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Abstract
In two recent papers, we have shown how one-particle and few-particle lattice
Green functions can be calculated efficiently for models with only nearest-
neighbor hopping, using continued fractions. Here, we show that a similar type
of solution is possible for models with longer (but finite) range hopping.

PACS numbers: 02.60.Cb, 02.70.Hm, 02.30.Gp

(Some figures may appear in colour only in the online journal)

1. Introduction

The calculation of lattice Green functions is a task that arises in very many solid-state physics
problems. For example, one-particle lattice Green functions are used to study effects of
disorder [1, 2] or interfaces [3, 4], or to model mesoscopic devices [5], etc. Few-particle Green
functions are needed to understand the stability of bound complexes [6] and to interpret various
spectroscopies, such as Auger spectra [7].

At the simplest level, assuming a lattice with one state per lattice site and dynamics
governed by some model Hamiltonian H, the one-particle Green functions

G(n, m, z) = 〈n|Ĝ(z)|m〉 (1)

are matrix elements of the resolvent Ĝ(z) = 1/(z−H) between states with the particle at sites
n and m. Usually, z = E + iη is a complex number with an infinitesimally small and positive
imaginary part, although in certain cases, the presence of non-trivial self-energies may require
the Green functions to be calculated away from the real axis.

In a clean system, where invariance to translations holds, the one-particle eigenstates have
well-defined momentum H|k〉 = ε(k)|k〉 and the lattice Green functions can be expressed as

G(n, m, z) = 1

N

∑
k

〈n|k〉〈k|m〉
z − ε(k)

, (2)
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where N is the number of sites in the lattice, and the sum is over the quasi-momenta in the
Brillouin zone consistent with the boundary conditions. For an infinite lattice, N → ∞ and
the sum turns into Fourier transforms. Their direct numerical evaluation is quite cumbersome,
especially in higher dimensions, so even in this simplest possible case the calculation is
rather hard. If disorder or other complications are present, this approach based on a Lehmann
decomposition over the eigenstates becomes that much harder to implement numerically in an
efficient way.

The preferred alternative, currently, is the use of the recursion method reviewed in [8],
which is linked to the Lanczos method [9]. Briefly, to find 〈u0|Ĝ(z)|u0〉 one uses iterations
H|un〉 = b∗

n|un−1〉 + an|un〉 + bn+1|un+1〉 to generate the orthonormal vectors {|un〉} starting
from |u0〉 and to calculate the constants {an}, {bn}. Because in this basis, H is a tridiagonal
matrix, the matrix element of its resolvent is found to be

〈u0|Ĝ(z)|u0〉 = 1

z − a0 − |b1|2
z−a1−...

. (3)

To find G(n, n, z) one chooses |u0〉 = |n〉. To find off-diagonal G(n, m, z) values, one performs
two calculations for

∣∣u(±)

0

〉 = |n〉 ± |m〉. The disadvantage, in this case, is that one may need
to work with quite large matrices. As a simple illustration, suppose that we need to calculate
the Green function 〈0|Ĝ(z)|100〉 between states at sites 0 and 100, in a one-dimensional (1D)
system. Suppose, also, that there is only nearest-neighbor hopping. If |u0〉 ∼ |0〉 + |100〉, then
|u1〉 ∼ |−1〉 + |1〉 + |99〉 + |101〉, |u2〉 ∼ |−2〉 + |2〉 + |98〉 + |102〉, and so on and so forth.
One needs to apply the recurrence at least 50 times so that the ‘wave’ started at the origin
overlaps at least once with the ‘wave’ originated at site 100. This implies that vectors of at
least dimension 200 must be considered, although for accurate values one may well need to go
higher. For a different pair of sites, the calculation must be restarted from scratch. Moreover,
the problem is obviously compounded in higher dimensions and/or for longer range hopping.

Recently, we introduced a more efficient alternative for calculating lattice Green functions
using continued fractions of matrices. It applies to both one-particle [10] and few-particle [6]
Green functions for lattices in any dimension, but so far it has been restricted to Hamiltonians
with only nearest-neighbor hopping. Here we show that it can be straightforwardly generalized
to models with longer (but finite) range hopping. The main result is that we can reduce
recurrence relations linking many consecutive terms, to recurrence relations linking only three
consecutive quantities. The latter can be solved straightforwardly with continued fractions.
The method is useful not only to calculate lattice Green functions, but also for a variety of
other problems that can be cast in terms of recurrence relations, such as those reviewed in
[11].

2. The method

For simplicity, we first discuss the method in detail for a 1D chain with a single particle.
Generalizations to higher dimensions and/or more particles are briefly reviewed next.
Continuing to assume a single state per lattice site (multiple states, including spin, are
straightforward generalizations), the most general such model Hamiltonian is

H =
∑

n

εnc†
ncn −

∑
n,m

[
tn,mc†

ncm + h.c.
]
,

where the first term describes the on-site energies of these states, and the latter the hopping
between states located at any sites n and m.

We generate the equations of motion for Green functions by taking the matrix elements of
the identity Ĝ(z)(z−H) = 1, to find (z−εm)G(n, m, z) = δn,m −∑

m′ tm′,mG(n, m′, z). For any
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specified value of n, this can be viewed as a linear system in the unknowns um ≡ G(n, m, z).
For a small chain, this system can be solved by brute force; however, for an infinite system
other approaches are needed.

For nearest-neighbor hopping, an alternative solution is easy since the equations of
motion are recurrence relations linking three consecutive terms: (z − εm)G(n, m, z) =
δn,m − tm+1,mG(n, m + 1, z) − tm−1,mG(n, m − 1, z). Just like for the tridiagonal matrices of
Haydock’s method [8], one can here show that for m > n, G(n, m, z) = Am(z)G(n, m − 1, z),
where Am(z) = −tm−1,m/[z − εm + tm+1,mAm+1(z)] is a continued fraction that starts
with limm→∞ Am(z) = 0 (of course, in practice one chooses a sufficiently large cutoff
to truncate). Similarly, for any m < n, G(n, m, z) = Bm(z)G(n, m + 1, z), where now
Bm(z) = −tm+1,m/[z−εm +tm−1,mBm−1(z)] and limm→−∞ Bm(z) = 0. As a result, the equation
for n = m allows us to find G(n, n, z) = [z − εn + tn+1,nAn+1(z)+ tn−1,nBn−1(z)]−1. From this,
all other matrix elements G(n, m, z), m 
= n, can then be generated. For a clean system, an
analytical solution is possible since the continued fraction can be solved explicitly (for details,
see for example [6]).

Previously, we have shown that this solution generalizes to one-particle Green functions
in higher dimensions [10] using the idea of a ‘Manhattan distance’ that is changed by at most
1 through nearest-neighbor hopping. This allows the equations of motion to be grouped as
matrix recurrence relations involving only three consecutive terms, and therefore can be solved
by a direct generalization in terms of continued fractions of matrices. The same underlying
idea also works for few-particle Green functions—in this case, the grouping is done based on
a ‘relative distance’ between the particles, defined such that nearest-neighbor hopping only
changes it by ±1 or 0—preserving the simple recurrence relations structure.

It turns out that a similar philosophy can be used to solve models with longer (but
finite) range hopping. To illustrate the idea most simply, consider a 1D Hamiltonian
that also has second nearest-neighbor hopping. In this case, the recurrence relations read
(z − εm)G(n, m, z) = δn,m − tm+2,mG(n, m + 2, z) − tm+1,mG(n, m + 1, z) − tm−1,mG(n, m −
1, z) − tm−2,mG(n, m − 2, z). Consider first the m > n equations. We can couple together the
equations corresponding to m = n + 2p and m + 1 = n + 2p + 1, where p � 1, in the matrix
form:

γp · Wp = αp · Wp−1 + βp · Wp+1, (4)

where

Wp ≡
(

G(n, m + 2p, z)
G(n, m + 2p + 1, z)

)
,

while

γp ≡
(

z − εn+2p tn+2p+1,n+2p

tn+2p,n+2p+1 z − εn+2p+1

)
,

αp ≡
(−tn+2p−2,n+2p −tn+2p−1,n+2p

0 −tn+2p−1,n+2p+1

)

and

βp ≡
( −tn+2p+2,n+2p 0

−tn+2p+2,n+2p+1 −tn+2p+3,n+2p+1

)
.

Since equation (4) links three consecutive quantities, it can be solved in terms of continued
fractions of 2 × 2 matrices, i.e. for any p � 1, Wp = Ap(z) · Wp−1, where Ap(z) =
[γp − βp · Ap+1(z)]−1αp, with a cutoff limp→∞ Ap(z) = 0. As a result, using p = 1 one
can express (

G(n, n + 2, z)
G(n, n + 3, z)

)
= A1(z) ·

(
G(n, n, z)

G(n, n + 1, z)

)
.
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A similar regrouping into simple recurrence relations allows one to find(
G(n, n − 2, z)
G(n, n − 3, z)

)
= B1(z) ·

(
G(n, n, z)

G(n, n − 1, z)

)
,

where the 2 × 2 continued fractions Bp(z) are defined quite similarly to the Ap(z). These last
relations are then used to turn the equations of motion for m = n, n ± 1 into a system of
three linear equations with three unknowns, namely G(n, n, z) and G(n, n ± 1, z), which can
be solved trivially. Once these three Green functions are known, one can generate any desired
G(n, m, z) with m 
= n from them using the matrices Ap(z), Bp(z).

3. Results

We demonstrate this method for several simple cases, with no disorder, where the results can
be easily checked against results obtained by brute-force integration.

3.1. One particle on a 1D clean chain

For a clean chain, we can set εn ≡ 0, tn,n+1 = t and tn,n+2 = t ′. The invariance to translations
implies that G(n, m, z) = G(m − n, z) = G(n − m, z) → u|m−n|, so we can choose n = 0 and
only consider positive m (or p) values. Moreover, in the absence of disorder all the matrices
become independent of p and therefore Ap(z) → A(z) which satisfies

[γ − βA(z)]A(z) = α, (5)

where, in terms of Pauli and the identity matrices, α = −t ′ − tσ+/2, β = −t ′ − tσ−/2 and
γ = z + tσx.

Not surprisingly, equation (5) has multiple solutions. The reason for this is easy to
understand. This equation only encodes the recurrence relation zun = −t(un+1 + un−1) −
t ′(un+2 + un−2). Its general solution is of the form un = ∑4

α=1 cαζ n
α , where ζα are the four

roots of the characteristic equation t ′(ζ 4 + 1) + t(ζ 3 + ζ ) + zζ 2 = 0. For any finite value
of η, two of these roots have absolute values below unity, and two of them are larger than 1.
The eigenvalues of the matrices A(z) which satisfy equation (5) can correspond to any two
of these four possible roots; hence, the many possible solutions. (To be more precise, if λ1

and λ2 are the eigenvalues of A(z), then its general solution for the recurrence equation is of
the form u2n = a1λ

n
1 + b1λ

n
2, u2n+1 = a2λ

n
1 + b2λ

n
2, where (a1a2)

T and (b1b2)
T are the right

eigenvectors of A(z), up to some overall constants. Comparing this with the general solution
given above, it follows that λ1 = ζ 2

i for some value of i = 1, 4, and similarly λ2 = ζ 2
j , for

some other j 
= i.)
The actual physical solution, i.e. the values of the coefficients cα ,α = 1, 4, is fixed by

how the set of recurrence relations is started near the origin: zu0 = 1 − 2tu1 − 2t ′u2 and zu1 =
−t(u0 +u2)− t ′(u1 +u3). (We used explicitly the symmetries G(0, 1, z) = G(0,−1, z) → u1

etc.) What we know for certain is that the physical solution must vanish as n → ∞. This is
because its Fourier transform is proportional to the amplitude of probability for the particle to
travel a distance n within a time τ . This must always vanish for a sufficiently large n, because
the small η is equivalent to a finite lifetime for the particle, and this prevents it from traveling
arbitrarily far in a finite amount of time. As a result, the physical solution will only contain
the two roots whose modulus is less than unity. Computationally, it can be found by iterations
starting with A = 0, which are equivalent to propagating a solution from large n toward
the origin. This naturally selects the physical roots (the unphysical roots are exponentially
suppressed) and thus the correct form for A(z) (for more discussion, see [6] or [12]).
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To find the solutions once A(z) is known, we use the two equations near the origin. The
end result is (

G(0, 0, z)
G(0, 1, z)

)
= M(z) ·

(
1
0

)
, (6)

where

M(z) =
[(

z 2t
t z + t ′

)
+

(
2t ′ 0
t t ′

)
· A(z)

]−1

.

All other Green functions can then be obtained by multiplying with A(z) repeatedly.
Since we know how to generate the physical solution A(z) using iterations, we can compare

it to the various possible analytical solutions and select the correct one, namely

A(z)|11 = 1 − s(z)(
√

s(z) + 4t ′ − √
s(z) − 4t ′)2

16t ′2
, (7)

A(z)|12 = − (
√

t + a(z) − √
t − a(z))2

4t ′
, (8)

A(z)|21 = 1

4t ′2

(
[
√

t + a(z) − √
t − a(z)]2([s(z)]2 − 4t ′2)

4t ′
− 4tt ′

)
, (9)

A(z)|22 = 1 − 1

4tt ′2

[
t[a(z)]2 − [

√
t + a(z) −

√
t − a(z)]2

(
t2 − [s(z)]2

4

)]
, (10)

where

a(z) = [
√

t ′(z + 2t + 2t ′) −
√

t ′(z − 2t + 2t ′)]

and

s(z) = [
√

t ′(z + 2t + 2t ′) +
√

t ′(z − 2t + 2t ′)].

Together with equation (6), this gives the analytical solution for Green functions of this
problem for the first time to the best of our knowledge. As a validation of these results,
figure 1 shows the total density of states ρ(E ) = − 1

π
Im G(0, 0, z) obtained from this analytical

solution (lines) versus results obtained by the direct numerical integration of equation (2)
(symbols). The agreement is excellent, as expected.

As discussed above, the method can be used for disordered systems, using continued
fractions to evaluate the various Ap(z), Bp(z), starting from sufficiently large cutoffs. The
generalization to longer (but finite) range hopping is straightforward as well, and simply
requires grouping together more Green functions within each Wp. With the proper grouping,
the equations of motion can always be recast as recurrence relations between three consecutive
vectors Wp−1,Wp and Wp+1, and solved with continued fractions.

3.2. One particle on a two-dimensional square lattice

For simplicity, we illustrate this example for a clean square lattice and assume that only nearest-
neighbor and second nearest-neighbor hoppings are allowed. Again, only the relative distance
is relevant, since G(n, m; z) = G(n − m; z) = G(m − n; z) → um−n etc. The resulting
equations of motion read zunx,ny = δnx,0δny,0 − t(unx+1,ny + unx−1,ny + unx,ny+1 + unx,ny−1) −
t ′(unx+1,ny+1 +unx+1,ny−1 +unx−1,ny+1 +unx−1,ny−1). At first sight, this is not a simple recurrence
relation even for t ′ = 0. However, it can be recast as one in terms of the vectors VN which
include all distinct Green functions for which the ‘Manhattan distance’ is |nx| + |ny| = N. It

5
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(a)  tí/t=0.1

(b)  t’/t=0.5

(c)  t’/t=1.0

(d)  t’/t=2.0

Figure 1. Density of states ρ(E ) = − 1
π

Im G(0, 0, E + iη) versus E, for a particle on a clean
1D chain with the nearest-neighbor t and second nearest-neighbor hopping t ′. The parameters are
t ′/t = 0.1, 0.5, 1.0 and 2.0, respectively, and η = 0.05. The lines show the analytical results of
equations (6)–(10), while the circles are obtained by the numerical integration of equation (2).

is then straightforward to check that the nearest-neighbor hopping only links the elements of
VN to the elements of VN±1, and the continued-fraction method can be used [10]. Clearly, if
the second nearest-neighbor hopping is turned on as well, then the elements of VN will also
be linked to the elements of VN±2. Using the same approach as before, i.e. grouping together
all the elements of V2N and V2N+1 within a bigger vector WN , ensures that WN−1,WN,WN+1 are
linked through matrix recurrence relations that can be solved in terms of continued fractions
of matrices.

Results for several values of t ′/t are shown in figure 2. The lines are the results obtained
by our continued-fraction method, while the symbols are obtained from equation (2). The
agreement is excellent, even for a rather small cutoff in the Manhattan distance of Nmax = 100.
What value needs to be used for this cutoff depends on various parameters. Inside the band,
the value increases with decreasing η, while outside the spectrum convergence is always very
fast. As an example, in figure 3 we show data for the same η, but a smaller cutoff Nmax = 40.
Clearly, here the results are not yet fully converged. Additional discussion on the interplay
between Nmax and η is available in [6]. While we find that for any value of η, the results
eventually converge if Nmax is sufficiently large, it would be useful to know if more efficient
ways of truncating the continued fraction (than setting it to zero) exist. We are not aware of a
general method for identifying these, although one can find such schemes in particular cases,
as exemplified in [10].

While we used the square lattice here for simplicity, the generalization to higher
dimensions and/or other types of lattices is possible, following the lines discussed in [10]
for nearest-neighbor only hopping.

3.3. Three spinless fermions on a one-dimensional clean chain

Finally, we illustrate the implementation of the method for the simplest non-trivial few-
particle Green functions model, namely for three spinless fermions on a 1D chain, with
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Figure 2. Local density of states ρ(E ) = − 1
π

Im G(0, 0, E + iη) versus E, for a particle on a clean
square lattice with the nearest-neighbor hopping t and second nearest-neighbor hopping t ′. The
parameters are t ′/t = 0.0, 0.1, 0.25 and 0.5, respectively, η = 0.1 and the cutoff is Nmax = 100.
The lines show the results of our method, while the circles are obtained using equation (2).

-8 -6 -4 -2 0 2 4
E/t

0.0

0.1
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0.3

ρ(
Ε)

N
max

= 40
Eq. (2)

Figure 3. Same density of states ρ(E ) as in figure 2 for t ′ = t and a cutoff Nmax = 40. Clearly,
convergence has not yet been reached for our continued-fraction method.

nearest-neighbor and second nearest-neighbor hoppings t and t ′, and nearest-neighbor and
second nearest-neighbor interactions U1 and U2, respectively:

H =
∑

i

[−tc†
i ci+1 − t ′c†

i ci+2 + h.c.
] +

∑
i

[U1nini+1 + U2nini+2], (11)
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U
1
=U

2
=0

U
1
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2
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U
1
=U

2
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U
1
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2
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Figure 4. Density of states ρ(ω) = − 1
π

Im G(k = 0; 1, 1; 1, 1; E + iη) versus E for (a)
U1 = U2 = 0, t ′/t = 0.1; (b) U1 = U2 = 0, t ′/t = 0.5; (c) U1 = U2 = −3t, t ′/t = 0.1;
(d) U1 = U2 = −3t, t ′/t = 0.5. Full lines show our results, for a cutoff Nmax = 100 and η = 0.05.
Circles in (a) and (b) are results of direct integration, while the dashed lines in (c) and (d) mark the
expected location of the trion bound state for k = 0, as obtained from exact diagonalization for a
chain with 30 sites.

where ni = c†
i ci. Because the model is invariant to translations, the total momentum is a good

quantum number and therefore it is convenient to work with states of the form

|k, n1, n2〉 = 1√
N

∑
i

eikRi c†
i−n1

c†
i c†

i+n2
|0〉,

with n1 � 1, n2 � 1 to avoid double counting. The corresponding three-particle Green
functions are G(k; n1, n2; m1, m2; z) = 〈k, n1, n2|Ĝ(z)|k, m1, m2〉. Suppose we are interested
in the case n1 = n2 = 1. Their equations of motion are straightforward but too long and
cumbersome to write down. In any event, if t ′ = 0, they can be recast as simple recurrence
relations between the vectors VN−1,VN and VN+1, where VN contains all Green functions for
which m1 + m2 = N, see [6]. Turning on t ′ will mix VN±2 in these recurrence relations, but
they can be turned into simple recurrence relations for vectors WN which include all V2N,V2N+1

entries, like in the other cases discussed.
We have checked this solution in several ways. First, if U1 = U2 = 0, then the fermions are

non-interacting. Eigenstates with the total momentum k are of the general form c†
k−k1−k2

c†
k1

c†
k2
|0〉

and have eigenenergy ε(k − k1 − k2)+ ε(k1)+ ε(k2), where ε(k) = −2t cos(k)− 2t ′ cos(2k).
The Lehmann representations for the lattice Green functions then involve two integrals over
the Brillouin zone, over k1 and k2, and can be evaluated numerically. As an example, in
figures 4(a) and (b) we compare our result (line) against the one computed from the Lehmann
representation (symbols) for k = 0 and t ′/t = 0.1, 0.5. The agreement is excellent. Another
check is for finite U1 and U2 but t ′ = 0—in this case, the results agree with those of[6] (not
shown).

8



J. Phys. A: Math. Theor. 45 (2012) 115206 M Möller et al

Finally, for finite t ′/t and non-vanishing interactions, we look at cases where U1 and U2 are
sufficiently attractive so that a trion (a bound three-particle complex) is formed, and compare
its energy against that obtained for k = 0 using a full diagonalization for a 30-site chain using
LAPACK. Typical results are shown in figures 4(c) and (d). The trion energy obtained from
LAPACK is marked by the dashed line, and is in good agreement with the location of the
lowest peak in our density of states (full line).

The few examples and results given here should suffice to validate our method.
Generalizations to more complicated cases are straightforward.

4. Conclusions

In conclusion, we have shown that the continued-fraction method can be used to calculate both
one-particle and few-particle lattice Green functions in any dimension and essentially for any
type of hopping, as long as it is finite-ranged. Our results should be useful for a multitude of
problems which require such lattice Green functions as an input to obtaining other quantities.

More generally, our method illustrates how recurrence relations linking more than three
consecutive terms can be reduced to simple recurrence relations linking only three consecutive
quantities. Since a much wider class of physics problems can be cast in such terms, we believe
that this idea will have widespread applications.
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