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We show how few-particle Green’s functions can be calculated efficiently for models with nearest-

neighbor hopping, for infinite lattices in any dimension. As an example, for one-dimensional spinless

fermions with both nearest-neighbor and second-nearest-neighbor interactions, we investigate the ground

states for up to 5 fermions. This allows us not only to find the stability region of various bound complexes,

but also to infer the phase diagram at small but finite concentrations.
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Recently, there has been considerable interest in few-
particle solutions of interacting Hamiltonians. For ex-
ample, in Ref. [1] it was shown that knowledge of the
two- and three-body solutions allows for quantitatively
accurate predictions of finite-temperature thermodynamic
quantities for many-body systems. As another example, in
the context of atomic and molecular physics, the predicted
universal three-body Efimov structures [2] have now been
seen experimentally [3], giving new impetus to their study
and work on various generalizations [4].

While the above work is for free space where particles
have parabolic dispersions, there is equally strong interest
in the lattice version of such few-body problems. For
example, while stable excitons—bound pairs composed
of an electron and a hole—appear in many materials, it is
less clear when a so-called charged exciton or trion, con-
sisting of two holes and one electron or vice versa, is stable.
That this can happen has been recently demonstrated in
GaAs quantum wells [5] and in carbon nanotubes [6].
(Note that trion theory is still mostly based on continuous
models and variational solutions, e.g., see Ref. [7].)
Studying bigger bound complexes, for example, biexciton
pairs, is the next logical step.

Few-particle bound states are relevant not only for the
materials where they appear, but also in the interpretation
of certain spectroscopic data. For instance, the role played
by bound two-particle states, leading to atomiclike multi-
plet structures in the Auger spectra of narrow band insulat-
ing oxides, is well established [8]. At low dopings, more
complicated complexes may form and leave their finger-
prints in various spectroscopic features. It is therefore
useful to be able to study relatively easily few-particle
solutions on an infinite lattice.

In this Letter we show that few-particle Green’s func-
tions can be calculated efficiently for strongly correlated
lattice Hamiltonians in the thermodynamic limit, at least so
long as the hopping involves only nearest-neighbor (NN)
sites. For simplicity and to illustrate the technique and its
usefulness, we focus here on a one-dimensional (1D)
model of spinless fermions with nearest-neighbor and
next-nearest-neighbor (NNN) interactions. However, the

method generalizes straightforwardly to higher dimen-
sions, longer (but finite) range interactions, mixtures of
fermions (including spinful fermions) and/or bosons, etc.
Such problems are of direct interest either in solid state
physics or for cold atoms in optical lattices.
For two-fermion Green’s functions (Nf ¼ 2), our

method is equivalent to that of Ref. [8] but is recast in a
simpler form which allows, in 1D, for an analytical solu-
tion for any finite-range interaction. More importantly, it
has a simple generalization for Nf > 2. We study cases

with up to Nf ¼ 5 and show that these suffice not only to

sort out the stability of few-particle bound states, but also
to infer the low density phase diagram.
Consider, then, spinless fermions on a 1D chain with

N ! 1 sites, described by the Hamiltonian

H ¼�t
X
i

ðcyi ciþiþH:c:ÞþU1

X
i

niniþ1þU2

X
i

niniþ2;

where ci removes a spinless fermion from site i located at

Ri ¼ ia and ni ¼ cyi ci. Note that this 1D Hamiltonian is
not integrable in the sense of having a Bethe ansatz solu-
tion. Because our solution is not linked in any way to such
integrability, it can be generalized to higher dimensions, as
already mentioned. To illustrate the main idea behind our
solution, we discuss in some detail the solution for Nf ¼ 2

fermions, after which we generalize to Nf > 2. Other

possible generalizations, mentioned above, are discussed
in the Supplemental Material [9].
Because the Hamiltonian is invariant to translations, the

total momentum of the pair is a good quantum number. As
a result, we work with the Nf ¼ 2 states,

jk; ni ¼ 1ffiffiffiffi
N

p X
i

eikðRiþna=2Þcyi c
y
iþnj0i;

which describe fermions at a relative distance n � 1.
We define the two-particle Green’s functions,

Gðm; n; k;!Þ ¼ hk;mjĜð!Þjk; ni;
where Ĝð!Þ ¼ ½!þ i��H ��1 with � ! 0þ and we set
@ ¼ 1. From the Lehmann representation,
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Gðm; n; k;!Þ ¼ X
�

hk;mjk; �ihk; �jk; ni
!� E2;�ðkÞ þ i�

;

where fjk; �ig are the two-particle eigenstates with total
momentum k, H jk; �i ¼ E2;�ðkÞjk; �i. Thus, this propa-
gator allows us to find the Nf ¼ 2 spectrum and also to get

information about its eigenfunctions. Its Fourier transform
Gðm; n; k; tÞ / hk;mj expð�iH tÞjk; ni is the amplitude of
probability that if initially the two particles (with total
momentum k) are at a relative distance na, they will be
at a relative distance ma after time t.

Matrix elements of the identity 1¼ Ĝð!Þð!þ i��H Þ
lead to �n;m¼ð!þ i�ÞGðm;n;k;!Þ�hk;mjĜð!ÞH jk;ni.
Since H jk;ni¼UðnÞjk;ni�fðkÞ½jk;n�1iþjk;nþ1i�,
where UðnÞ ¼ U1�n;1 þU2�n;2 and fðkÞ ¼ 2t coska2 , we

get a simple recurrence relation:

�n;m ¼ ½!þ i��UðnÞ�Gðm; n; k;!Þ þ fðkÞ
� ½Gðm; n� 1; k;!Þ þGðm; nþ 1; k;!Þ�: (1)

This is trivial to solve for an infinite chain if one realizes
that, for any m of interest, Gðm; n; k;!Þ ! 0 as n ! 1.
This is obvious if ! is outside the free two-particle con-
tinuum where eigenstates, if any, are bound and therefore
wave functions decay exponentially with n. It is also true
inside the free two-particle continuum. Even though here
the wave functions are plane waves, � defines an effective
lifetime �� 1=�. As such, Gðm; n; k; tÞ ! 0 if na is large
compared to the typical distance that particles travel within
�. Thus, the recurrence relation can be solved starting from
Gðm;Mc þ 1; k;!Þ ¼ 0 for a sufficiently large cutoff Mc.
Of course, the Nf ¼ 2 case can be solved analytically

exactly (see below). However, the idea can be used for
Nf > 2 cases, where a numerical solution is needed.

Noting that the few-particle Green’s functions become
arbitrarily small as a ‘‘relative distance’’ M (to be defined
below) increases, the recurrence relations can be solved
propagating the solution from a cutoff Mc towards small
M. Mc is then increased until convergence is reached. The
effects of� andMc on the numerical solution are discussed
in the Supplemental Material [9].

First, though, we complete the Nf ¼ 2 discussion,

which has an analytical solution (for details see [9];
we also show there how to deal with a finite-size system
in this case). At the Brillouin zone (BZ) edge, since
fðk ¼ �=aÞ ¼ 0 we find

G

�
1; n;

�

a
;!

�
¼ �n;1

!þ i��U1

;

as expected since j �a ; 1i is an eigenstate ofH with energy

U1. For any ka � �, we find

Gð1; 1; k;!Þ

¼
�
!þ i��U1 � ½fðkÞ�2

!þ i��U2 þ zðk;!ÞfðkÞ
��1

;

and for any n � 2,

Gð1; n; k;!Þ ¼ � ½zðk; !Þ�n�1fðkÞGð1; 1; k;!Þ
!þ i��U2 þ zðk;!ÞfðkÞ :

Values form> 1 can be obtained similarly. Here, zðk;!Þ is
the root of the characteristic equation of this recurrence
relation, ð!þ i�ÞþfðkÞðzþ 1

zÞ¼0, for which jzðk;!Þj<1

[9]. This shows that indeed Gð1; n; k;!Þ ! 0 as n ! 1. It
is also easy to check that inside the free two-particle
continuum, j!j< 2fðkÞ, we have 1� jzðk;!Þj � �, so
here G decays exponentially only because �> 0.
To study the two-particle spectrum, we plot the two-

particle spectral weight, A2ðk;!Þ ¼ � 1
� ImGð1; 1; k;!Þ,

in Fig. 1 for U2 ¼ 0 and three values of U1. By definition,
A2ðk;!Þ is finite at energies in the two-particle spectrum,
and its value is related to the probability to find the fermi-
ons as NN in that eigenstate. IfU1 ¼ 0, A2ðk;!Þ is finite in
the free two-particle continuum, ranging from �4t to 4t if
k ¼ 0, while at k ¼ �=a only ! ¼ 0 is an eigenstate;
hence, the � function (Lorentzian) seen here. As an attrac-
tive U1 is turned on, the k ¼ �=a peak tracks U1, and a
bound state is pulled below the continuum at nearby k
values. For U1 >�2t, this bound state exists only near
the BZ edge, while near the � point the weak attraction
shifts spectral weight to the bottom of the two-particle
continuum but is not enough to push a discrete state below
it. For U1 <�2t, the bound state becomes the low-energy
state at all k. This shows that, for certain ranges of parame-
ters, bound pairs are only stable in some regions of the BZ,
which moreover are not necessarily near k ¼ 0. It would be
interesting to investigate their effects on various response
functions.
However, hereafter we focus on the k ¼ 0 ground state

(GS). Figure 2(a) shows whether in the GS the pair is
bound or not, for U1 < 0 and U2 > 0. (Note that such

A
2(k

,ω
)

A
2(k

,ω
)

-4 -2 0 2 4
 ω/t

A
2(k

,ω
)

(a)  U
1
=0

(b) U
1
=-1.5t

(c) U
1
=-3t

k=0

k=π

k=0

k=π

k=0

k=π

FIG. 1 (color online). A2ðk; !Þ for U2 ¼ 0 and (a) U1 ¼ 0,
(b) U1 ¼ �1:5t, and (c) U1 ¼ �3t. As the NN attraction is
turned on, a bound state splits from the free two-particle con-
tinuum shown in (a). It exists at all momenta if U1 <�2t, but
only for large momenta if U1 >�2t. Here � ¼ 0:01.
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interactions, attractive at short range and repulsive at lon-
ger range, appear in systems with highly polarizable ions
[10].) For U1 <�4t a bound pair is always stable; even if
it had infinite mass, a NN pair of energy U1 is below the
minimum energy of two free fermions, of �4t. Of course,
the kinetic energy of the pair further enhances its stability
region. The dashed line in the inset shows a perturbational
estimate for t � jU1 �U2j [9].

This Nf ¼ 2 stability diagram, however, has no predic-

tive power for what happens if more fermions are in the
system. For example, if Nf ¼ 3, we expect regions where

the GS consists of 3 fermions, of a bound pair plus a
fermion, or of a bound ‘‘trion.’’ To identify these regions
we study Nf ¼ 3 Green’s functions, by direct generaliza-

tion of the Nf ¼ 2 approach. Briefly, for any n1 � 1,

n2�1, we define three-particle states,

jk; n1; n2i ¼ 1ffiffiffiffi
N

p X
i

eikRicyi�n1
cyi c

y
iþn2

j0i;

and three-particle Green’s functions,

Gðm1; m2; n1; n2; k; !Þ ¼ hk;m1; m2jĜð!Þjk; n1; n2i:
Recurrence relations for these propagators are generated
just as for the Nf ¼ 2 case. If we define a ‘‘relative

distance’’ M ¼ n1 þ n2, hopping of the outside fermions
will link Green’s functions with a given M to those with
M� 1. If the central fermion hops, one of the n1; n2 values

increases by one and the other decreases by one; therefore,
M remains the same. Thus, the equation of motion links
Green’s functions with consecutive M� 1;M;Mþ 1 val-
ues, leading to recurrence relations that can be solved in
terms of continued fractions of matrices, if we use the
insight that propagators vanish as M!1. Generalization
to larger Nf values is now straightforward [9].

In higher dimension, we need to combine the ‘‘relative
distance’’ with the ‘‘Manhattan distance’’ [11]. For ex-
ample, in 2D for Nf ¼ 3, we associate the plane wave

with the coordinates ix and iy of the ‘‘central’’ particle

for that axis. The other particles’ coordinates are ix �
n1;x; ix þ n2;x, respectively, iy � n1;y; iy þ n2;y, where

ni;� � 0, i ¼ 1; 2, � ¼ x; y. If we choose M ¼ P
i;�ni;�

then NN hopping links together only Green’s functions
with M� 1;M;Mþ 1. Thus, m particles in 2D are com-
putationally similar to 2m� 1 particles in 1D. In both
cases, 2ðm� 1Þ positive integers specify the relative posi-
tions, and M is their sum. The key observation is that the
equations of motion still group into recurrence relations
linking only quantities with M� 1;M;Mþ 1, allowing
for an efficient solution (for more details, see [9]).
To study the spectrum of theNf ¼ 3, 1D system, we plot

A3ðk;!Þ ¼ � 1
� ImGð1; 1; 1; 1; k;!Þ. This must have finite

spectral weight for ! � E2;GS � 2t, corresponding to a

continuum of states describing a fermion far away from a
pair. (If E2;GS ¼ �4t, this continuum starts at �6t and

describes 3 free fermions.) If the continuum is the lowest
spectral feature, then the GS is either a pairþ fermion or
three fermions, mirroring the Nf ¼ 2 situation. However,

if a discrete state appears below this continuum, then the
GS is a stable bound trion [9]. The stability diagram is
plotted in Fig. 2(b) and shows a region where trions are
stable, at large attractiveU1 and weak repulsiveU2. This is
expected since binding a 3rd fermion to a stable pair lowers
its energy by roughly U1 þU2, while a free fermion can
lower the total energy by at most �2t.
The fact that stable trions are found forNf ¼ 3 does not,

however, guarantee that they appear at finite concentra-
tions. Just as the pairþ fermion is unstable to trion for-
mation, trions may be unstable to bigger bound complexes,
if more particles are present. Indeed, a study of cases with
Nf ¼ 4 and 5 fermions proves that trions are actually

unstable. This is shown in Fig. 3(a) where we plot the
energy of the Nf ¼ 5 GS versus U2 (line marked ‘‘5’’) at

U1 ¼ �3:5t. The other lines show energies where a con-
tinuum could appear, e.g., E2þ2þ1 ¼ 2E2;GS � 2t is the

lowest energy of two pairs plus a fermion, E2þ3 ¼ E2;GS þ
E3;GS is the lowest energy for a pair plus a trion, etc. The

arrows indicate various dissociations. Arrow 1 shows when
a pair becomes more stable than 2 fermions (E2þ1þ1þ1 <
E1þ1þ1þ1þ1), while arrow 2 shows when a trion becomes
more stable than a pairþ fermion (E3þ1þ1 < E2þ1þ1þ1);
see Figs. 2(a) and 2(b). A trionþ fermion is unstable to
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FIG. 2 (color online). Stability diagram for (a) Nf ¼ 2 and
(b) Nf ¼ 3 fermion systems, indicating the nature of the GS. The

inset in (a) shows that bound pairs are always stable ifU1 <�4t.
The dashed line is a perturbational prediction.
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either two pairs (at larger U2) or a 4-fermion bound com-
plex (smaller U2). The boundary between the two is
marked by arrow 3 (E4þ1 ¼ E2þ2þ1). But 4-fermion bound
states are not stable either, since E4þ1 <minðE2þ3; E5Þ
(arrow 4 marks where the 5-fermion bound complex breaks
into a pairþ trion). Below it, E5 is indeed in good agree-
ment with the perturbational estimate for the energy of a
5-bound complex E5;B¼4U1þ3U2þ2t2=ðU1þ t2=U1�
2t2=ðU1þU2ÞÞ, shown by the dashed line indexed
‘‘5, bound.’’

What happens as Nf increases becomes clear if we

realize that arrows 3 and 4 point to essentially the same
U2 value. If more fermions are added, below this U2 we
expect a bigger and bigger bound complex—in other
words, phase separation occurs and the system splits into
a fermion rich and a fermion poor region. Above this, a gas
of pairs is stable (plus one trion, if Nf is odd). That this

inference is correct is verified by the following argument.
This critical value should be given by the condition that
adding two more particles to a fermion rich region (which
changes energy by about 2U1 þ 2U2, because of extra
interactions) should be energetically favorable to having
a bound pair far away. From 2U2 þ 2U1 <E2;GS we find

U2 ¼ 1:29t if U1 ¼ �3:5t, in good agreement with the
value U2 ¼ 1:3t pointed to by arrows 3 and 4.

Thus, based on these few-particles results, we can infer
the phase diagram of this model at small concentrations,
shown in Fig. 4. The dashed line shows the estimate dis-
cussed above, accurate for large U1; U2 (at smaller U1, t

comes into play since the extra fermions need not be fully
localized at the edge of the fermion rich region). If U1 >
�2:6t, the transition is from phase separation to unbound
fermions as U2 increases. This is shown, for U1 ¼ �2:5t,
in Fig. 3(b): here each bigger complex is more stable than
any smaller ones, if U2 < 0:63t (arrow).
While we are not aware of numerical studies of this

model, the good agreement with various asymptotic esti-
mates as well as with known results for spin- 12
Hamiltonians [9] supports the accuracy of our results.
This work shows that even such a simple model has a
rich behavior that can be uncovered with this method.
To summarize, we have shown how to calculate few-

particle Green’s functions on an infinite 1D chain. The
information obtained from them sheds light on the stability
of few-particle bound states. It also illustrates the dangers
of an insufficient analysis—if we stopped at Nf ¼ 3, we

would conclude that trions are stable in a large region of
the parameter space, in this model. Analysis for larger Nf

shows that addition of more particles leads to instability of
trions, and furthermore allows us to find the phase diagram
for small concentrations.
Although these results are for a 1D model, as discussed

above this method generalizes to higher dimensions if the
hopping is nearest-neighbor only. This opens the way to
study the stability of trions and biexcitons in realistic
lattice models. Such work is currently under way.
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