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Abstract

We present a microscopic model for a strongly repulsive electron gas on a 2D square lattice. We suggest that
nearest-neighbor Coulomb repulsion stabilizes a state in which electrons undergo a “somersault” in their internal
spin-space (spin-flux). When this spin-3 antiferromagnetic (AFM) insulator is doped, the charge carriers nucleate mobile,
charged, bosonic vortex solitons accompanied by unoccupied states deep inside the Mott-Hubbard charge-transfer gap.
This model provides a unified microscopic basis for (i) non-Fermi-liquid transport properties, (ii) mid-infrared optical
absorption, (iii) destruction of AFM long-range order with doping, (iv) angled resolved spectroscopy (ARPES), and (v)
d-wave preformed charged carrier pairs. We use the configuration interaction (CI) method to study the quantum
translational and rotational properties of such pairs. The CI method systematically describes fluctuation and quantum
tunneling corrections to the Hartree-Fock approximation and recaptures essential features of the (Bethe ansatz) exact
solution of the Hubbard model in 1D. For a single hole in the 2D AFM plane, we find a precursor to spin-charge
separation. The CI ground state consists of a bound vortex—antivortex pair, one vortex carrying the charge and the other
one carrying the spin of the doping hole. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Strongly correlated electron systems; High-temperature superconductivity; Topological magnetic excitations; Two-dimen-
sional antiferromagnets

1. Introduction including the Tl and Hg series. The current record

T, of 135 K (165 K under pressure) is found in the

In 1986 Bednorz and Muller [1] discovered that
the perovskite (BaLa), CuO, exhibits high-temper-
ature superconductivity, with a critical temperature
of up to 30K. Soon after, La,_,Sr,CuO, and
YBa,Cu;0,_, were found to have superconduct-
ing critical temperatures of 35 and 95 K, respective-
ly. Since then, many such compounds were found,
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HgBa,Ca, Cu;Og system. A typical phase diagram
is shown in Fig. 1. The undoped parent is an in-
sulator with long-range antiferromagnetic order.
Extremely low doping (x ~ 0.02 charge carriers
per site) leads to a complete destruction of the
long-range AFM order, and a transition to an
unusual non-Fermi-liquid metal. This unusual
metal becomes superconducting, with the transi-
tion temperature T, strongly dependent on the
doping x. The maximum T, is reached for dopings
around x = 0.15. For higher dopings the critical
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Fig. 1. Schematic phase diagram as a function of doping of
high-temperature cuprate compounds.

temperature decreases to zero, and in the over-
doped region a crossover towards a (non-supercon-
ducting) Fermi liquid takes place.

The effective two-dimensional Hamiltonian we
use to describe the electrons residing in the O(2p,,)-
Cu(3d,:_,:) orbitals of the isolated CuO, plane is
the generalized one-band Hubbard Hamiltonian

H = =Y (tjchcjp + he)+Y Vinn,, (1)
1,J,0 i,J

where c¢j, creates an electron (in the orbital
centered) at site i with spin o, t;; is the hopping
amplitude from site j to site i on the square lattice,
n = Z,,ci,ci,, is the total number of electrons at site
i, and V;; is the Coulomb repulsion between elec-
trons at sites i and j. The dominant terms are the
nearest-neighbor hopping t;; = t, and the on-site
Coulomb repulsion V; = U/2. If only these two
terms are considered, and we shift the chemical
potential by U, this reduces to the widely studied
Hubbard model.

In the undoped parent compound phase, there is
one electron per orbital, and in the absence of
interactions one would expect these compounds to
be metallic, with a half-filled conduction band. In-
stead, from Fig. 1 we see that they are insulators
with long-range AFM order. This is a strongly
correlated electron system, with a large on-site re-
pulsion term (U > t), which causes electrons to

become localized one per each orbital in order to
avoid energetically expensive double occupancy.
This obviously leads to insulating behavior, while
the antiferromagnetism is simply a perturbational
effect from the (small) hopping term [2]. However,
as the plane is doped with holes, some of the pre-
viously filled orbitals are emptied, and electrons in
nearby orbitals can freely hop into them, allowing
for charge conduction. This is also seen from the
phase diagram in Fig. 1, which shows that a very
small amount of doping x ~ 0.02 completely de-
stroys the LR AFM insulator phase, and the system
becomes metallic (or superconductor, at lower tem-
peratures). However, this metal has very unusual
non-Fermi-liquid properties. Further doping leads
to a crossover to a more conventional (but non-
superconducting) Fermi-liquid metal in the ex-
tremely overdoped region.

Understanding the non-Fermi-liquid metal
above the superconducting state is the central issue
in the cuprate physics. Some of the most striking
evidence of non-Fermi-liquid behavior is provided
by angle resolved photo-emission spectroscopy
(ARPES), which clearly shows the absence of
quasiparticle peaks in the normal state. Equally
compelling evidence is provided by resistivity
measurements (For a review of transport properties
see Ref. [3].) which reveal a scattering rate inversely
proportional to the temperature t© ~ 1/T, extend-
ing over a range of up to 700K [4-6]. In an ordi-
nary Fermi liquid, electron-electron scattering
gives a T? dependence of the relaxation rate, re-
lated to the quadratic energy dependence of the
quasiparticle lifetime 1/t ~ |¢ — er|?. This is a hall-
mark of a Fermi liquid [7]. In fact, the canonical
T* behavior is indeed observed in the extremely
overdoped region, already identified as a Fermi
liquid (For a review of optical properties see [8]).
But its absence in the intermediate doping region of
the unusual metal, combined with the absence of
quasiparticle peaks in the ARPES data clearly
show that this unusual metal is not a Fermi liquid.
Then, a natural question arises. If the charge car-
riers of the unusual metal are not the quasiparticle-
like charge carriers of a Fermi liquid, what is their
nature?

Some clues are provided by experiments. Hall
measurements in the underdoped regime tell us
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that the charge carriers are positively charged and
their density equals the doping, i.e. the hole density
(For a review of the Hall effect see [9].) (Deviations
of both the sign and the density scaling are
observed for some compounds in the overdoped
regions). Optical measurements reveal the appear-
ance, with doping, of a low-frequency Drude tail,
which suggests the existence of free, or very mobile
charge carriers [8]. These optical measurements
confirm both the anomalous 1/T scattering rate of
these charge carriers, as well as the fact that their
density equals the doping. Together, these measure-
ments suggest that each hole introduced in the
CuO, layer evolves into a mobile, positively
charged, carrier (but not a quasiparticle). However,
both types of measurements show other anomalous
behavior as well. The Hall coefficient has a strong,
1/T temperature dependence, which is very puzzl-
ing, since neither the density nor the charge of the
carriers is temperature dependent, and neither is
the Lorentz force. The optical measurements reveal
that the Drude tail is accompanied by the appear-
ance of a broad, mid-infrared band deep inside the
Mott-Hubbard gap [8]. This mid-infrared band
develops with doping, and signifies the existence of
localized levels inside the Mott-Hubbard gap. Un-
like the Drude tail which collapses below T, to
a o(w) function, this mid-infrared response persists
unchanged both above and below T.. Magnetic
measurements indicate that although the LR AFM
is completely suppressed above x ~ 0.02, strong
short-range AFM correlations persist, with a cor-
relation length roughly equal to the average dis-
tance between the holes (charge carriers) (For
a review of magnetic properties see [10]). Neutron
scattering indicates the appearance of incommen-
surate peaks in the magnetic structure factor, with
a shift from the AFM (n/a, t/a) vector varying lin-
early with doping for 0.02 < x < 0.12 and then
saturating. The four incommensurate peaks are ar-
ranged diagonally for x < 0.05 and then rotate by
45° for x > 0.05 [11]. The doping dependence of all
these features clearly indicates that magnetism is
crucial to the entire phenomenology.

More puzzling behavior appears in the supercon-
ducting state. Flux quantization clearly proves that
pairing does take place, and the unit of charge in
the superconducting condensate is 2e. ARPES and

phase-sensitive measurements have shown that the
superconducting gap has d-wave symmetry, and
this is believed to mirror the symmetry of the
“Cooper-pair” wave function to internal rotations.
Penetration depth measurements show that the
density of superfluid in the limit T — 0 scales with
doping. This means that the “Cooper-pairs” must,
in fact, be formed from the positive charge carriers
of the unusual metal, not from electrons, as in
conventional BCS theory (the density of electrons is
1 — x, not x). This underscores the need to identify
the charge carrier of the unusual metal, but leads to
another question, namely, how does strong pairing
(leading to high superconducting temperatures) oc-
cur in a system dominated by strong Coulomb
repulsion?

In this paper we describe a microscopic model
which offers simple and compelling answers to the
above questions, as well as to other puzzling fea-
tures described above. Unlike other approaches
which assume that the fundamental quantum de-
grees of freedom of the many-electron system are
conventional and that the resulting phenomenol-
ogy is an “emergent law of nature” arising from the
complexity of the system, we propose that there is
a hidden fundamental law of Nature. This funda-
mental law of nature expresses a novel dynamical
degree of freedom, namely that an electron can
perform a “somersault” in its internal space of
Euler angles (when considered as a rigid body of
non-zero volume) as the electron traverses a closed
loop in external coordinate space. The result is
a new quantum number for the many-electron sys-
tem (the eigenvalues of the spin-flux), which we
propose is as fundamental as the existence of the
spin-3 itself. We argue that the electronic somer-
sault (spin-flux) is dynamically generated through
electromagnetic interactions and in particular, the
off-diagonal part of the Coulomb repulsion be-
tween electrons. In Section 2 we introduce the
spin-flux Hamiltonian, which we propose as the
appropriate Hamiltonian describing the isolated
CuO, plane. In Section 3 we apply Hartree—-Fock
approximation (HFA) and the configuration inter-
action (CI) method to the spin-flux Hamiltonian
and we identify both the mobile bosonic charge
carrier as well as the nature and symmetry of
the strong pairing interaction between such charge
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carriers. We provide a physical justification for the
accuracy of the CI approximation and we explicitly
demonstrate this by comparison with the exact
solution of the 1D Hubbard model [12]. Finally, in
Section 4 we discuss the comparison of our model
and its results with the experimental findings and
draw some final conclusions.

2. The spin-flux model

The neglect of the dynamical consequences of
longer range Coulomb interaction (V;; = 0,if i # j),
in the generalized Hubbard model of Eq. (1), is
based on the assumption of uniform charge distri-
bution and on the Fermi-liquid theory notion of
screening of the effective electron-electron interac-
tion. However, Fermi-liquid theory fails to explain
many of the crucial features of the high-T. cu-
prates. In our description, we include the nearest-
neighbor Coulomb repulsion, which we assume is
on the energy scale of t. This has important dynam-
ical consequences in our model and cannot simply
be absorbed into the Madelung constant. In par-
ticular, it leads to the generation of spin-flux, an
entirely new type of broken symmetry in the
many-electron system, which we show leads nat-
urally to bosonic charge carriers in the form of
meron-vortices, non-Fermi-liquid behavior and
a strong attractive pairing force between holes in
the AFM background.

The concept of spin-flux is closely related to the
existence of the spin-3 particles in nature. The spin
of a physical electron may be regarded as arising
from the quantization of a classical, symmetric
spinning top [13] whose kinematical properties are
described by a set of three independent Euler
angles. These Euler angles constitute a continuous
manifold, the group manifold of SO(3). Unlike the
manifold S, (the surface of a unit sphere) describing
the orientation of a classical magnetic moment, the
group manifold of SO(3) is not topologically simply
connected. According to the axioms of quantum
mechanics any physical wave function must be
everywhere continuous and differentiable. For this
to be satisfied on a simply connected manifold, the
wave function must be single valued. Consequently
the O(3) nonlinear sigma model describes integer

No spin fl

(a)
Spin flux of n

(b)

Fig. 2. Conventional (a) vs. spin-flux (b) trajectory. In the latter
case, the spin rotates by 2r (somersault) as it encircles the path in
real space.

spins. The doubly connected group manifold of
SO(3), however, can accommodate two-valued
wave functions which are everywhere continuous
and differentiable. This leads to half-integer spins.
In order to accommodate spin-%, the O(3) nonlinear
sigma model must be supplemented with a mag-
netic monopole which is placed at the center of the
sphere S, [14,15]. The charge of this monopole
corresponds to a quantum of the third Euler angle
in the parameterization of the SO(3) group mani-
fold.

Spin-flux arises when the electron executes
a topologically nontrivial path within its internal
space of Euler angles while it traverses a closed
loop in the external coordinate space. The internal
path is one that cannot continuously be deformed
to zero and corresponds to a 2m rotation (somer-
sault) in the space of Euler angles. Another
depiction of this process (see Fig. 2) is seen by
considering distinct points within the spinning top
and following their trajectories as the electron ex-
ecutes a closed path in external coordinate space.
In a non-spin-flux circuit, the two trajectories are
unlinked, whereas in a spin-flux circuit (involving
a somersault) the two trajectories are linked. We
propose that this novel possibility represents
a hidden but fundamental Law of Nature which has
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not been considered in conventional treatments of
many-body theory. Spin-flux corresponds to a
fundamentally new quantum number in a many-
electron system and requires the extension of the
conventional many-electron Hilbert space. We sug-
gest that this simple addition (at a fundamental
level) to the dynamical degrees of freedom of inter-
acting electrons an a two-dimensional lattice leads
to a unified, microscopic explanation of a large
variety of experiments on the cuprates.

In order to describe the above physics from our
starting Hamiltonian

% = — [0 Z (CLCJ'G + hC) + Uz niTnil
(ijyo i

+ V> mn; )
gy

we introduce bilinear combination of electron op-
erators A% = cl,ot5cip, 0=0,1,2,3, for i#j
(summation over multiple indexes is assumed).
Here ¢° is the 2x2 identity matrix and
6 = (¢', 0%, ¢°) are the usual Pauli spin matrices.
The notation {i, j» means that the sites i and j are
nearest neighbors. The quantum expectation value
(> of the Af; operators are associated with
charge-currents (u=0) and  spin-currents
(u =1, 2, 3). Non-vanishing charge currents lead
to appearance of electromagnetic fields, which
break the time-reversal symmetry of the Hamil-
tonian. Experimentally, this does not occur in the
cuprates. In the following, we adopt the ansatz that
there is no charge current in the ground state
AP = 0 but circulating spin-currents may arise and
take the form Aj; = 2t,/V i4;;7,, a = 1, 2, 3, where
|4;j] = A for all i and j, and 7 is a unit vector. These
spin-currents provide a transition state to the uni-
form spin-flux mean field that we use in this paper.
In principle, non-uniform states of spin-flux may
arise, in which |4;;] has a nontrivial dependence on
i and j. One such case was discussed earlier [14,15],
in which skyrmion textures in the AFM back-
ground carry quantized units of spin-flux. In this
case 4;; is a dynamical variable. However, for the
purpose of this paper, we consider only a uniform,

static, mean-field configuration of the spin-flux.
Using the Pauli spin-matrix identity, 3o%(c%, )*
= 04 Opp, it is possible to rewrite the nearest-

neighbor electron—electron interaction terms as
mn; = 2n; — 3A4%(A%)". We neglect fluctuations in
the spin-currents, and use the mean-field factoriz-
ation to replace  AY(AY)T - {AENAL)T +
A AL Y* — (A YA Y*. Thus, the quartic near-
est-neighbor Coulomb interaction term is reduced
to a quadratic term that is added to the hopping
term leading to the effective Hamiltonian

H o= —tYy (c,Theyp +he)+UY npny. (3
<;.é> i
Here, T%; = (0,5 + i4;;7-6,4)/\/1 + A* are spin-
dependent SU(2) hopping matrix elements defined
by the mean-field theory, and t = t,./1 + 4% In
deriving Eq. (3), we have dropped constant terms
which simply change the zero of energy as well as
terms proportional to Y ;n; which simply change
the chemical potential. It was shown previously
[14-16] that the ground-state energy of the Hamil-
tonian of Eq. (3) depends on the SU(2) matrices
T" only through the plaquette matrix product
T2T23T34T*! = exp(ii- 6®). Here, @ is the spin-
flux which passes through each plaquette and 2 is
the angle through which the internal coordinate
system of the electron rotates as it encircles the
plaquette. Since the electron spinor wave function
is two-valued, there are only two possible choices
for @.If ¢ = 0 we can set T = J,5 and the Hamil-
tonian (3) describes conventional ordered magnetic
states of the Hubbard model. The other possibility
is that a spin-flux @ = & penetrates each plaquette,
leading to T'?T?3T3*T*' = — 1. This means that
the one-electron wave functions are antisymmetric
around each of the plaquettes, i.e. that as an elec-
tron encircles a plaquette, its wave function in the
internal spin space of Euler angles rotates by 2r in
response to strong interactions with the other elec-
trons. In effect, the electron performs an internal
“somersault” as it traverses a closed path in the
CuO, plane [14,15]. This spin-flux phase is accom-
panied by a AFM local moment background (with
reduced magnitude relative to the AFM phase of
the conventional Hubbard model). In the spin-flux
phase, the kinetic energy term in Eq. (3) exhibits
broken symmetry as though a spin—-orbit interaction
has been added. In the presence of charge carriers
this mean field is unstable to the proliferation of
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topological fluctuations (magnetic solitons) which
eventually destroy AFM long-range order. In this
sense, the analysis which we present below goes
beyond simple mean-field theory. The quantum
dynamics of these magnetic solitons described by
the configuration interaction (CI) method, corres-
ponds to tunneling effects not contained in the
Hartree-Fock approximation. For simplicity,
throughout this paper we assume that the mean-
field spin-flux parameters T" are given by the
simplest possible choice T'? = — 1, T?} = T3* =
T*' = 1 (for more details, see Ref. [17]). In order to
go beyond a mean-field description of the spin-flux,
these matrices may also be treated as dynamical
variables. In this paper, we go beyond mean-field
theory in describing the antiferromagnetic degrees
of freedom but restrict ourselves to a mean-field
model of the spin-flux.

The mean-field ground state of the undoped
spin-flux model is an AFM Mott insulator. It is
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Fig. 3. A comparison between the experimentally determined
E(k) quasiparticle dispersion relation, from angle resolved
photoemission studies (ARPES), for the insulating Sr, CuO,Cl,
and the HF AFM spin-flux model dispersion relation (full line)
and the HF AFM conventional Hubbard model dispersion
relation (dashed line). Three directions in k-space are shown:
(0,0) to (m, m), (r,0) to (0,0) and (r, 0) to (0, ). While the peak on
the (0,0) to (m,n) is equally well described in both models, the
mean-field spin-flux model gives a much better agreement for
the (m, 0) to (0,0) and (r, 0) to (0, w) directions. The fitting corres-
ponds to U =2.01 eV, t =0.29 eV for the spin-flux phase, and
U =198 eV, t =0.21 eV in the conventional phase. The experi-
mental results are the ARPES results of Ref. [18] (circles) and
Ref. [19] (triangles).

interesting to note that the quasiparticle dispersion
relation obtained in the presence of the spin-flux
[17] accurately recaptures the dispersion as mea-
sured through angle-resolved photo-emission spec-
troscopy (ARPES) in a compound such as
Sr,CuO,Cl, [18] (see Fig. 3). There is a large peak
centered at (m/2,m/2) with an isotropic dispersion
relation around it, observed on both the (0,0) to
(mr, ) and (0, «) to (=, 0) lines. The spin-flux model in
HFA exhibits another smaller peak at (0, /2) which
has been observed in more recent experimental
data [19,20]. The quasiparticle dispersion relation
of  the conventional Hubbard model
(T*? = T** = T = T*!' = 1) has a large peak at
(/2,7/2) on the (0, 0) to (r, ) line (see Fig. 3), but it
is perfectly flat on the (0,n) to (m,0) line (which is
part of the large nested Fermi surface of the con-
ventional 2D Hubbard model). Also, it has a large
crossing from the upper to the lower band-edge on
the (0,0) to (0, n) line. Both this dispersion relation
and the very similar one of the t-J model (see
Ref. [18]) are in contradiction to ARPES data.

3. Doping induced meron-vortex solitons
3.1. The static Hartree—Fock approximation

The HF results for the undoped AFM ground
state of the spin-flux Hamiltonian are in good
agreement with experimentally measured disper-
sion (see Fig. 3). The azimuthal symmetry of the
dispersion relations about the Fermi points plays
a key role in determining the symmetries of dop-
ing-induced magnetic configurations. This is more
straightforward to see in a simpler, continuum ver-
sion of the model, obtained by letting the lattice
constant a — 0 (see Refs. [21,22]). Since the disper-
sion relation near the Fermi point ¢ = (n/2a,nt/2a)
is isotropic, the dependence on k=K —q—
— 1V, of the continuum HF equations is such that
it preserves rotational invariance. As a result, the
2D HF equation reduces trivially to a 1D radial
equation, with a structure very similar to that of the
1D differential HF equation obtained for the 1D
Hubbard model [21,22]. Once this radial 1D
solution is found, the 2D configuration is simply
generated through a 2m rotation about an axis
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Fig. 4. Self-consistent spin distributions of a 10 x 10 lattice with
a meron-vortex in the spin-flux phase. The core of the meron is
localized in the center of a plaquette, in the spin-flux phase (in
the conventional phase, the core of the meron-vortex is localized
at a site). This excitation has a topological winding number 1,
since the spins on either sublattice rotate by 2n on any curve
surrounding the core. The magnitude of the staggered magnetic
moments is slightly diminished near the vortex core but is equal
to that of the undoped AFM background far from the core. The
hole is localized in the vortex core.

perpendicular to the 2D plane. As a result, there is
a close analogy between solutions obtained for the
1D Hubbard model and for the 2D spin-flux model,
in all our investigations [12,21-23].

In the corresponding discrete model, the relevant
doped configuration is the meron-vortex (see
Fig. 4). The doping hole is trapped in the core of
a magnetic vortex, which indeed has azimuthal
symmetry. The bound level on which the hole is
trapped can be shown [17,22] to be split from the
top of the valence band and drawn deep inside the
Mott-Hubbard gap. As a result, the meron-vortex
is a charged boson. This can be inferred by direct
inspection of Fig. 4, which shows a configuration
with total spin zero and a positive charge trapped
in its core. An argument based on the electronic
structure, identical to the one offered for the
charged bosonic domain walls of the polyacetylene,
also holds [17,21,22,24]. The parallel to the quasi-
one-dimensional 1D polyacetylene is again a reflec-
tion of azimuthal symmetry which reduces the 2D
continuum model to a 1D radial equation. Clearly,
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Fig. 5. Self-consistent spin distribution for a tightly bound
meron-antimeron pair. The meron (M) and the antimeron (A)
are localized on neighboring sites. The total winding number of
the pair is zero. The magnetic AFM order is disturbed only in
the region where the vortices are localized. The attraction be-
tween holes is of topological nature and on long length scale is
stronger than unscreened Coulomb repulsion between charges.
The doping charge is mostly localized on the two plaquettes
containing the meron and antimeron cores. The two holes local-
ized in the vortex cores are responsible for the fact that the
meron-antimeron pair does not collapse.

the isotropic dispersion about the Fermi points is
responsible for the appearance of bosonic charge
carriers. They are very unlike quasiparticle charge
carriers, which carry both spin and charge together.
Thus, one would expect a metal with such bosonic
charge carriers to have intrinsically different prop-
erties from those of a Fermi-liquid metal.

A look at the spin-configuration in Fig. 4 also
shows that this cannot be realized if cyclic bound-
ary conditions (CBC) are imposed. With them, the
self-consistent solution found in the presence of one
hole is a very different configuration called the
spin-bag, which is a rather immobile quasiparticle-
like configuration (carrying both charge + e and
spin-3) [17,23]. However, for more than one hole
added to the AFM plane, the HF ground state of
the spin-flux Hamiltonian always shows meron-
vortices created through doping, even with CBC
[17]. The simple reason for this is that while
a single isolated meron-vortex is incompatible with
CBC, meron-antimeron pairs are not (see Fig. 5 for
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a typical meron-antimeron configuration). In fact,
the nucleation of merons and antimerons in pairs
also solves another problem, related to the ener-
getic cost of creating a meron. It is straightforward
to prove that the energy of a single-meron config-
uration increases logarithmically with its size [17].
Beyond a certain (large) separation it is energeti-
cally favorable for the meron-antimeron pair to
collapse into a pair of charged spin bags. In the
conventional Hubbard model (with no spin-flux)
spin bags are favored at all separations. In the
spin-flux phase, the farther the meron is from the
antimeron, the more spins in between are rotated
by the vortices, and the excitation energy increases.
As a result, an isolated pair tends to be as closely
bound as possible. If the vortices were uncharged,
at low temperatures they would annihilate each
other. However, the holes localized in the vortex
cores lead to a very strong short-range Coulomb
repulsion which prevents the pair annihilation, thus
making the pair stable. It is worth noting that even
in the complete absence of screening, at long distan-
ces the 1/r Coulomb repulsion would be overcome
by the In(r) attraction between vortices, leading to
a stable bound pair.

To conclude, we see that even at the static HF
level, charge carriers in the spin-flux phase exhibit
bosonic nature, and a strong pairing attraction to
other charge carriers. This attraction is of magnetic
origin, arising from exchange energy lost by spins
which are no longer perfectly AFM aligned. The
importance of the bosonic meron-vortex excita-
tions becomes even more apparent when we con-
sider fluctuation and tunneling corrections to the
HF approximation. These correspond to transla-
tional motion of the charged vortices. It turns out
that charged meron-vortices have an effective mass
comparable to that of the band electron. As seen
from the CI method, they are much more mobile
than the very heavy spin-bags.

3.2. Fluctuations and tunneling: the configuration
interaction method

We now discuss how to improve the mean-field
description above. Given a complete basis of states
{l¢;>} spanning the N-body Hilbert space, the
exact N-body ground-state wave function can be

written as |¥) = Y ;04]¢); >. The coefficients {«;} are
found from solving the Schrodinger equation
AV = E|W), which reduces to a linear system of
equations Y ;# ;;0; = EY ;0;;05, for all i. Here,
Hij =Ll H\|p;> and O;; = {pi|p;» are the
matrix elements of the Hamiltonian in the complete
basis chosen and the overlapping matrix for the
basis states, respectively.

In general, the number of basis states of the
N-body problem increases exponentially with N,
and the problem becomes untractable for values of
N which are rather small. To deal with large values
of N, one is forced to truncate the complete basis
set, and only retain a smaller subset of states which
are most likely to contribute substantially in the
decomposition of the ground-state wave function.
The choice of this smaller subset is the crucial issue,
since it determines the quality of the approxim-
ation. In what follows, we describe a particular
subset which allows us to recapture certain key
features of the exact Bethe ansatz solution of the
1D Hubbard model.

Consider the set of Slater determinants generated
from the Hartree-Fock solution. Its states are
|Wury and all possible particle-hole excitations
{ala,|Pur >}, {alal a,a, |WPur )}, etc. Obviously, if
all possible combinations of occupied and empty
orbitals are considered, the set thus spanned is
a complete basis of the N-body space.

Let us now order the states in this HF basis set
according to their energies {¢p|#|p). If we are
interested in the ground state and the low-lying
excitations of the system, we only need to keep the
low-energy states of the HF basis set. This proced-
ure is, in fact, very well known for Hamiltonians
with a non-degenerate HF ground state. If only the
HF ground state and the states with one particle-
hole excitations are kept, this leads to the random
phase approximation (RPA). Besides a better ap-
proximation for the ground state than simple HFA,
the RPA enables us to find collective excitations
and the particle-hole continuum.

On the other hand, the doped HF ground states
of the spin-flux Hamiltonian are degenerate. For
instance, the meron-antimeron pair shown in Fig.
5 happens to be centered at site (10,10). It is obvious
that configurations which have the meron-anti-
meron pair centered about any other site will have
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the exact same HF energy (cyclic boundary condi-
tions are imposed). Also, if the center for the pair is
fixed at a site, there are four distinct possible ar-
rangements of the meron and antimeron about that
site, obtained by rotating the meron-antimeron
axis by 90°. Thus, for a plaquette of size N, x N,,
the HF ground state is 4N, N, degenerate. Clearly,
the minimal choice for the subset of states used to
search for the ground state of the doped system
must include all these degenerate HF ground-state
wave functions. This choice is the essence of the
configuration interaction (CI) approximation [25].
One expects these HF states to mix with equal
weight |«;|*> in the decomposition of the ground
state and low-energy states |P)> = Y M o;(¢;).
Specifically, we denote |¢;> — |Wy(n,m)) to be the
HF ground-state wave function describing a con-
figuration centered at site (n,m) of the lattice, and
with the meron-antimeron axis at an angle 0 from
the x-axis. Then, 1 <n<N,, 1<m<N, and
0 = 45°, 135°, 225° or 315°. On general symmetry
grounds one expects the ground state and the low-
lying energy states to have the general form

1P,k = ), enTomeetiOy(n, m)). (4)
n,m,0

The cyclic boundary conditions limit the vector

k to a subset of equally spaced values inside the first

Brillouin zone and J must be an integer.

Eq. (4) shows that the ground state and low-lying
energy states found within the CI method have
translational and rotational symmetry. This pro-
cedure overcomes the most glaring shortcoming of
the mean-field theory (the broken translational and
rotational invariance). Clearly, the CI wave func-
tions describe quantum dynamics of the charge
carriers. The pair is no longer pinned at one site, as
in HFA, but moves over the entire lattice. The
mobility of the pair and its preferred internal angu-
lar momentum can be obtained from the dispersion
relation E;(k) = (¥ ;(k)|#|¥;(k))>. The lowest en-
ergy band of the meron-antimeron pair obtained
for U/t = 5is shown in Fig. 6 [23]. We find that the
CI ground state corresponds to pairs of total
momentum (1/a, t/a), and which have d-wave sym-
metry, J =2. In fact, J varies throughout the
Brillouin zone as shown in Fig. 7, from pure d-wave
around the ( + m/a, + ©/a) points to pure s-wave

Fig. 6. The lowest energy dispersion band E (k) (in units of ) as
a function of the total momentum k of the meron-antimeron
pair. The momentum units are m/a and U/t = 5. For conveni-
ence, the reference energy is taken to be the static HF energy of
the self-consistent meron—antimeron pair. Quantum hopping
and rotation lowers the overall energy of the pair by 1.75¢.

s—wave

s+d

d—wave

-1 0 1
kx

Fig. 7. The rotational symmetry of the meron-antimeron wave
function as a function of the total momentum carried by the pair
(measured in units of n/a). The outside region (containing the
absolute minima points (m,n)) has d-wave symmetry (J = 2),
while the core region about the (0, 0) point has s-wave symmetry
(J = 0). The intermediary area is a mix of s + d wave symmetry.

around the (0,0) point, where a second local min-
imum exists. The large width ( = 4t) of the disper-
sion band clearly proves that the meron-antimeron
pair is a very mobile excitation. The existence of
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Fig. 8. Excitation energy, in units of ¢, for a mobile charged
domain wall (squares, dashed line) and a mobile charged spin-
polaron (squares, full line), as obtained from the CI approach.
The exact excitation energy given by the Bethe-ansatz method is
shown by diamonds. The domain-wall CI energy is in excellent
agreement with the exact BA results overt the entire U/t range,
while the spin-polaron CI energy is significantly different. For
comparison, we also show the excitation energies for the domain
wall (circles, dashed line) and the spin-polaron (circles, full line)
as obtained within HFA, proving again that the extra kinetic
energy gained by the moving domain wall is of order ¢ for most
U/t values. In contrast, the extra kinetic energy gained by the
spin-polaron is of order t2/U — 0 as U/t increases, so in the large
U/t limit there is almost no difference between the HF and CI
results for the charged spin-polaron. We conclude that the
charged domain-wall is the relevant excitation for all values of
U/t.

mobile charged bosonic merons and antimerons
thus provides a microscopic basis for the non-
Fermi liquid “parent” metal from which supercon-
ductivity emerges.

As an indication of the validity and accuracy of
the CI method, we briefly review the results of such
an analysis of the 1D Hubbard model [12]. Here,
the analog of the a charged meron-vortex is the
charged domain wall soliton which facilitates
a 7 flip from one AFM ground state to the other
AFM ground state (with all spins flipped). The
charged domain wall traps the hole on a pair of
levels that are localized deep inside the Mott-
Hubbard gap, and is a charged boson [12,21,22]
The analog of the spin-bag is the spin-polaron,
which disturbs the AFM order only locally, trap-
ping the hole in its small FM core. As a result, the
spin-polaron carries both charge and spin-i. In

Fig. 8, we show the HF (circles) and CI (squares)
energies of both the spin-polaron (full line) and the
charged domain-wall (dashed line). For the spin-
polaron, the difference between the HF and CI
energy varies as t?/U. In analogy with the 2D case,
this is the expected behavior since the spin-3 carried
by the spin-polaron localizes it on one magnetic
sublattice. On the other hand, the domain wall
lowers its energy by an amount of the order t be-
tween the HF and the CI values. This clearly shows
that the charged domain wall is a very mobile
objects, and that its dynamics must be properly
described in order to get a realistic picture. When
this is done, it is apparent that the charged domain
wall is the low-energy excitation over the entire U/t
range, and in fact its energy is in excellent agree-
ment with the exact Bethe Ansatz prediction
(shown as diamonds).

Finally, we consider the stability of the ground
state and the low-lying energy states to inclusion of
more states in the subset used to generate them.
The next meaningful enlargement of this subset is
to add to it all states with one particle-hole excita-
tion, obtained from all degenerate HF ground-state
wave functions. While this increases the size of the
subset substantially, it does not lead to a lower
ground-state energy. This is because the system is
gapped. The lowest energy particle-hole excitation
is obtained when an electron from the top of the
valence band is excited on one of the bound levels,
localized in the cores of the meron and the anti-
meron. These levels are roughly one quarter of the
way into the gap (for U/t = 5), so the states with
a particle-hole excitation have an energy of order
US more than the HF ground states. Consequently
they do not mix into the ground state. They only
influence the higher-energy states. The low-lying
excitations depicted in Fig. 6 are charge excitations,
associated with motion of the charged meron-anti-
meron pair. These are not affected by addition of
excited states in the variational subset, except at
rather high energy. But there also exist low-lying
spin-wave excitations, which are described by
adding particle-hole excited states (RPA) in the
variational subset. While it is very likely that the
nucleation of merons and antimerons in the AFM
background will alter the dispersion of the spin-
waves, it is interesting to note that low-lying charge
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and low-lying spin excitations have very different
origin. This is related to the spin-charge separation
tendency exhibited by this system.

If a single hole is added to the 2D AFM plane
and the cyclic boundary conditions are imposed,
the HF approximation leads to a spin-bag mean-
field solution for the spin-flux phase. We analyze
the translational properties of the spin-bag using
the CI method. As it turns out [23], the spin-bag is
a very immobile object. The width of its dispersion
band is of the order of t*/U, i.e. much smaller than
the ~ t bandwidth of the meron dispersion. The
reason is that the spin-bag carries both charge and
spin-3. The spin-3 only allows the spin-bag to live
on one of the magnetic sublattices. (If it were to
move to the other sublattice, its spin should flip,
and such processes are forbidden). In order to
move, a spin-bag must tunnel two sites to a sec-
ond-nearest-neighbor site, and this is a t?/U pro-
cess. On the other hand, the charged meron carries
no spin, so there are no restrictions for its motion.
It can move to a nearest-neighbor site, leading to
a t-hopping process. This suggests that when dy-
namics is properly taken into consideration within
CI, a highly mobile vortex-antivortex pair sharing
a single hole is energetically favored to the immo-
bile spin-bag. We have verified this hypothesis, and
demonstrated that an upper bound to the energy of
a singly charged vortex—antivortex pair is, indeed,
much lower than the CI energy of spin-bag [23].
The charged spin-bag solution is thus unstable to
dissociation into a highly mobile vortex—antivortex
pair, which shares the hole. When a second hole is
added, a second single-charged vortex-antivortex
pair is nucleated. However, it becomes energetically
more convenient for the two holes to become
bound to the same vortex—antivortex pair, leading
to the appearance of a meron-antimeron
pair which carries both charges (pre-formed D-
wave pair). The remaining uncharged vortex-
antivortex pair is unstable to collapse, at low
temperatures.

4. Discussion and comparison with experiments

The crucial distinguishing feature of our model is
the concept of spin-flux, the dynamical possibility

of an electron undergoing a somersault as it
traverses a closed loop. In the undoped parent
compound, this leads to dispersion relations with
isotropic symmetry about the Fermi point, in excel-
lent agreement with those measured experimentally
through ARPES. This symmetry of the dispersion
relations leads to real-space configurations which
have the same type of symmetry. In the spin-flux
model, the holes doped into the AFM plane nu-
cleate magnetic vortices and become trapped in
their cores, leading to the appearance of mobile,
bosonic, charge carriers.

In contrast, both the conventional Hubbard
model and its asymptotic limit, the t—J model,
exhibit a very large, nested Fermi surface (at the
mean-field level) in the undoped parent compound.
This Fermi surface has quasilinear 1D character,
since there is no k-dependence along the Fermi
surface. As a result, configurations stabilized by
doping exhibit the same quasi-1D character in real
space. It has been suggested they take the form of
charged stripes [26-31]. We note finally that
vortex-like configurations are unstable in the con-
ventional Hubbard model, while stripe-like config-
urations are generally unstable to the formation of
a quantum liquid of merons in the spin-flux model.
One notable exception is the commensurate case
x = 0.125, when merons and antimerons crystallize
along 1D lines, leading to the stripe-like configura-
tion observed experimentally [32], provided that
a small (3%) hopping anisotropy is included in the
model [17].

The mobile bosonic charged meron-vortices cre-
ated through doping provide a microscopic basis
for a non-Fermi-liquid behavior. They also exhibit
a very strong pairing attraction, of magnetic origin.
This pairing, which arises in a purely repulsive
electron system, leads to appearance of pre-formed
“Cooper-pairs” of d-wave symmetry. This agrees
with the experimental findings of d-wave supercon-
ductivity and the scaling of the superfluid density
with doping. The pre-formed pairs may also be
related to the observation of a pseudo-gap on the
underdoped side of the phase diagram [33-35].

Many other features of our model are in agree-
ment with experimentally observed properties of
the cuprate superconductors. Nucleation of mag-
netic vortices with doping explains a variety of
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magnetic properties, starting with complete de-
struction of the long-range AFM order for very low
doping concentration. As we can see from Fig. 5,
a tightly bound meron-antimeron pairs disturbs
the long-range AFM ordering of about 100 spins of
the lattice. For very low dopings, these pairs are far
from each other, and there are many spins on the
plane whose orientations are not affected by any
pair. Thus, most of the spins maintain the long-
range AFM order. However, as the doping in-
creases over about 2%, the areas occupied by each
meron-antimeron pairs start to overlap with those
occupied by the neighboring pairs. At this doping
the orientation of all the spins on the CuO, planes
is affected by at least one pair of vortices, and
therefore the LRO is lost. The local ordering, how-
ever, is still AFM. This picture explains the ex-
tremely low doping necessary for the disappearance
of LR AFM order, as well as the fact that the spin
correlation length is basically equal to the average
distance between holes (vortices) and does not de-
pend strongly on the temperature [10]. Each hole
carries its vortex with it, and the spins in each
vortex are correlated with each other. The correla-
tion length is thus roughly equal to the average
inter-vortex (inter-hole) distance. The nucleation of
magnetic vortices quantitatively explains the split
of the (m, 1) AFM Bragg peak into the four incom-
mensurate peaks whose positions shift with doping
[11], as observed in LaCuO and, more recently, in
YBaCuO [36]. The form factor of any given vortex
already gives rise to an apparent splitting of the
neutron scattering peak. As demonstrated in
Ref. [14], even at the mean-field level we recapture
the neutron scattering data using the HF distribu-
tion of meron-vortices. A more detailed investiga-
tion suggests that saturation [37] of the peak
splitting for x > 0.12 may be related to expansion
of the core radius of the individual vortices at
higher doping [38].

Optical behavior of the cuprates is also explained
naturally using our model. Two features develop in
the optical absorption spectra with doping: a broad
mid-infrared temperature-independent absorption
band, and a strongly temperature-dependent low-
frequency Drude tail [8]. In our model the broad
mid-infrared band is related to excitation of elec-
trons from the valence band onto the empty levels

bound in the vortex cores [17], which are localized
approximately one quarter of the way inside the
Mott-Hubbard gap. The number of localized levels
scales with the number of vortices, and inter-vortex
and spin-wave interactions lead to their broaden-
ing into the observed band. This mechanism is
similar to the one leading to a broad mid-infrared
absorption band in polyacetylene with doping [39].
(In the continuum limit, the meron-vortex in fact
creates a pair of mid-gap states in the Mott—-Hub-
bard gap [21]). The polyacetylene band is due to
electronic excitations inside the cores of the poly-
acetylene domain-wall solitons [24], which are the
topological analogues of meron-vortices [21,22].
Another strong argument in favor of this inter-
pretation is provided by photoinduced absorption
experiments [40]. If the undoped parent com-
pounds are illuminated with intense visible light,
they develop absorption bands that resemble the
mid-infrared bands of the doped compounds. Sim-
ilar behavior is observed in polyacetylene, and is
attributed to the nucleation of solitons by photoex-
cited electron-hole pairs [41].

The second component of the optical spectrum is
the Drude tail. It results from the response of the
freely moving charged vortices to the external elec-
tric field. The strong temperature dependence of
this tail is determined by the scattering mechanism
for merons (due to interactions with other merons
and spin-waves). This interpretation is also sup-
ported by the fact that the superconducting
transition leaves the mid-infrared absorption band
unchanged. Merons with internal electronic struc-
ture are still present on the planes but pair conden-
sation leads to a collapse of the Drude tail into
a d(w) response.

Finally, our model provides some understanding
of the cross-over towards the Fermi-liquid metal
in the overdoped phase. For large dopings
(0 > 0.30-0.40) the average inter-vortex spacing
becomes extremely small and the very cores of the
merons start to overlap. In this limit the Mott-
Hubbard gap is completely filled in by the discrete
levels, and the spin-flux state becomes energetically
unstable relative to a normal Fermi liquid [17].

We note, finally, that the spin-flux Hamiltonian
has essentially no free or adjustable parameters.
The choice of U/t is fixed by the experimentally
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measured size of the Mott-Hubbard charge trans-
fer gap at zero doping. All other experimental
features such as (i) the position and nature of the
mid-infrared optical absorption band, (ii) the
ARPES data and (iii) the position of the magnetic
neutron scattering satellite peaks as a function of
doping, are quantitatively described by the same
choice. More detailed comparisons with specific
experiments may require the incorporation of
specific (smaller energy scale) interactions which
are not included in this simplest version of the spin-
flux Hamiltonian.
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