a quasiparticle with
an effective hopping t∗ that scatters on the same potential
U as the bare particle (instantaneous approximation), then
the polaron binding energy should be E∗

B/t∗ = f (U/t∗) for
any U/t∗ � Uc/t∗ ≈ 3.96. In particular, this predicts Uc/t =
3.96t∗/t decreasing with increasing λ, in qualitative agreement
with Fig. 4.

This hypothesis can be tested. The function f (x) is easy to
calculate numerically, we can extract the binding energy E∗

B

for the trapped states by comparing their trapped energy to the
GS energy of the polaron in the clean system, and the effective
hopping t∗ ∼ 1/m∗ is directly linked to the effective polaron
mass m∗ in the clean system.16 We find that this scaling is
not obeyed. Instead, one needs to also rescale the impurity
potential, i.e., use E∗

B/t∗ = f (U ∗/t∗), where U ∗ �= U . Of
course, this scaling assumes that the scattering potential is
local. As we discussed, this is not true although it is a good
approximation for medium and large couplings.

In Fig. 5, we show the renormalized value U ∗/U extracted
this way, as a function of U/t above the corresponding
threshold values Uc/t , for a medium and a large effective
coupling λ = 0.5,1.5 and � = 3t . Qualitatively similar curves
are found for other parameters. We see that U ∗ → U only
when U → ∞ and becomes the dominant energy scale (hence
anything else is a small perturbation). For fixed U and �, we
find that U ∗ increases with increasing coupling λ—this is also
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FIG. 5. (Color online) Effective value of the impurity attraction
U ∗/U , extracted from the scaling E∗

B/t∗ = f (U ∗/t∗), for λ =
0.5,1.5 and � = 3t . In order to have the best fit to the data, we plot
each curve starting from slightly larger U/t than the corresponding
Uc/t given in Fig. (4). For more details, see text.

expected, since the renormalization is directly caused by the
electron-phonon coupling, see Fig. 2(b).

This renormalization is a direct illustration of the general
result of Eq. (13): the electron-phonon coupling changes not
only the properties of the polaron (its effective mass), but
also the disorder potential it experiences. However, it is very
wrong to expect that the potential renormalization can always
be described by a simple rescaling by some overall value.
Indeed, Eq. (13) shows that the renormalized potential is
expected to be a function of energy, because of retardation
effects. This function is not roughly constant, instead it has
significant and very nontrivial dependence of ω, as illustrated
by plotting v0(0,ω) over a large energy range, in Fig. 6.
Similar curves are found for other values of the parameters.
Over a narrow range of energies around ω ∼ −7.5t where
the bound state forms for these parameters (see Fig. 3),
v0(0,ω) varies slowly and can be approximated as an overall
negative constant. This explains why here we can approximate
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FIG. 6. (Color online) Real part of the additional on-site MA(0)

disorder potential v0(0,ω) over a wide energy range for U = 2t, � =
2t, λ = 0.8, and two values of η.

ε∗
0 (ω) = −U + v0(0,ω) ≈ −U ∗, with U ∗ > U , as discussed

above. At higher energies, however, v0(0,ω) goes through
singularities and changes sign from negative to positive and
back. Although at first sight these singularities are surprising,
they should be expected based on Eq. (10). The self-energy
of the Holstein polaron is known to have such singularities,
especially at medium and higher couplings where an additional
second bound state forms and the continuum above shows
strong resonances spaced by �. In particular, as λ → ∞ and
the spectrum evolves toward the discrete Lang-Firsov limit
En = −g2/� + n�, the self-energy has a singularity at the top
of each corresponding band. The renormalized potential of Eq.
(10) is the difference between two such curves, displaced from
each other. It is thus not a surprise that it has such nontrivial
behavior.

Physically, such strong retardation effects are not surpris-
ing, either, since the additional potential v0(i,ω) describes the
scattering of the electron in the presence of the phonon cloud.
The structure of the phonon cloud varies with energy, for
instance one expects quite different clouds within the polaron
band versus at higher energies, in the continuum of incoherent
states with finite lifetime. This suggests that the diagrams of
Fig. 2(b) that contribute most to the series change with energy,
and so does the total result. As a final note, we mention that
at these higher energies, MA(1) should be used. It is well
known that MA(0) fails to describe properly the location of
the polaron+one phonon continuum, since it does not include
the needed variational states.23 This problem is fixed at the
MA(1) and higher levels.19

To summarize, for this simple impurity problem, the MA
approximation is found to agree well with results from DMC in
describing the trapping of the polaron. Although quantitatively
not as accurate, besides efficiency, its main advantage is that
the analytic equations that describe MA allow us to understand
the relevant physics. In particular, we showed that coupling to
bosons renormalizes the disorder in a very nontrivial way.

B. Impurity changing the electron-phonon coupling

We now assume that the impurity does not change the on-
site energy, but instead it modifies the value of electron-phonon
coupling at its site:

H = T̂ + �
∑

j

b
†
j bj +

∑
j

gj c
†
j cj (bj + b

†
j ), (18)

where gj = g + (gd − g)δj0. Thus gd and g are the electron-
phonon couplings at the impurity site and in the bulk of
the system, respectively. Since V̂d = 0 in this case, the
noninteracting part of the Hamiltonian is Hd = H0. Thus
Gd

jj (ω − n�) → G
(0)
jj (ω − n�) ≡ g0(ω − n�) in the contin-

ued fractions, Eq. (6), whose dependance on the site index j

is now through the coupling gj only. As a result, the effective
disorder potential v0(j,ω) vanishes everywhere except at the
impurity site, j = 0:

v0(j,ω) ≡ �(ω)δj0, (19)

where �(ω) = gdA1(0,ω) − gA1(ω), and A1(0,ω) is like in
Eq. (9) but with g → gd . This shows that even though εi = 0 in
this case, the inhomogeneity gives rise to an effective potential
ε∗
i (ω) = δi,0�(ω). This is now local because only when the
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FIG. 7. (Color online) Phase diagram separating the regime
where the polaron is delocalized (below the line) and trapped (above
the line), as a function of the difference between the impurity and
the bulk electron-phonon coupling, gd − g. Symbols show MA(0)

results, while the dashed black lines correspond to the instantaneous
approximation.

phonon cloud is at the impurity site it can experience the
different coupling.

Equation (11) can now be solved analytically to find

ρ(0,ω) = − 1

π
Im

[
g0(ω̃)

1 − �(ω)g0(ω̃)

]
. (20)

We now find the critical values gd − g when an impurity
state emerges below the continuum, for given values of g,�.
The results are shown in Fig. 7 for gd > g, when the polaron
formation energy at the impurity site, −g2

d/�, is lower than the
bulk value −g2/�, and a bound state may be expected to form
even within the instantaneous approximation. Symbols show
MA(0) results, while the dashed lines are for the instantaneous
approximation. The two agree quantitatively only in the
limit λ → 0. This proves that the additional renormalization
included in MA is significant for this type of impurity, as well.
We note that all critical lines intercept the x axis at a finite
value, i.e., for any value of � and g = 0, there is a critical finite
value gd above which an impurity state forms. For example,
for � = 3t this critical value is gd ≈ 3.9t . Its value increases
with increasing �, as expected.

Unlike for an impurity which changes the on-site potential,
and which can bind at most one impurity state, impurities
which change the electron-phonon coupling can bind multiple
impurity levels. As gd increases and the energy of the impurity
level moves toward lower energies, additional bound states,
spaced by roughly �, emerge whenever the distance between
the last one and the bulk polaron band is of order �.

The origin of this sequence of bound states is straight-
forward to understand in the limit gd � g,t , where the
Hamiltonian is, to zero order,

H ≈ gdc
†
0c0(b†0 + b0) + �b

†
0b0,

with c
†
0c0 ≈ 1 because the weight of the bound state is

concentrated at the impurity site. This Hamiltonian can be

-7.6 -7.4 -7.2
ω/t
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0.1

0.2

ρ(0, ω)
g

d
 - g = -0.028t

g
d
 = g

FIG. 8. (Color online) For large λ, in the clean system (dashed
red line), the first polaron band is separated by an energy gap from
the next features in the spectrum (here, the band associated with the
second bound state). For gd < g, an “antibound” impurity state is
pushed inside this gap (black full line). Parameters are � = t = 1,
λ = 1.2, and η = 10−3.

exactly diagonalized with the Lang-Firsov transformation26

and predicts a series of equally spaced eigenenergies n� −
g2

d/�. For finite t and g, all states that lie below the bulk
polaron continuum become impurity states, and basically
describe excited bound states with additional phonons at the
impurity site.

So far, we have considered gd > g, where a ground-state
impurity level can emerge. It is important to note that discrete
peaks can also appear for gd < g, although not at low energies.
This happens when λ is sufficiently large that there is a gap
between the bulk polaron band and higher features in the
spectrum, such as the polaron+one phonon continuum, or the
band associated with the second bound state, once it forms.27

A typical example is shown in Fig. 8, where in the presence
of an impurity with a weaker coupling gd < g (full line), a
discrete state appears above the polaron band. Since most of
its weight is removed from the bulk polaron band (dashed
line), we interpret this as being an “antibound” polaron state.
A similar state is also expected to appear for a repulsive on-site
U < 0 potential.

C. Isotope impurity

The last case we consider in detail is an isotope impurity.
Because of its different mass Md �= M , both its phonon

frequency �d ∼ M
− 1

2
d , and its electron-phonon coupling

gd ∝ 1/
√

Md�d ∼ M
− 1

4
d , are changed. Interestingly, both the

effective coupling λd = g2
d/(6t�d ) = g2/(6t�) = λ and the

polaron formation energy −g2
d/�d = −g2/� show no isotope

effect.28 As a result, within the instantaneous approximation of
Eq. (12), one would predict that the isotope is “invisible” and
the polaron spectrum is basically unaffected by its presence.

We consider a single isotope impurity located at the origin:

H = T̂ +
∑

j

gj c
†
j cj (bj + b

†
j ) +

∑
j

�jb
†
j bj , (21)
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where �j = � + (�d − �)δj0 and gj = g + (gd − g)δj0 are
chosen such that λd = λ.

Just like in the previous section, because there is no on-site
disorder, εi = 0, we have Gd

jj (ω) = G
(0)
jj (ω) and the effective

disorder potential is again local, i.e., it vanishes everywhere
but at the impurity site. As a result, the LDOS at the impurity
site is given by Eq. (20), except that here

�(ω) = 
d (ω) − 
MA(0) (ω), (22)

where 
d (ω) has the same functional form like 
MA(0) (ω), but
with g → gd,� → �d .

From investigations of this LDOS at different parameters
we find that there exists a threshold value of the effective
coupling, λ∗, below which low-energy bound states do not
form irrespective of how small or large Md/M is. In other
words, for λ < λ∗, the behavior agrees with the prediction of
the instantaneous approximation.

We can estimate a bound on λ∗ as follows. Consider the
case of a very light isotope, so that �d,gd � �,g,t . In this
limit, 
d (ω) → −g2

d/�d = −6tλ. The bound state appears
when the LDOS is singular because its denominator vanishes:

1 − �(ω)g0(ω̃) = 0 → 
MA(0) (ω) + 1/g0(ω̃) = −6tλ, (23)

after using Eq. (22) and 
d (ω) ≈ −6tλ.
Consider now the limiting case when a bound state emerges

just below the bulk polaron ground state, i.e., Eq. (23) has a
solution at ω � ε

pol
gs . In the clean system, the polaron ground-

state energy ε
pol
gs is the lowest pole of G(k = 0,ω) = [ω −

εk=0 − 
MA(0) (ω)]−1, so it satisfies: εpol
gs = −6t + 
MA(0) (εpol

gs ).
Using this in Eq. (23) suggests that a solution can exist if
λ > λ∗, where

λ∗ =
∣∣∣∣∣
ε

pol
gs

6t

∣∣∣∣∣ − 1 − 1

6tg0(−6t)
, (24)

with g0(−6t) ≈ −1/3.96t . Since ε
pol
gs → −6t as λ → 0, we

expect that λ∗ → 0.66 in this limit, and that it increases as ε
pol
gs

becomes more negative, for example with increasing λ. These
considerations are confirmed by the data shown in Fig. 9. Here,
the symbols show values of λ∗ found numerically with MA(0),
and the dashed line is the lower bound of 0.66, discussed above.

For λ > λ∗, bound impurity states can appear near isotopes
if gd and �d = g2

d/(6tλ) are sufficiently large. In Fig. 10, we
show critical lines for two cases, � = 4t,8t . The symbols show
the MA(0) results, which converge toward their corresponding
λ∗ values as �d → ∞, as expected. Of course, the largest
values considered for �d are unphysical; we use them only to
illustrate the convergence toward λ∗.

The existence of a region of the parameter space where
bound polaron states appear near an isotope is in direct
contradiction of the instantaneous approximation, and again
illustrates the importance of the renormalized disorder po-
tential �(ω), which makes their trapping possible. In this
context, it is worth mentioning that there is clear evidence
for electronic states bound near isotope O16 defects in CuO2

planes,29 although the precise nature of these states has not
been clarified and the measurements are certainly not in the
extremely underdoped regime where our single-polaron results
are valid.

0 2 4 6 8
Ω/t

1

2

λ∗

FIG. 9. (Color online) Critical effective coupling λ∗ above which
an impurity state may appear for a sufficiently light isotope. Below
this line, polarons cannot be bound near isotopes. Symbols shows
MA(0) results. The dashed line is the analytic low bound for λ∗

discussed in the text.

Interestingly, when such bound states form near an isotope,
the spectrum is different than that for the other two types of
impurities. As shown in Fig. 11, bound states now appear
simultaneously both below and above the bulk polaron contin-
uum, not just below it. This provides a possible “fingerprint”
for polarons trapped near isotopes. Finally, we note that even
when no low-energy impurity state is observed, it is again
possible to have higher energy bound states inside the gaps
opening between various features in the bulk polaron spectrum.

To summarize, in the presence of isotope defects, polarons
in the weakly coupled regime λ < λ∗ always remain delocal-
ized. Only for λ > λ∗ it is possible to trap polarons near an
isotope. This makes this case quite distinct from the other two
cases, where bound states exist for any λ if the impurity is
strong enough.

1 10 100 1000
(Ω

d
 - Ω)/t
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2

3

4

λ

Ω = 4t
Ω = 8t

FIG. 10. (Color online) Phase diagram separating the regime
where the polaron is delocalized (below the line) and trapped (above
the line), as a function of the difference between the �d − �, on
a logarithmic scale. Symbols show MA(0) results for � = 4t,8t . As
�d → ∞, these critical lines converge toward their corresponding λ∗

(dashed lines), below which polaron states are always delocalized.
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FIG. 11. (Color online) LDOS at the impurity site near an isotope
with �d = � + 7t (full line). Two discrete states, one above and one
below the bulk polaron band, are seen. For comparison, the DOS
in the clean system (multiplied by ten) is shown as a dashed line.
Parameters are � = 4t , λ = 2.5, and η = 10−2.

IV. SUMMARY AND CONCLUSIONS

We studied the threshold for the emergence of polaron
bound states near various types of single impurities, using
the momentum-average approximation. Electron-phonon cou-
pling was shown to strongly renormalize the impurity potential
in a nontrivial way that includes strong retardation effects.
This is a feature that is completely absent in the instantaneous
approximation, which is the only other available “simple”
description of this problem.

We considered the simplest models of impurities that
change the strength of the on-site energy, the local electron-
phonon coupling, or are isotope substitutions that modify
both the coupling and the phonon energy. We calculated the
polaron binding phase diagrams for each case. The first case
had been considered previously by numerical methods,13,14

and our results are in good quantitative agreement with their
predictions. To our knowledge, the other two cases have
not been investigated before. We showed that in the first
two cases bound states always exist for a sufficiently strong
impurity, however, the polaron remains delocalized for the
case of isotope substitution of arbitrary strength if the effective
coupling is weaker than a threshold value, λ∗. Differences in
the LDOS at the impurity site have also been found, such as
the possibility to bind multiple states near an impurity that
changes the coupling, or the unusual fingerprint of discrete
states both below and above the bulk polaron continuum, for
an isotope bound state.

Of course, a realistic description of an impurity in a real
system may combine several of these inhomogeneities, and
even the form of the electron-phonon coupling could be
affected. MA gives an efficient yet quite accurate way to deal
with such cases, and can be easily generalized to other types
of couplings where MA has been used successfully to describe
bulk properties.

Whereas we expect the single-impurity results to remain
valid for a system with multiple impurities if the mean free path
is long and the polaron interacts with one impurity at a time,
in the presence of significant disorder, when multiple scat-
tering processes become important, the polarons can undergo

Anderson localization. This limit has been addressed within
a generalized DMFT,9 however, we believe that our simpler
formulation might provided additional insight and uncover
previously unexplored aspects of Anderson localization for
polarons. Such work is currently in progress.
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APPENDIX: MA(1)

At the MA(1) level, one also allows processes in which one
phonon is away from the phonon cloud. These are described
by the propagators Sn(i,l,j ; ω) = 〈0|ciG(ω)c†l b

†n−1
l b

†
j |0〉 with

j �= l. In terms of these, Eq. (3) can be written as

Gij (ω) = Gd
ij (ω) +

∑
l

glS1(i,l,l; ω)Gd
lj (ω). (A1)

Once again we apply the Dyson identity to S1:

S1(i,l,j ; ω) = gjG
d
jl(ω − �j )Gij (ω)

+
∑
m

gmGd
ml(ω − �j )S2(i,m,j ; ω). (A2)

This exact equation relates S1 to the propagators S2. We
can similarly find the equation of motion of all higher, n � 2,
Sn(i,l,j ; ω) with l �= j and l = j , separately. For l �= j , we
have

Sn(i,l,j ; ω) = glG
d
ll[ω − (n − 1)�l − �j ]

×[(n − 1)Sn−1(i,l,j ; ω) + Sn+1(i,l,j ; ω)],

(A3)

where we now ignore contributions from terms with a
second phonon away from the polaron cloud, as they are
exponentially smaller than those we kept. This admits the
solution Sn(i,l,j ; ω) = Bn(l,j ; ω)Sn−1(i,l,j ; ω), where

Bn(l,j ; ω) = (n − 1)glG
d
ll(ω − (n − 1)�l − �j )

1 − glG
d
ll[ω − (n − 1)�l − �j ]Bn+1(l,j ; ω)

= An−1(l,ω − �j ). (A4)

For l = j and n � 2, Sn(i,l,l; ω) = F
(n)
il (ω) and we

get the same solution as in MA(0), i.e., Sn(i,l,l; ω) =
An(l,ω)Sn−1(i,l,l; ω). The relations between S2 and S1 are
used in Eq. (A2) to turn it into an equation between S1(ω) and
Gij (ω) only

S1(i,l,j ; ω) = gjG
d
jl(ω − �j )Gij (ω)

+gjG
d
jl(ω − �j )A2(j,ω)S1(i,j,j ; ω)

+
∑
m�=j

gmGd
ml(ω − �j )A1(m,ω − �j )S1(i,m,j ; ω).

Together with Eq. (A1), this can be solved to find Gij (ω).
However, it is again convenient to explicitly extract the
“average” contributions, to make these equations more
efficient.
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We therefore remove the homogeneous part from Eq. (A2)
and include it into a renormalized energy:

S1(i,l,j ; ω) = gjG
d
jl(ω̄j ){Gij (ω) + [A2(j,ω)

−A1(j,ω − �j )]S1(i,j,j ; ω)}
+

∑
m�=j

gmGd
ml(ω̄j )[A1(m,ω − �j )

−A1(ω − �)]S1(i,m,j ; ω), (A5)

where ω̄j = ω − �j − gA1(ω − �) and A1(ω − �) is given
by Eq. (9) for the “average” clean system.

The sum on the rhs of Eq. (A5) again converges for a very
small cutoff, only sites m very close to j need to be included.
Its general solution is of the form:

S1(i,l,j ; ω) = xjl(ω){Gij (ω) + [A2(j,ω)

−A1(j,ω − �j )]S1(i,j,j ; ω)}, (A6)

where

xjl(ω) = gjG
d
jl(ω̄j ) +

∑
m�=j

gmGd
ml(ω̄j )[A1(m,ω − �j )

−A1(ω − �)]xjm(ω).

In fact, using xjl(ω) = gjG
d
jl(ω̄j ) is already a very good

approximation, since the terms in the sum are exponentially
small, but one can go beyond this. Once xjj (ω) is known, from

Eq. (A6), we find S1(i,j,j,ω) = �j (ω)Gij (ω), where

�j (ω) = xjj (ω)

1 − xjj (ω)[A2(j,ω) − A1(j,ω − �j )]
.

This can now be used in Eq. (A1) to turn it into an equation

for Gij (ω) only:

Gij (ω) = Gd
ij (ω) +

∑
l

gl�l(ω)Gil(ω)Gd
lj (ω). (A7)

As we did in Eq. (11) for MA(0), this can be made efficient
to solve by subtracting the MA(1) self-energy and including it
into the energy argument:

Gij (ω) = Gd
ij (ω̃) +

∑
l

Gil(ω)v1(l,ω)Gd
lj (ω̃), (A8)

in which ω̃ = ω − 
MA(1) (ω) and v1(l,ω) = gl�l(ω) −

MA(1) (ω). Here, 
MA(1) (ω) is the value of gl�l(ω) in the clean,
“average” system:


MA(1) (ω) = g2g0(ω̄)

1 − gg0(ω̄)[A2(ω) − A1(ω − �)]
,

where now ω̄ = ω − � − gA1(ω − �).19 This completes the
calculation of Green’s function within inhomogeneous MA(1)

approximation.
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