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Spectral function tour of electron-phonon coupling outside the Migdal limit
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We simulate spectral functions for electron-phonon coupling in a filled band system—far from the asymptotic
limit often assumed where the phonon energy is very small compared to the Fermi energy in a parabolic band
and the Migdal theorem predicting (1 + λ) quasiparticle renormalizations is valid. These spectral functions are
examined over a wide range of parameter space through techniques often used in angle-resolved photoemission
spectroscopy. Analyzing over 1200 simulations we consider variations of the microscopic coupling strength,
phonon energy, and dimensionality for two models: a momentum-independent Holstein model, and momentum-
dependent coupling to a breathing mode phonon. In this limit we find that any “effective coupling” λeff inferred
from the quasiparticle renormalizations differs from the microscopic coupling characterizing these Hamiltonians
λ, and could drastically either overestimate or underestimate it, depending on the particular parameters and
model. In contrast, we show that perturbation theory retains good predictive power for low coupling and small
momenta, and that the momentum dependence of the self-energy can be revealed via the relationship between
velocity renormalization and quasiparticle strength. Additionally, we find that (although not strictly valid) it is
often possible to infer the self-energy and bare electronic structure through a self-consistent Kramers-Kronig
bare-band fitting; and also that through line shape alone, when Lorentzian, it is possible to reliably extract the
shape of the imaginary part of a momentum-dependent self-energy without reference to the bare band.
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I. INTRODUCTION

The many-body problem allows relatively simple inter-
actions to transform into a wide range of exciting yet often
complicated phenomena. The quasiparticle picture simplifies
these complications by grouping fundamental particles and
excitations together into quasiparticles, which themselves
behave in a more understandable manner. In this picture the
real part of the self-energy represents the energy difference
from the bare particle energy, and the imaginary part the
inverse lifetime of the combined excitation. Angle-resolved
photoemission spectroscopy (ARPES) is a well-established
tool for the investigation of such electronic systems as it
provides access to the electron-removal part of the momentum-
resolved spectral function A(k,ω),1 which is generally written
in the form

A(k,ω) = − 1

π

�′′(k,ω)[
ω − εb

k − �′(k,ω)
]2 + [�′′(k,ω)]2

. (1)

The analysis of this extremely rich data source can be both
difficult and rewarding as it depends on both the interaction
self-energy �(k,ω) = �′(k,ω) + i�′′(k,ω) as well as the
single-particle electronic dispersion εb

k (the so-called “bare
band”). A variety of approaches to analyzing this spectral
function have been utilized, and often focus on analysis of
either quasiparticle dispersions and their path through (k,ω)
space, or line shape and its implications for the structure of the
self-energy. Both methods generally cut the spectral function
into curves constant in either momentum [generating a series
of energy distribution curves (EDCs)] or energy [for a series
of momentum distribution curves (MDCs)]. In this paper,
using simulations which have no experimental limitations, we
will perform quasiparticle analysis on EDCs (which allows
the identification of a quasiparticle peak in each k slice,

thereby forming a quasiparticle dispersion ε
q

k) and self-energy
analysis on MDCs (as self-energies often show stronger energy
dependence, allowing the approximation of a constant value
over a slice of constant energy).

In quasiparticle analysis one can estimate properties such
as the dispersion’s velocity v

q

k = ∂ε
q

k/∂k, effective mass
m

q

k, where 1/m
q

k = ∂2ε
q

k/∂k2, and quasiparticle strength Z
q

k ,
where Z

q

k = ∫ q
A(k,ω)dω is the integral over the coherent

part of the spectral function (this is the quasiparticle weight
only, which in a somewhat loose terminology is often referred
to as quasiparticle coherence1). If the bare-band dispersion εb

k
is known, the renormalization of these properties can also
be calculated. This concept has been used to generate an
“effective coupling” (which we will denote λeff, but which
is often denoted simply λ in ARPES literature) in the analysis
of many complex systems, often through the so-called “mass
enhancement factor” mb

k/m
q

k = v
q

k/vb
k = Z

q

k = 1/(1 + λeff).
This factor has become a de facto standard in ARPES
analysis1–5 since, in the Migdal-Eliashberg limit after few
approximations, it is equivalent to the true dimensionless mi-
croscopic coupling found in the Hamiltonian (denoted λ here
and in theoretical literature) and is expected to manifest itself
in a variety of different measurements.6,7 However, the large
values sometimes measured for these renormalizations and
effective couplings via ARPES (see, for example, Refs. 8–11),
should raise the question of this scheme’s universal utility,12–16

and generally whether the limits implied by such analysis do
apply to all systems being measured.17–20

Another common goal of spectral function analysis is
to extract the self-energy. In most circumstances, under the
assumption of k independence of the self-energy, MDC
cuts through Eq. (1) reduce to a simple Lorentzian form,
thus allowing a measurement of �′(ω) and �′′(ω) through
ARPES.3,12,21–25 However, not only do these methods hinge
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FIG. 1. (Color online) The spectral function (a)–(c) and self-
energies (d)–(f) for the 1D momentum-independent Holstein polaron
model calculated with MA(1) for � = 50 meV and different micro-
scopic couplings, with the bare band εb

k , quasiparticle band ε
q

k , and
km(ω) path shown.

on some assumptions and/or approximations for the bare band
εb

k, but more fundamentally the problem of how momentum
dependence in �′(k,ω) and �′′(k,ω) affects this analysis
is unaddressed—even though it is known that a Lorentzian
line shape does not guarantee a momentum-independent self-
energy.26

Here we present a methodological study of established
methods and present some unique variations using one of
the most studied interactions—that of electrons and phonons.
We generate self-energies and spectral functions where the
inclusion of momentum dependence and all energy scales
are controlled using the least complicated electron-phonon
interaction models possible. However, these models lie outside
the limits of Migdal’s theorem,27 where the Eliashberg
textbook definition of (1 + λ) renormalization is expected to
be valid. Before we delve into our findings for quasiparticle
and self-energy analysis, we will first illustrate some aspects
of our chosen models and how they are simulated.

II. THE MODELS

We use single-electron addition to an empty band to
simulate photoemission from a completely filled system, at
0 K. Note that this case can be exactly mapped onto that of a
single particle added to an empty band through particle-hole
symmetry, which essentially amounts to replacing ω → −ω.
This is an ideal test case as it provides the simplest possible
description of electron-phonon coupling and is uncomplicated
by further interactions such as strong correlations between
electrons (as in, for example, Ref. 28), a Fermi sea which
would add yet another energy scale to the problem (as in,
for example, Refs. 29 and 30), or both (as in, for example,
Ref. 31). The chemical potential in our treatment is then
the top of the first electron removal state, labeled as 0
binding energy on all plots. For the momentum-independent
study we will use spectral functions and self-energies gener-
ated with the momentum-average approximation MA(1).32,33

Since MA(1) has been shown to be accurate everywhere in
parameter space,33 it will enable us to study A(k,ω) and �(ω)
over a broad range of electron-phonon coupling and phonon
energies. For the momentum-dependent study we use an ex-
tension of this approximation with variational considerations,
denoted MA(v,n).34 Although generally accurate everywhere
in parameter space, for reasons specific to this approximation,
details studied through EDC quasiparticle analysis are best
realized through MA(v,1), and MDC-based self-energy analysis
is best realized through MA(v,0). [With more terms kept exactly,
MA(v,1) should show overall improvement over MA(v,0),
however, for reasons which are not understood, it only does
so in the quasiparticle regime—conversely the continuum of
A(k,ω) below the quasiparticle band is worsened; toward
the Brillouin zone edge it is pushed further down in energy
than exact diagonalization results indicate it should be.34,35

As the MDC-based self-energy analysis uses A(k,ω) in both
the continuum and quasiparticle regime, for it we use the
lower order MA(v,0).] In all cases the spectral function remains
entirely self-consistent with the associated self-energy.

Our test case for a momentum-independent self-energy is
the simplest possible in momentum space, namely, the Holstein
polaron:36 momentum-independent coupling between a single
dispersionless phonon mode and tight-binding electrons. In
reality, however, even for the Holstein model, the self-energy
is weakly dependent on momentum, which can be seen
at the MA(2) level of approximation.33 We overcome this
by choosing the momentum-independent self-energy from
the MA(1) level in order to see how well these methods
work for a truly momentum-independent self-energy. For
the strongly momentum-dependent self-energy study we will
model coupling to a single optical mode where the phonons
live on half-integer lattice sites in between the electron sites
and modify the on-site energy of their neighbors. In two
dimensions (2D) this describes lattice vibrations in a CuO2-like
plane, where the motion of the O ions is the most important
vibrational degree of freedom; this has been the topic of many
ARPES studies.10,21–23 Throughout the paper we will refer to
this as the breathing-mode model.

We may write both these models in the following form in
momentum space:

H =
∑

k

εb
kc

†
kck + �

∑
Q

b
†
QbQ

+
∑
k,Q

gQ√
N

c
†
k−Qck(b†Q + b−Q). (2)

The terms describe, in order, an electron with dispersion
εb

k = −2t
∑D

i=1 cos(kia) in D dimensions, an optical phonon
with energy � and momentum Q, and the on-site momentum-
dependent electron-phonon coupling gQ [for N sites with
periodic boundary conditions; c

†
k (ck) and b

†
k (bk) are the

usual electron and phonon creation (annihilation) opera-
tors]. For the Holstein case gQ ≡ g is a constant, leading
to a dimensionless coupling λ ≡ g2/2Dt �, the ratio be-
tween lattice deformation energy −g2/�, and free-electron
ground-state energy −2Dt . For the breathing mode we use
gQ ≡ −i

√
2g

∑D
i=1 sin(Qia/2), which has an average value

of 〈|gQ|2〉 = g2 across the Brillouin zone, allowing us to keep
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FIG. 2. (Color online) (a) A(k,ω) calculated for the momentum-independent Holstein self-energy in 1D with MA(1) for � = 50
meV and λ = 0.5; the quasiparticle dispersion ε

q

k , perturbation theory (about k = 0) prediction ε
pert
k , and bare band εb

k are also shown.
(b) Quasiparticle (vq

k ), perturbation theory (vpert
k ), and bare-band (vb

k ) velocities, as well as (c) corresponding inverse masses 1/m
q

k , 1/m
pert
k , and

1/mb
k according to the definitions vk = ∂εk/∂k and 1/mk = ∂2εk/∂k2. (d) Momentum-dependent quasiparticle renormalization as obtained

from vb
k /v

q

k , m
q

k/mb
k , as well as the inverse quasiparticle strength 1/Z

q

k , where Z
q

k = ∫ q
A(k,ω)dω is the quasiparticle-only integrated spectral

weight; in the inset, these quantities are compared near k = 0 to the renormalization factors �/Wq and (1 + λ), obtained from quasiparticle
bandwidth Wq (defined as the energy difference between top and bottom of the quasiparticle band) and dimensionless coupling λ = g2/2t � as
well as the perturbation theory prediction for mass and velocity renormalizations (shown with the same line style, but which can be distinguished
by their proximity to the quasiparticle curves). In subsequent figures (Figs. 3–5) the quantity plotted is the effective coupling λeff, which would
be implied by these renormalizations in the Migdal limit, which simply amounts to subtracting 1 from the renormalization. (e)–(h) demonstrate
similar traces for a momentum-dependent self-energy from coupling to a single breathing-mode in 1D; here λ = 〈|g|2〉/2t � is the average of
the coupling across the Brillouin zone. The noise is due to the finite simulation grid and subsequent line-shape fitting; slight variations in peak
position are enhanced by taking the derivative numerically and therefore most visible in m

q

k .

the same dimensionless coupling. [In most implementations,
the coupling is found via a scattering integral around the
Fermi surface,6 which for the breathing-mode model would
be zero at all coupling strengths. We take the Brillouin
zone as a sensible alternative in this case (the choice is
irrelevant for the momentum-independent Holstein coupling).]
For this paper we set a = h̄ = 1 and t = 50meV, such that the
one-dimensional (1D) bandwidth is 200 meV and the Brillouin
zone is 2π Å−1 wide. Also note that an additional constant
1 meV full width at half maximum (FWHM) Lorentzian
broadening is used, similar to an impurity scattering, to allow
the numerical resolution of the sharpest features in A(k,ω).

The spectral function calculated with MA(1) for the Holstein
problem in 1D with � = 50 meV and λ = 0.1,0.5,1.0 is
presented as a false color plot in Figs. 1(a)–1(c), along with
the path of peak maxima measured through MDCs [km(ω)]
and EDCs (εq

k ) compared with the bare-band dispersion εb
k .

In Figs. 1(d)–1(f) we present the real [�′(ω)] and imagi-
nary [�′′(ω)] parts of the self-energy for this momentum-
independent model. Here each ε

q

k is a true (and the lowest)
pole of the Green’s function (it has zero width, hence an
infinite lifetime), and is only resolved numerically owing to
the impurity scattering inserted in the energy direction. One

can see from Eq. (1) that the peak width should go roughly
as �′′(k,ω), and it is reassuring to see in Figs. 1(d)–1(f) that
the imaginary part of the self-energy is indeed zero near ε

q

k .
The pole structure ε

q

k is also distinct from that of km, the
path of peak maxima observed during MDC analysis; not only
are they fundamentally different (as one is a function of ω

and the other of k), but the path of peak maxima observed
when cutting A(k,ω) in energy versus momentum will not
necessarily overlap, as has already been noted.4,37

For small couplings [Fig. 1(a)] most of the spectral weight
remains along εb

k , with only a small feature formed at energy
� below the top of the band. With experimental resolution
such a feature might appear only as a “kink” in a quasi-
particle dispersion, however, from looking at the self-energy
[Fig. 1(d) ] one can see that a distinction between εb

k and
km(ω) should be made at this feature. The lowest pole, where
�′′(ω) ≈ 0 and which we will identify as the quasiparticle,
only exists between the top of the band and �. This pole forms
a narrow dispersion ε

q

k of bandwidth ∼�, although for k near
the zone edge the electron spectral weight is very weak due to
it having significant phonon character. The km(ω) path of MDC
peak maxima, however, does not follow this quasiparticle
dispersion but instead carries on close to the original bare
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FIG. 3. (Color online) Effective coupling λeff (as would be
interpreted in the Migdal limit from the renormalization parameters
defined as in Fig. 2) plotted vs the true dimensionless coupling
λ = 〈|g|2〉/2t �, where g is a constant for the Holstein model
(a), and gQ ≡ −i

√
2g sin(Qa/2) for the breathing-mode model (b).

Also shown, in the inset only, are the predictions for observed effective
coupling found via the mass renormalizations in perturbation theory
[Eqs. (3) and (4)] for the low-coupling regime at k = 0. Note that
the noise in v and 1/Z at k = ki originates from the numerical
determination of the inflection point ki .

band εb
k into what we will identify as the continuum due to its

broader structure and finite �′′.
As the coupling is increased [Figs. 1(b) and 1(c)], this

distinction becomes increasingly more evident; the quasipar-
ticle band gains spectral weight toward the zone boundary
and becomes more well defined. Also its bandwidth narrows,
becoming less than � as the quasiparticle mass increases and
the quasiparticle velocity decreases. At the same time the
spectral weight in the continuum becomes more spread out
at deep energies, and new quasiparticlelike features begin to
appear at the top of the continuum. At very large coupling
(not shown) these additional features and the quasiparticle
will eventually form a ladder of states with flat dispersions,
although this coupling regime is well beyond the scope of this
paper.

III. QUASIPARTICLE ANALYSIS

As can be visualized from Fig. 1, quasiparticle renormal-
izations do increase as the microscopic coupling increases.
This monotonicity has led to widespread acceptance of
measuring coupling through the quasiparticle mass, velocity,

or strength renormalizations observed with ARPES, often
without reference as to whether or not the system should be
expected to fall in the Migdal-Eliashberg framework. In this
section we use our simple models to demonstrate that this
scheme is not universal, and to make other observations, by
performing quasiparticle analysis as is typically done with
ARPES data (Fig. 2) on ∼1200 generated spectral functions.
These allow us to explore a wide range of couplings (Fig. 3),
parameters (Fig. 4), and different dimensionality (Fig. 5)
on models which provide both momentum-dependent and
momentum-independent self-energies. Following a discussion
of these results we will follow the mass renormalization
behavior as λ → 0 for k ∼ 0 in detail through perturbation
theory [see Fig. 6 and Eqs. (3) and (4)], the predictions for
which are also plotted in Figs. 2 and 3 for comparison.

In order to perform quasiparticle analysis we generate
an entire spectral function for each combination of the pa-
rameters: model, dimensionless coupling λ = 〈|g|2〉/2Dt �,
phonon energy scale �/2t , dimensionality D, and (for 2D
and 3D) the desired cut through momentum space. For all
simulations the form of the bare band is not changed and the
hopping is set to a constant of t = 50 meV to give physically
familiar values, a bandwidth of 200 meV in the 1D case.
[To consider other bandwidths one should simply scale the
bandwidth, phonon energy, and coupling together as seen in the
Hamiltonian, Eq. (2)]. On each of the ∼1200 generated spectral
functions the quasiparticle dispersion is found by fitting a
Lorentzian peak with linear background to each EDC within
the quasiparticle regime. The inclusion of a linear background
allows the exclusion of any spectral weight from the continuum
which bleeds in (a problem especially at low couplings and
high dimensions). We illustrate this analysis in Fig. 2, where
we present the spectral function A(k,ω) for a midrange
coupling λ = 0.5 and phonon energy � = 50 meV for both
the Holstein and breathing-mode models as well as disper-
sions found from the Lorentzian fits ε

q

k , perturbation theory
prediction ε

pert
k , and the bare electronic structure εb

k [Figs. 2(a)
and 2(e)]. Also shown are the velocities [vq

k , v
pert
k and vb

k in
Figs. 2(b) and 2(f)], inverse masses [1/m

q

k , 1/m
pert
k and 1/mb

k in
Figs. 2(c) and 2(g)], the corresponding renormalization ratios
vb

k /v
q

k , mq

k/mb
k and their perturbation theory predictions, along

with the inverse quasiparticle strength 1/Z
q

k and bandwidth
renormalization �/Wq [Figs. 2(d) and 2(h)—see caption for
definitions]. In Figs. 2(a)–2(d) we present the results for the
Holstein model (with a momentum-independent self-energy),
while Figs. 2(e)–2(h) refer to the breathing-mode coupling
(with a momentum-dependent self-energy).

Figures 2(d) and 2(h) show that the velocity, mass, and
spectral weight renormalizations are all functions of mo-
mentum, which raises concerns if one would compare them
to the bandwidth renormalization �/Wq , or an “expected”
renormalization factor of (1 + λ), which are both constant.
Although they do cross at certain values of k, this is merely
accidental, and none match at the top of the band—our “Fermi
surface.” More problematic is that the mass renormalization
must necessarily contain a divergence if the inflection point of
εb
k is different from ε

q

k , where 1/m
q

k vanishes (emphasized
by the horizontal dashed line). Similarly, in the case of
momentum-dependent coupling [Figs. 2(e)–2(h)], it can be
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FIG. 4. (Color online) Effective coupling λeff (as would be interpreted in the Migdal limit from the renormalization parameters defined
in Fig. 2) from the Holstein model (a)–(c) and breathing-mode model (d)–(f) plotted vs the true dimensionless coupling λ = g2/2t � for a
range of phonon energies � labeled in meV. In (b) and (c) those from multiple renormalization parameters (which lie directly on top of each
other) are all plotted, whereas in (e) and (f) those from inverse quasiparticle weight do not fall on any other curve and are therefore omitted
for clarity. The slope at λ = 0 in (b) and (e) is the quantity plotted in Fig. 6. Note that the noise in (c) and (f) originates mostly from the
numerical determination of the inflection point ki , while in (a) and (d) it stems mostly from variations fitting the quasiparticle peak location at
high momentum where it is has less weight.

seen that the quasiparticle dispersion ε
q

k is not even monotonic,
causing another divergence when v

q

k vanishes in the middle
of the dispersion (this nonmonotonic dispersion is a direct
consequence of the structure of the polaronic cloud, which
causes a larger second-nearest-neighbor hopping, and is
discussed at length in Ref. 35). Due to this momentum
dependence, any estimation of λ drawn from vb

k /v
q

k , mq

k/mb
k , or

1/Z
q

k would depend heavily on the momentum chosen; and if
either of vb

k /v
q

k or m
q

k/mb
k were used close to their divergences,

the estimated value could be off by an unlimited amount. Even
�/Wq , although constant in k, does not match the value of
(1 + λ) for either the momentum-independent or momentum-
dependent case. From Fig. 2 we draw the conclusion that none
of the renormalization quantities gives a good direct estimate
of the dimensionless coupling λ = 〈|g2|〉/2t�. Further we
find that, with the exception of the quasiparticle strength and
velocity renormalization in the Holstein model only (which
we will return to), the renormalizations do not match even
each other—even though the models were kept as similar
and simple as possible. This indicates that making even
qualitative comparisons of “coupling” from experiments on
different materials (or even different experiments on the same
material) through these renormalization parameters may not be
meaningful. However, modeling of the parameters in question
from the original Hamiltonian via perturbation theory might be
a start, as these results show much closer agreement near k = 0

despite the relatively high (for perturbation theory) coupling
(we will return to discuss perturbation theory later).

Despite their differences from each other and their mo-
mentum dependence, however, these renormalizations do
monotonically increase as the microscopic coupling increases
(as previously observed in Fig. 1), which naturally leads one
to wonder how, precisely, these quantities scale with λ as well
as � in our different models, so that one might be able to
capture the trend if the material and measured quantity is
held constant—for example, in an experiment performed as
a function of doping, if that doping does not cause structural
distortions. In Fig. 3 we will follow the effective coupling
λeff (which is simply the observed renormalization minus 1)
that each of these renormalization quantities would predict
using the Migdal-Eliashberg framework as a function of λ, as
well as renormalizations found using the perturbation theory
results about k = 0 [Eqs. (3) and (4)], for both momentum-
independent [Fig. 3(a)] and momentum-dependent [Fig. 3(b)]
self-energies. In Fig. 4 we plot a selection of these quantities
in the same fashion, for a range of phonon energies. For the
momentum-dependent quantities we must choose a k value:
We plot vb

0/v
q

0 , m
q

0/mb
0, and 1/Z

q

0 at k = 0 (our Fermi surface),
as well as vb

ki
/v

q

ki
and 1/Z

q

ki
at the inflection point k = ki of the

quasiparticle band ε
q

k , where m
q

ki
/mb

ki
diverges.

In Fig. 3 we find that the predictions from all quantities
scale monotonically with the microscopic coupling and are
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FIG. 5. (Color online) Effective coupling λeff (as would be inter-
preted in the Migdal limit from the mass and velocity renormalization
parameters defined in Fig. 2) from the Holstein model and plotted
vs the true dimensionless coupling λ = g2/2Dt � for different
dimensionalities and high-symmetry cuts. Note that the noise in v

and 1/Z at k = ki originates from the numerical determination of the
inflection point ki .

concave up. In the low-coupling regime (below approxi-
mately λ = 0.3) the perturbation theory results match the
simulations—however, nowhere does λeff match λ from the
Hamiltonian. At small coupling values, using this model, many
renormalization quantities would drastically underestimate
the true microscopic coupling, by a factor ranging from
infinite (�/W near λ = 0 where it is not renormalized in the
Holstein model) to ∼6 (1/Zki

near λ = 0.1, breathing mode).
Conversely, at larger coupling values (λ ∼ 2) all quantities
would overestimate the true microscopic coupling, with factors
ranging from ∼4 (�/W , Holstein) to ∼22 (vb

ki
/v

q

ki
, breathing

mode). We also find that, depending on the coupling or model,
the relative renormalization strength of quantities changes—
for the momentum-independent model �/W is renormalized
the least, whereas in the momentum-dependent model 1/Z

q

0
shows the least renormalization. This indicates, yet again,
that comparing different materials via renormalizations is not
feasible, nor is comparing different renormalizations on the
same material without a detailed model. We note again that,
in the Holstein model only, quasiparticle strength and velocity
renormalization are identical for all couplings at both k = 0
and k = ki (as previously seen in Fig. 2, where they are
identical at all momenta).

In Fig. 4 we follow the same quantities for a variety
of phonon energies, allowing � to vary from 1/16 to 3/4
of the bare-band width for both models (although inverse
quasiparticle weight is omitted from the breathing-mode plots
for clarity). First we note that there are some qualitative
similarities, but just as many differences. In all these 1D
cases the concavity increases as phonon energy decreases,
so that by the midcoupling regime (λ ≈ 1) we recover the
expected dependence—phonons, which are easier to excite
(require less energy), renormalize the band more. However,
in the low-coupling regime we do not find this dependence
[later seen again in Fig. 6 and in agreement with Eqs. (3)
and (4)]. For both models the bandwidth [Figs. 4(a) and 4(d)]
shows the opposite behavior for low coupling, with a transition
near λ = 0.8. Still considering the low-coupling regime, mass

and velocity renormalizations show little dependence on the
phonon energy for the breathing-mode model, yet strong
dependence in the Holstein case. Again we find that the
renormalizations and their corresponding effective couplings
vary widely from each other, and depend on the model and
parameters chosen—sometimes in counterintuitive ways.

The final parameter to be varied is dimensionality, which
we explore briefly with Fig. 5 for the Holstein Hamiltonian
in the low-coupling regime only. Here we find that for a
fixed dimensionality and phonon energy where � ∼ t the
renormalizations as a function of λ look qualitatively similar.
The various renormalized quantities increase monotonically
yet remain distinct from the microscopic coupling as well
as each other (with the exception of quasiparticle strength
and velocity renormalization which are again the same), with
details that depend on phonon energy and dimensionality. We
feel it is important to note, however, that at larger couplings
not explored here other studies on the dynamics of the
Holstein (and momentum-dependent Su-Schrieffer-Heeger)
models have found more complicated behavior in higher
dimensions, where a critical coupling value marks a drastic
change in quasiparticle properties, which is most prominent as
� → 0.38–41 However interesting, this type of behavior would
not simplify quasiparticle renormalization analysis on such a
system and is not investigated here.

So far we have shown that, while the slope may not be 1,
the renormalization curves could all still be reasonably well
approximated as linear in λ in the very low-coupling regime
and that perturbation theory makes an excellent prediction
for them near k = 0. This allows us to follow this slope
more continuously through parameter space with perturbation
theory than by simulating even larger numbers of spectral
functions. It is worth noting that in the classic implementation
of the (1 + λ) scheme (see Ref. 7), perturbation theory is
discussed but dismissed as a possible avenue due to the
resulting corrections being too large for perturbation theory to
be valid. However, in that instance, some approximations are
made to ease completion of the integrals which eliminate the
possibility of the arbitrarily small couplings we have used here.
In our case the lowest nonzero order in the phonon-electron
interaction term from Eq. (2) is the second, and in 1D we find
that for both models it is possible to complete the integrals
without further approximation. In the Holstein case the energy
dispersion should be modified from εb

k = −2t cos(ka) to

ε
pert
k ≈ −2t

⎛
⎝cos(ka) + λ

�
2t√(

cos(ka) + �
2t

)2 − 1

⎞
⎠ , (3)

which agrees with the results calculated for the quasiparticle
residue at k = 0 in Ref. 42. For the breathing-mode model we
find that the dispersion becomes

ε
pert
k ≈ −2t

[
cos(ka) + λ

�

2t
F

(
�

2t
,k

)]
,

(4)

F
(

�

2t
,k

)
≡ cos(ka) + sin2(ka) − �

2t
cos(ka)√[

cos(ka) + �
2t

]2 − 1
.
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This demonstrates that, at the very least, we should
not expect the renormalizations to depend solely on the
dimensionless coupling λ = g2/2t �, but also on the other
relevant energy scale in the problem—the ratio of phonon
energy to bandwidth. By taking derivatives of these dispersions
we can also find the predicted mass and velocity renormal-
izations. In Fig. 2 we plot the predicted dispersion, deriva-
tives, and renormalizations contrasted against the simulated
spectral function and find close but not perfect agreement
for both models near k = 0 (but failing at large momenta),
despite the relatively high coupling (λ = 0.5). As seen in
Figs. 3 and 6 near k = 0 for vanishing λ there is perfect
agreement within our measurement accuracy; perturbation
theory begins to show signs of failure near λ ≈ 0.25. In higher
dimensions we did not complete the integrals exactly but
instead used the VEGAS Monte Carlo integration algorithm
to evaluate them numerically.43–45 Using this routine for
all dimensionalities allowed us to validate the results by
comparing them to these known solutions for 1D for both
models and the results found in Refs. 38 and 45 for the Holstein
model in 1D and 2D, where they show perfect agreement (once
corrected for a slightly different definition of λ in 2D).

In Fig. 6 we show how the renormalization with the dimen-
sionless coupling parameter λ near k = 0, λ = 0 (and hence
the observed effective coupling λeff) varies as a function of the
other energy scale �/2t for both models in 1D, 2D, and 3D,
and how this matches nearly perfectly against measurements
of the same quantity on the simulations. Interestingly, despite
spectral functions which have outwardly similar characteristics
[as seen, for example, in Fig. 2(a) versus Fig. 2(e) or Fig. 10
versus Fig. 8], we find a drastic difference in how the actual
renormalizations vary with phonon energy depending on the
model, and that neither model would be well approximated by
a λeff = λ scheme, which is shown as the dashed line along 1.
The 1D Holstein model shows a perhaps expected dependence:
Phonons which require very little energy to excite have a
dramatic effect on the electronic renormalization (blowing up
as � → 0), but as the phonon energy increases, the mode has
progressively less effect. In the 2D case, however, we find
very limited dependence on phonon energy with a curve that
is almost flat and could therefore be rescaled to match if λ was
chosen to be defined appropriately. In 3D we find the opposite
of the 1D case whereby the renormalization vanishes as � →
0. These very different limits are directly related to the bare-
electron density of states (DOS) at the band edge, and its strong
dependence on dimensionality.38 In all dimensions we find
that the renormalization is isotropic (as one might expect from
an isotropic coupling) and that it asymptotically approaches
a similar value for large phonon energies—reminiscent of
a renormalization which depends solely on λ, if only for
�/2t 
 1. In stark contrast, however, the more realistic
breathing-mode model shows entirely different behavior. For
all dimensionalities the overall functional form is similar for
� → 0, where mass renormalizations vanish. This low-energy
behavior may be expected as for weak coupling and energies
close to k = 0 in the bare band, the electron couples mostly
to q ≈ 0 phonons; and in this model such coupling vanishes,
g(q → 0) → 0. As the phonon energy increases, however, we
discover that the renormalization is anisotropic with stronger
renormalization along the diagonal cut (as may be expected for

(000-π00)(000-πππ)

(00-π0)(00-ππ)

(0-π)

0

1

2

(000-π00)

(000-πππ)

(00-π0)

(00-ππ)

(0-π)

0 1 2
0

1

2

Phonon energy (Ω/2t)

(a)

(b)

λ e
ff

  /
   

 λ
  a

t k
=

0,
 λ

=
0

Breathing Mode
Pertubation Theory
MA(v,1) Simulations

Holstein Model
Pertubation Theory
MA(1) Simulations

λ e
ff

  /
   

 λ
  a

t k
=

0,
 λ

=
0

FIG. 6. (Color online) Rate of change in observed effective
coupling λeff per change in true dimensionless coupling λ defined
as ∂λeff/∂λ|k=0,λ=0 (where λeff ≡ m

q

k/mb
k − 1 is as predicted by

perturbation theory and measured from simulated spectral functions
and λ = 〈|g|2〉/2Dt �) plotted as a function of the phonon energy
for (a) Holstein model and (b) coupling to a breathing mode. If the
Migdal limit holds this derivative would be a constant, 1, for all values
of �/2t . For D > 1 cuts from the 	 point to both the corner and face
of the Brillouin zone were considered, as labeled. Vertical error in the
results from simulated spectral functions is comparable to symbol size
and results from approximating the slope at λ = 0 from the finite data
points in Figs. 4 and 5, as well as similar simulation sets not shown.
Uncertainty in the perturbation theory results stems from the numeric
Monte Carlo integration used to determine the perturbation energies,
taken from the distribution of independent subsets of total points
evaluated, and is higher for nondiagonal cuts due to the narrower
bandwidth in that direction. The curves predicted by Ref. 38 for the
Holstein Model in 1D and 2D are not shown as they would be hidden
by symbols, but fall exactly onto the perturbation theory results.

an anisotropic coupling) and a coupling which gets stronger as
dimensionality increases (opposite the Holstein case). We also
find that the renormalizations do not asymptotically approach
any fixed value for large phonon energies, as they did for the
Holstein case.

Overall we find that there is much variability in quasiparti-
cle analysis, to the point that one cannot make a general rule
about renormalizations in this regime. There are, however,
two common threads. First, for both our models, perturbation
theory works in the low-coupling regime: It correctly predicts
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FIG. 7. (Color online) Equations (8) and (10) described diagram-
matically for a momentum-independent self-energy. (a) is a false color
plot with the bare band (εb

k ) and path of peak maxima (km path) shown
in addition to an example MDC cut at ω̃ and the peak maximum
location for that cut [km(ω̃)]. (b) The cut through momentum of
A(k,ω) at constant energy ω̃, observed to be a Lorentzian with a peak
maximum located at km(ω̃), a HWHM 
km(ω̃), and an area A0(ω̃).
These line-shape properties are related to the self-energy at ω̃ through
the bare band evaluated at km through Eq. (10).

the quasiparticle band structure near k = 0 for all combinations
of parameters tested, although it fails at higher momenta (as
seen in Fig. 2). The second, and perhaps more interesting,
hints at something which may be quantitatively gained through
quasiparticle analysis—without even a more detailed model
on which to attempt perturbation theory or other tools. In
Figs. 2–5 one observes that, in the momentum-independent
case only, vb

k /v
q

k and 1/Z
q

k lie precisely on top of each
other for all values, and match m

q

k/mb
k at k = 0. Although

the velocity and mass renormalizations at k = 0 are simply
a consequence of derivatives following each other near an
extremum, the velocity renormalization, and quasiparticle
strength have implications for the structure of the self-energy,
as was previously noted in Ref. 20 and is discussed in greater
detail now.

By definition, the Green’s function is

G(k,ω) = 1

ω − εb
k − �(k,ω) + iη

. (5)

In the infinite lifetime quasiparticle regime the self-energy
should be purely real, with any broadening coming solely
from the small impurity scattering η. We may then identify
the implicitly defined quasiparticle dispersion as ε

q

k = εb
k +

�(k,ω)|ω=ε
q

k
and, since we are interested in an EDC, expand

the self-energy about ω = ε
q

k to first order in energy. Taking
−1/π times the imaginary part yields the spectral function

A(k,ω) ≈ 1

π

η

η2 + (
ω − ε

q

k

)2
(

1 − ∂�(k,ω)
∂ω

∣∣
ω=ε

q

k

)2 . (6)

We can see that, cut along energy in the quasiparticle regime,
the spectral function will be a Lorentzian at εq

k with width given
by η and with weight Zk = 1/(1 − ∂�(k,ω)

∂ω
|ω=ε

q

k
). This relation-

ship between quasiparticle weight and the energy derivative of

the self-energy is often derived, and usually associated directly
with the success of an effective coupling scheme,6,7 but we
do not make that association here. Velocity renormalization
is simply the ratio of momentum derivatives of the bare vb

k

and quasiparticle v
q

k = vb
k + ∂�(k,ω)

∂ω
|ω=ε

q

k
v

q

k + ∂�(k,ε
q

k )
∂k

bands,
which reduces to

vb
k

v
q

k

= 1

Zk

− ∂�
(
k,ε

q

k

)
∂k

1

v
q

k

. (7)

We see that for momentum-independent self-energies the
velocity renormalization must follow the inverse spectral
weight. This means that the renormalization quantities can
be used to conclusively check the momentum dependence of
the self-energy, in the quasiparticle regime. Whether or not the
self-energy is momentum-dependent is of great importance to
MDC self-energy analysis, on which we focus in the rest of
the paper.

IV. SELF-ENERGY ANALYSIS

Since quasiparticle analysis fails to reveal the true micro-
scopic coupling through renormalizations, we look toward
other options for spectral function analysis. In this section we
describe how it is possible to estimate the self-energy through
the analysis of MDC line shapes. We will begin, for simplicity,
with a description for momentum-independent self-energy and
move on to describe the implications of momentum depen-
dence on the procedure. Cases of a momentum-independent
self-energy can be verified through quasiparticle analysis; as
seen in Eq. (7) the overlap of vb

k /v
q

k and 1/Z
q

k is only possible
when the self-energy is momentum independent along the
quasiparticle dispersion. Although the quasiparticle dispersion
and the path of MDC peak maxima where MDC analysis is
carried out may vary, in practice they are often very close
in the quasiparticle regime. One must always keep in mind
that although a momentum-independent self-energy causes a
Lorentzian MDC line shape, Lorentzian line shape alone is not
sufficient to conclude that �(k,ω) = �(ω).26

In cases where the self-energy is momentum independent
we may analyze A(k,ω) in terms of MDCs at constant energy
ω = ω̃, where the self-energy may then also be considered a
constant. Under this condition, as long as εb

k can be linearized
in the vicinity of the MDC peak maximum observed at k = km,
the MDC line shape will be Lorentzian. By Taylor expanding
εb
k about a MDC peak maximum at k = km, i.e., εb

k = εb
km

+
vb

km
· (k − km) + · · · , ignoring higher-order terms (which must

be negligible if the curve appears Lorentzian), and noticing that
εb
km

+ �′
ω̃ − ω̃ = 0 will implicitly define the observed peak

maximum, we can rewrite Eq. (1) as

Aω̃(k) � A0

π


km

(k − km)2 + (
km)2
, (8)

with


km = −�′′
ω̃/vb

km
= HWHM,

(9)
A0 = 1/vb

km
=

∫
Aω̃(k)dk.
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Here 
km is the half width at half maximum (HWHM) of a
Lorentzian of weight A0. For each constant energy cut ω = ω̃,
the observed peak maximum is labeled km. The self-energies
are then easily found as

�′
ω̃ = ω̃ − εb

km
,

(10)
�′′

ω̃ = −
kmvb
km

.

One must be careful visualizing the relationships; although
a simple picture might be that the peak, whose width scales
with the imaginary self-energy and band velocity, has been
“pushed up” by the real self-energy to its observed location
at ω̃, one must remember that these quantities are defined
implicitly and evaluated at different locations in the (k,ω)
plane: the self-energy is evaluated at (km,ω̃) and the bare band
at (km,εb

km
). Of course, these implicit definitions are no trouble

if you simply wish to observe A(k,ω) and not calculate it based
on this simple approximation. These relations are illustrated
graphically in Fig. 7.

These relationships work exactly where they are applicable:
Namely, when the self-energy is momentum independent, km

is far from a band edge (where vb
km

must vanish), where the
peak shape is truly Lorentzian, and when the peak width is
narrow enough that a first-order expansion of εb

k is appropriate.
Since the convolution of two Lorentzians is another Lorentzian
where the peak width is a simple sum of the widths of the
original functions, the inserted impurity scattering shows up
directly as an addition to the measured �′′

ω̃ (for comparison
purposes a constant η = 1 meV has therefore been subtracted
from all plots of �′′

ω̃). However, these relationships still hinge
on knowledge of the bare band. If εb

k is unknown it is
possible to fit it, to within an arbitrary energy offset, to any
functional form which provides a value and derivative using
a Kramers-Kronig bare-band fitting (KKBF) routine (see the
Appendix). Alternatively, as previously noted in Ref. 20 and
used in Ref. 46, the imaginary part of the self-energy requires
knowledge of only vb

km
, which can be obtained directly from

A0 = 1/vb
km

, allowing us to write it as the MDC width to
integral ratio

�′′
ratio = −
km/A0. (11)

This variation allows us to tackle the problem over a larger
range of λ as it does not rely on the KKBF routine to succeed
over the entire range in order to ensure the fitness of the
Kramers-Kronig transform and fit the bare band. Equation (11)
is free to work over energies where the peak is Lorentzian [i.e.,
Eq. (8) holds], and to fail in others without allowing these
failures to block the procedure. Experimentally, when using
this ratio, one must be careful that the observed spectra are
properly normalized, otherwise it will be off by a constant
multiple, but even if this is not possible the form of the
imaginary self-energy should be nevertheless recoverable. It is
also possible, in cases of momentum-independent self-energy
for which vb

k /v
q

k = 1/Z
q

k from Eq. (7), to find the same ratio
using only quasiparticle properties as �′′

MDC = −v
q

km

km/Z

q

km
.

The results of both the KKBF and the ratio method,
performed as if the bare band was not known on a momentum-

(c)
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FIG. 8. (Color online) (a) A(k,ω) calculated for the momentum-
independent Holstein self-energy with MA(1) for � = 50 meV and
λ = 0.1 as a false color plot; also shown are the km path of MDC
maxima along which the analysis is performed, as well as the
known bare band and the third-order polynomial approximation found
through the KKBF analysis (the arbitrary energy offset introduced
through KKBF has been shifted back by hand to allow comparison
between the two). (b),(c) Real and imaginary parts of the self-energy
from the model (�known), the bare band and MDC fitting routine
(�MDC) as found via Eq. (10), and the KK transform of �′′

MDC (�′
KK)

and �′
MDC (�′′

KK) used as an internal check in KKBF. In (c) the MDC
ratio results �′′

ratio as found via Eq. (11) are also shown.

independent self-energy in the low-coupling regime, are
presented in Fig. 8. The internal self-consistency of the KKBF
results is confirmed by the good match between �MDC and
�KK, and the agreement of �ratio adds further confidence.
These “measured” quantities show good agreement with
their known counterparts everywhere Eq. (8) is applicable,
demonstrating that these methods work well in the low-
coupling regime; however, they become progressively less
accurate as the coupling increases. In Fig. 9(a) we show the
progressive failure of the method applied for couplings where
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FIG. 9. (Color online) (a) Deviation (i.e., average of the squared
difference at each km) between estimated and known self-energies
vs λ. (b) Various estimates for the imaginary part of the self-energy,
defined as in the caption of Fig. 8, for A(k,ω) calculated within MA(1)

for � = 50 meV and λ = 0.5.

λ ranges from 0 to 1, which demonstrates a rapid degeneration
of the accuracy of the method outside of the low-coupling
regime. Note, however, that the two methods fail in different
ways. �′′

MDC tends to fail more globally, whereas �′′
ratio often

continues to work almost exactly in some energy regions
while failing catastrophically in others (these regions cause
its average deviation, shown in Fig. 9, to indicate perhaps
a higher degree of failure than deserved). In Fig. 9(b) we
demonstrate these differences by showing the results of the
methods applied blindly at λ = 0.5, even though line shapes
show that there are areas where Eq. (8) does not apply. One can
see how the internal KKBF check has begun to fail as �′′

MDC
and �′′

KK do not match; there are structural differences and �′′
KK

has picked up different offsets in the different flatter parts of
the spectrum, making setting its overall offset difficult. As the
disagreement between �′′

MDC and �′′
KK increases with coupling

it will eventually cause the KKBF routine to fail to capture
the bare electronic structure. None of the methods reproduce
�′′

known near the sharp one-phonon structure; note that �′′
MDC

and �′′
ratio overestimate and underestimate it, respectively. Our

experience with this model leads us to believe this to be typical
behavior: When each method fails they do not tend to fail in
identical ways, so that in regions where they do match one can
still have confidence that the methods are working.

These methods hinge on the momentum independence
of the self-energy in two ways. For fitting line shape, a
momentum-independent self-energy guarantees a Lorentzian
line shape but the inverse is not true—it is still possible to
have a momentum-dependent self-energy which generates
a Lorentzian. Additionally, fitting the bare band relies on
the Kramers-Kronig transforms in energy, which are only
valid for a fixed momentum. In cases where the momentum
dependence is not too strong locally near km, however, we
have found that it is still possible to gain insight using
similar approaches, although even more care must be taken
in the interpretation of the results. If, despite momentum

dependence, the MDC appears Lorentzian in shape, certain
higher-order terms must be small when expanding each of εb

k ,
�′(ω,k) and �′′(ω,k) about km. Under this condition we may
drop terms of order (k − km)3 and higher from the denominator
as well as (k − km) and higher from the numerator, which
also implies we may drop ∂�′′/∂k and ∂2�′′/∂k2 everywhere.
We end up with an expression identical to Eq. (8), only with
different interpretations for the HWHM as well as the spectral
weight of the peak:


km = − �′′(ω̃,km)

vb
km

+ ∂�′(ω̃,km)/∂k
,

(12)

A0 =
∫

Aω̃(k)dk = 1

vb
km

+ ∂�′(ω̃,km)/∂k
.

Now that the self-energies are momentum dependent it
becomes more important to remember that the self-energy
extracted using this method will follow the km path through
(ω,k) space; this path is demonstrated as a false color plot
in Figs. 10(d), 10(e), 10(i), and 10(j). From Eq. (12) we
find that, in this momentum-dependent case, the ratio check
Eq. (11) proves to be invaluable as it removes the possible
inaccuracies when strong momentum dependence near km in
�′ might provide a Lorentzian line shape with a misleading
width viewed from a momentum-independent perspective. In
Figs. 10(a)–10(c) and 10(f)–10(h) we present the results of
both KKBF and the ratio method for a momentum-dependent
coupling. From a comparison between the measured and
known self-energies on paths through k space along the zone
boundaries and along km, we find agreement only along the
km path, as expected. Further, especially in Fig. 10(h) near the
third phonon structure close to ∼125 meV, one can see how
it is possible for �′′

MDC and �′′
KK to agree with each other and

yet not correctly predict �′′
known, despite the peak shape being

reasonably Lorentzian, due to sufficient local momentum
dependence in the real self-energy [Fig. 10(i)]. In this location
we note, however, that �′′

ratio still correctly predicts �′′
known as it

is not affected by this local momentum dependence. Overall we
find that, in a similar fashion to the momentum-independent
case, there is generally good agreement between the found
self-energies and the self-energy along the km path in the
low-coupling regime and the methods progressively fail as
we move into the midcoupling regime. The available modes of
failure are increased: There are more locations where the line
shape is not Lorentzian due to strong local momentum depen-
dence of the self-energy; places where it is still Lorentzian but
with a misleading width; and the Kramers-Kronig relations
are not valid along an arbitrary path through (ω,k) space,
which disrupts the fitness of the KKBF routine. While it is
not surprising that the KKBF routine eventually fails for large
couplings in the momentum-dependent case, it is interesting
that it works at all, as the Kramers-Kronig relations in energy
are only formally valid for a fixed momentum but the measured
self-energies follow the km path at all couplings. Despite this,
as can be seen in Figs. 10(b) and 10(c), the Kramers-Kronig
relations appear to work relatively well along the km path
in the low coupling case. Nevertheless, we find that, in this
model, failures occur at qualitatively similar couplings when
momentum dependence is added.
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FIG. 10. (Color online) (a)–(c), (f)–(h) A(k,ω) and self-energies as defined in Fig. 8 for momentum-dependent coupling to a single
breathing mode. In this instance, as the self-energy is momentum dependent, the known self-energies are plotted along the path of peak maxima
(�known@km) to show good agreement with the derived values, as well as along both edges of the Brillouin zone for comparison (�known@k = 0
and �known@k = π ). Finally (d), (e), (i), (j) show the full extent of the energy and momentum dependence of the real and imaginary self-energies
as a false color plot, with the km path superimposed.
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V. CONCLUSIONS

The spectral function is an extremely rich data source. We
have shown that, despite its allure, away from the Migdal
limit it is not always possible to extract the true microscopic
coupling through quasiparticle renormalizations of ARPES
data with an effective coupling scheme—and certainly not for
cases close to a dispersion maximum. In this limit λeff �= λ.
However, through careful modeling and the analysis of specific
features, it may be possible to learn much more. If one can
correctly guess the model it may be possible to predict a given
renormalization, or even show experimental support for a given
model via relationships between renormalization parameters.
Through MDC self-energy analysis, we have shown that the
self-energy can be extracted along paths through (k,ω) space
in the low-coupling regime—and it is possible still to gain
some insight at higher couplings. We have also shown that
it is possible to infer the momentum dependence of the
self-energy through comparison of renormalization properties.
Methods such as these, together with detailed models and
powerful simulations, will hold the key to more thorough
and quantitative analysis of the rich data supplied through
ARPES.
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APPENDIX: KKBF

The method outlined here varies slightly from techniques
previously described in the literature, which generally reduce
the functional form for εb

k substantially in order to facilitate an
exact solution for A(k,ω) as they often deal with data very close
to the Fermi energy over a small range.12,22–24 In our analysis
we have instead expanded everything about km, essentially
using a unique linear approximation for εb

k on each MDC
slice. Although our method has the disadvantage that it does
not work as well near the zone boundary where the band
velocity goes to zero (other methods which make a second-
order approximation can successfully predict and fit the non-
Lorentzian shape in this region and may continue to work
in this regime), ours has the distinct advantage that it works
over a much larger energy range and allows fitting based on
an infinite variety of bare-band models (so long as they are
differentiable). Most importantly, by its form it also explicitly
shows that the self-energies are evaluated along the km path
in the case where there is global momentum dependence in
the self-energy. One might imagine that for the analysis of
a particular experiment one may have reasons to choose one
method over another, or perhaps even a hybrid of the two.
Here we will describe the idea of a Kramers Kronig bare-band
fitting (KKBF) as implemented for our method, its application
to other methods is similar.
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FIG. 11. (Color online) Self-energies as defined in Fig. 8 for
the MA(1) Holstein problem with � = 50 meV and λ = 0.15, with
extrapolated tails for �MDC and the KK transform shown. (a) and (b)
have the bias used in fitting the tails set too small, (e) and (f) have the
bias set too large, and (c) and (d) have it set just right.

KKBF is a technique whereby a Lorentzian fit is first
performed on every slice of constant energy ω̃, according to
Eq. (8). The values of km and 
km from the fits can provide
the self-energies for every (ω̃,km) point, within the limitations
above, if the bare band εb

k is known. As an analytic complex
function the real and imaginary parts of the self-energy are
Kramers-Kronig related:

�
′,′′
KK(k,ω) = ± 1

π
P

∫ ∞

−∞
∂ξ

�
′′,′
MDC(k,ξ )

ξ − ω
. (A1)

It is possible to “fit” the bare-band parameters by choosing
them such that �′

MDC ≡ ω̃ − εb
km

and �′′
MDC ≡ −vb

km

km are

self-consistent with �′
KK and �′′

KK. Since neither the Kramers
Kronig relationships [Eq. (A1)] nor the MDC relationships
[Eq. (10)] are sensitive to a constant offset in both the real
self-energy and bare band this is unconstrained by the method
and both �′ and εb

k are free. In our study we have simply
made the calculation of differences between �KK and �MDC

insensitive to a constant offset, and set the final offset to zero
by hand at the end to allow comparison.
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In our implementation of this idea, a simple third-order
polynomial was used to fit the bare band with an initial
guess found by fitting MDC peak maxima. We then used
the Levenberg-Marquardt algorithm47 as implemented in the
MPFIT package for IDL48 to vary band parameters. We
found that the standard sum-of-squares minimization on the
differences between �KK and �MDC did not perform as well
as a concave-down function, as it placed too much weight on
outlying points far away. In order to evaluate the integrals in
Eq. (A1) with a finite region of data tails were extrapolated
before a Fourier-based transform was performed (the tails were
then discarded, leaving the analysis of MDC and KK curves
only within the data region). These tails were extrapolated by
fitting an inverse polynomials to each side of the data, weighing
the fit for each side’s tail with an exponentially decaying bias
parameter. A bias parameter of zero would weigh the entire
curve equally, while a large bias parameter would concentrate
only near that data edge.

It is possible for problems such as tails, overweighted
outliers, and unconstrained offsets to compound each other.
An unconstrained constant offset in �′

MDC and εb
k leads toward

a tendency for a small linear offset in both, which when
Kramers-Kronig transformed will distort �′′

KK most visibly
near the edges of the data, where it can interfere with a good
fit of the tails. This in turn can lead to inaccuracies at these
edges, which if overweighted can distort the bare-band fit itself.
This runaway condition results in a fit which gets progressively
worse through iterations and will never find the correct bare
band. In practice we found that the tail bias parameter as well

as the the concavity of the function used to process errors must
be carefully adjusted by hand in order to prevent this, which
can be accomplished simply by looking at whether or not
the tail approximation continues to appear reasonable through
successive iterations.

In Fig. 11 we show some typical examples of how the
tail bias parameter can affect the fitting, each pair of panels
represents the final “solution” of the entire band minimization
problem using a given tail bias. Plots such as these form
the guide to be used when adjusting the bias parameters
by hand while looking for the best solution. In Figs. 11(a)
and 11(b) the tail bias is too small, and so the found tail
is the best approximation which fits the whole curve. In
Fig. 11(b) this causes a discontinuity for the low-energy tail
right at the boundary, which in turn causes a cusp in the KK
transform visible in Fig. 11(a). Despite this, the overall fit
is not too bad with reasonable general agreement between
MDC and KK self-energies—meaning the found bare band
is likely close to the real solution. In Figs. 11(c) and 11(d)
the tail bias is good, which results with a realistic fit at all
boundaries and a good agreement between MDC and KK
self-energies, giving confidence that the found bare band is
accurate. In Figs. 11(e) and 11(f) the tail bias is too strong,
which results in a tail fit depending too much on the data right
at the edges. This results in a KK transform which is poor
enough to thrown off the band fitting entirely resulting in a
found bare band which is likely not close to the true band,
shown by generally poor agreement between MDC and KK
self-energies.
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