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Heat transport in quantum spin chains: Relevance of integrability
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We investigate heat transport in various quantum spin chains using the Redfield equation. We find that
anomalous heat transport is linked not to the integrability of the Hamiltonian, but to whether it can be mapped to
a model of noninteracting fermions. Our results also suggest how seemingly anomalous transport may occur at
low temperatures in a much wider class of models.

DOI: 10.1103/PhysRevB.83.214416 PACS number(s): 05.60.Gg, 44.10.+i, 05.70.Ln

I. INTRODUCTION

Heat transport in quantum spin chains, in particular, under
which conditions normal (diffusive) transport is observed, is
still not understood despite considerable effort.1–14 For exam-
ple, it was conjectured that integrability leads to anomalous
(ballistic) transport,8 but it was also argued that integrable
but gaped chains have normal conductivity.10,11 Others have
argued that only the spin conductivity is normal in this
case, while the thermal conductivity is still anomalous.12 A
consensus as to what the necessary criteria are for normal
versus anomalous conductivity is still missing.

Most of this work3–10 studied infinite and/or periodic chains,
and used the Kubo formula15,16 where finite (zero) Drude
weight signals anomalous (normal) transport. For integrable
systems, the Kubo formula predicts anomalous heat transport.
In fact, full integrability is not even necessary; all that is needed
is a finite overlap between the heat current operator and a
conserved quantity.4,14

The derivation of the Kubo formula for finite systems
requires dealing with the currents between the chain’s ends and
the thermal baths it is connected to. These boundary currents
may change the form of the Kubo formula.17,18 For infinite
systems, one may argue that they can be ignored, as they are
a boundary effect.15,16 However, it is obviously not so for
finite systems, where coupling to baths should be taken into
consideration explicitly.18 Furthermore, “integrability” of the
chain connected to baths may be lost even if the isolated chain
is integrable since the terms describing the coupling to the
baths lead to a nonvanishing commutator between the heat
current operator and the total Hamiltonian. Both of these facts
might invalidate the main argument for anomalous transport
based on the Kubo formula.

Studies that explicitly consider the effects of the baths on a
finite chain, while fewer, also give contradictory results. Using
the local-operator Lindblad equation, Prosen et al. showed
that an integrable gaped (Jz > Jxy) XXZ chain has normal
spin conductivity, while its energy transport is anomalous;12

whereas, using the same approach, Michel et al. claim that, for
Jz > 1.6Jxy , spin chains have normal energy transport.11

Such conflicting results exist not only in theoretical studies,
but also in experiments. Anomalous heat transport observed
experimentally in systems described by integrable models,
such as (Sr,Ca)14Cu24O41, Sr2CuO3 and CuGeO3,19–21 seems
to validate the conjecture linking anomalous transport to
integrability, but Ref. 22 finds normal transport in Sr2CuO3

at high temperatures.

Even if there was no conflict between results based on the
local-operator Lindblad equation, such an approach is likely
less reliable than one based on the Redfield equation. For
example, only the latter leads to the proper Boltzmann distri-
bution if the baths are not biased. There are, in fact, already
several such studies based on the Redfield equation.23,24 How-
ever, these are for spin systems that are either noninteracting
(thus, trivially integrable) or are nonintegrable. We call a
spin chain “noninteracting” if it can be mapped, for example
through a Jordan-Wigner transformation, to a Hamiltonian
for noninteracting spinless fermions. Anomalous transport is
found for the former and normal transport is found for the
latter. Disordered spin systems have also been found to have
normal transport.25 There are no examples of clean, interacting
but integrable systems investigated via the Redfield equation.

Here, we systematically investigate many models of finite
spin chains coupled to thermal baths using the Redfield
equation.23–27 Our results suggest that integrability is not a
sufficient condition for anomalous heat transport. Note that,
in this context, we call a model “integrable” if it is so
when the system is isolated (i.e., not connected to baths).
We find anomalous transport at all temperatures only in
models that can be mapped onto homogeneous noninteracting
fermionic models. All other models we investigated exhibit
normal heat transport, whether they are integrable or not
(however, as discussed below, at low temperatures, their
heat transport may become anomalous in certain conditions).
We therefore conjecture that the existence of a mapping of
the spin Hamiltonian to one of noninteracting fermions is
the criterion determining anomalous transport, at least for
finite-size systems.

The paper is organized as follows. Section II defines
the problem and its Redfield equation. In Sec. III, we discuss
the numerical methods we use and, in Sec. IV, we define the
quantities we use to characterize thermal and spin transport.
We then proceed to present our numerical results in Sec. V,
and then conclude.

II. THE MODEL AND ITS REDFIELD EQUATION

We consider an N -site chain of spin- 1
2 described by the

Hamiltonian

HS =
N−1∑

i=1

∑

r=x,y,z

Jrs
r
i s

r
i+1 − �B ·

N∑

i=1

�si, (1)
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while the heat baths are collections of bosonic modes

HB =
∑

k,α

ωk,αb
†
k,αbk,α, (2)

where α = R/L indexes the right- and left-side baths. The
system-baths coupling is taken as

V = λ
∑

k,α

V
(α)
k sy

α ⊗ (b†k,α + bk,α), (3)

where s
y

L = s
y

1 and s
y

R = s
y

N , i.e. , the left (right) thermal bath is
only coupled to the first (last) spin of the chain, and can induce
its spin flipping. This is because we choose �B · �ey = 0 when
| �B| is finite, meaning that spins primarily lie in the x0z plane
so that sy acts as a spin-flip operator. As discussed below, this
type of coupling also mimics particle exchange between the
system and the baths in systems of bosons or fermions. We use
λ to characterize the strength of the system-baths coupling.

The resulting Redfield equation for the density matrix of
the system ρ (t) = TrBρT (t), where ρT (t) is the full density
matrix for system+baths and the trace integrates out the baths
while the coupling is treated to second order in perturbation
theory, is obtained using standard methods23,24,26:

∂ρ(t)

∂t
= −i[HS,ρ(t)] − λ2

∑

α=L,R

([
sy
α,m̂αρ(t)

] + H.c.
)
, (4)

where m̂α = s
y
α · �α . Here, (. . .) refers to the element-wise

product of two matrices 〈n|a · b|m〉 = 〈n|a|m〉〈n|b|m〉. The
bath matrices �L,R are defined in terms of the eigenstates of
the system’s Hamiltonian HS |n〉 = En|n〉 as

�α = π
∑

m,n

|m〉〈n|{	 (
mn) nα (
mn) Dα (
mn)
∣∣V (α)

kmn

∣∣2

+	 (
nm) [1 + nα (
nm)] Dα (
nm)
∣∣V (α)

knm

∣∣2}
,

where 
mn = Em − En = −
nm and kmn is defined by
ωkmn,α = 
mn, i.e., a bath mode resonant with this transition.
Furthermore, 	(x) is the Heaviside function, nα(
) = [eβα
 −
1]−1 is the Bose-Einstein equilibrium distribution for the
bosonic modes of energy 
 at the bath temperature Tα =
1/βα , and Dα(
) is the bath’s density of states. The product
Dα (
mn) |V (α)

kmn
|2 is the bath’s spectral density function. For

simplicity, we take it to be a constant independent of α, m,
and n.

For completeness, we note that the local-operator Lindblad
equation is a simplified version of Eq. (4), where the bath
operators �α are numbers instead of matrices. For example,
quite often one uses m̂α = s±

α γ±,11,12 where γ+ �= γ− are
constants. This is equivalent to the Redfield equation if and
only if the central system consists of a single site, in which
case �α becomes a matrix with two off-diagonal numbers, the
values of which correspond to γ±. It can be proven that, for
multisite central systems, the Redfield equation predicts the
proper thermal equilibrium state as its long-term stationary
state, if the baths are kept at the same temperature.28 This is
not true for the local-operator Lindblad equation, except for a
single-site central system.28 This is why we prefer to use the
Redfield equation, even though the local-operator Lindblad
equation is computationally much more convenient.

III. NUMERICAL METHODS

It is straightforward to use the Runge-Kutta method to
integrate the Redfield equation starting from any given initial
state.24,25 The memory cost is proportional to 22N for an N -spin
chain, but it may take a very long time for the integration to
converge to the stationary state. This is not surprising since, in
principle, the stationary state is reached only as t → ∞.

Another approach29 is to solve directly for the stationary
solution of this Redfield equation (4): ∂ρ(t)

∂t
= Lρ(t), namely,

Lρ(∞) = 0, (5)

i.e., to find the eigenstate for the zero eigenvalue of the
2N -dimensional matrix L. However, in this case, the memory
cost is proportional to 42N , which is much worse than for the
Runge-Kutta method.

The method that has better memory efficiency than this
eigenvalue problem and also better time efficiency than the
Runge-Kutta method is to convert the equation into a linear
system and solve it via matrix-free methods such as the
Krylov space methods, which require only matrix-vector
multiplication but not explicitly the matrix. The eigenvalue
problem can be rewritten as a linear system of equations after
explicitly using the normalization condition tr (ρ) = 1 such
that

L̄ρ(∞) = ν, (6)

where ν = [1,0, . . .]T and L̄ is found from L by replacing the
first row by tr(ρ). Then we use, for example, the generalized
minimal residual method (GMRES),30 which requires only the
matrix-vector multiplication rule. This method has a memory
cost of ∼ 22N and time efficiency of a linear system with
dimension 22N .

This is still a direct method, so its efficiency is not
comparable with methods such as the Monte Carlo wave-
function approach,11 Hilbert space average method,31 and the
BBGKY-like approach.32 However, unlike them, this method
gives an exact result. This is important until one can understand
whether any of the further approximations made in the more
efficient methods can, for example, destroy the integrability of
the system.

IV. DEFINITIONS OF THE THERMAL CURRENT AND
LOCAL TEMPERATURES

We rewrite HS = ∑N−1
i=1 hi,i+1 + ∑N

i=1 hi , where hi,i+1 is
the exchange between nearest-neighbor spins and hi is the
on-site coupling to the magnetic field. We can then define a
local site Hamiltonian

h
(S)
i = 1

2hi−1,i + hi + 1
2hi,i+1 (7)

with h0,1 = hN,N+1 = 0, and a local bond Hamiltonian

h
(B)
i = 1

2hi + hi,i+1 + 1
2hi+1 (8)

such that

HS =
N∑

i=1

h
(S)
i =

N−1∑

i=1

h
(B)
i . (9)
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The local bond Hamiltonians can be used to derive the heat
current operator from the continuity equation

ĵi→i+1 − ĵi−1→i = ∇ ĵ = −∂h
(B)
i

∂t
= −i

[
HS,h

(B)
i

]
. (10)

This results in

ĵi→i+1 = i
[
h

(B)
i ,h

(B)
i+1

]
(11)

for i = 1, . . . ,N − 2. As expected, in the steady state we
find 〈ĵi→i+1〉 = tr[ĵi→i+1ρ(∞)] = J to be independent of i.
Similarly, we define the spin polarization 〈sz

i 〉 and the spin
current for the XXZ model

Js = Jxy

〈
s
y

i sx
i+1 − sx

i s
y

i+1

〉
. (12)

Knowledge of the steady-state heat current J , as such, is
not enough to decide whether the transport is normal or not.
Consider an analogy with charge transport in a metal connected
to two biased leads. In this case, what shows whether the charge
transport is anomalous or not is the profile of the electric
potential, not the value of the electric current. In anomalous
transport (for clean, noninteracting metals) all the voltage drop
occurs at the ends of the sample, near the contacts. Away
from these contact regions, electrons move ballistically and the
electric potential is constant, implying zero intrinsic resistance.
For a dirty metal, scattering takes place everywhere inside the
sample and the electric potential decreases monotonically in-
between the contact regions, i.e., the sample has finite intrinsic
resistivity.

In principle, the scaling of the current with the system size,
for a fixed effective bias, also reveals the type of transport: For
anomalous transport, the current is independent of the sample
size once its length exceeds the sum of the two contact regions,
while for normal transport, it decreases like inverse length. The
problem with this approach is that one needs to keep constant
the effective bias, i.e., the difference between the applied bias
and that in the contact regions. Furthermore, since we can only
study relatively short chains, the results of such scaling may
be questionable.

It is therefore desirable to use the equivalent of the electric
potential for heat transport and to calculate its profile along
the chain in order to determine the type of transport. This,
of course, is the “local temperature,” which is a difficult
quantity to define properly. One consistency condition for any
definition is that, if TL = TR = T , i.e., the system is in thermal
equilibrium at T , then all local temperatures should equal T .
We define local site temperatures Ti which fulfill this condition
in the following way. Since we know all eigenstates of HS , it is
straightforward to calculate its equilibrium density matrix at a
given T , ρeq (T ) = 1

Z

∑
n e−βEn |n〉〈n|, where Z = ∑

n e−βEn .

Let then 〈h(S)
i 〉eq (T ) = tr[ρeq (T ) h

(S)
i ]. We define Ti to be the

solution of the equation
〈
h

(S)
i

〉
eq

(Ti) = tr
[
ρ (∞) h

(S)
i

]
. (13)

In other words, we require that the steady-state value of the
energy at that site equals the energy the site would have if
the whole system were in equilibrium at Ti . Of course, we can
also use other “local” operators such as h

(B)
i to calculate a local

bond temperature Ti+ 1
2
. We find that, when these definitions

are meaningful, the results are in very good agreement no
matter what “local” operator is used.

This type of definition of Ti is meaningful only if a large
magnetic field B is applied. For small B, the expectation
values 〈h(S)

i 〉eq(T ) are very weakly T dependent, so that tiny
numerical errors in the steady-state value can lead to huge
variations in Ti . Addition of a large B is needed to obtain
〈h(S)

i 〉eq(T ), which varies fast enough with T for values of
interest, so that a meaningful Ti can be extracted. Since we
could not find a meaningful definition for Ti when | �B| → 0,
we can not investigate such cases. Note, however, that most
integrable models remain integrable under addition of an
external field �B = Bêz.

V. RESULTS

For reasons detailed above, in most of our calculations
we take Bz = 1 and the exchange J ∼ 0.1. The baths’
temperatures TL/R = T (1 ± δ/2) should not be so large that
the steady state is insensitive to the model, or so small that only
the ground state is activated. Reasonable choices lie between
min(Jx,Jy,Jz) and NB, which are roughly the smallest and the
largest energy scales, respectively, for the N -site spin chain.

In Fig. 1, we show typical results for (a) local temperature
profiles Ti,Ti+ 1

2
and (b) local spin-polarization profiles 〈sz

i 〉.
We apply a large bias δ = (TL − TR)/T = 0.4 for clarity,
but we find similar results for smaller δ. For these values,
it seems that the “contact regions” include only the end spins.
The profile of the central part of the chain is consistent with
anomalous transport (flat profile) for the XX chain (Jx = Jy ,
Jz = 0) and shows normal transport (roughly linear profile) in
all the other cases. XY chains with Jx �= Jy behave similarly

1 2 3 4 5 6 7 8 9 10
i

1.8

2

2.2

T
i

XX
XXZ(0.05)
XXX
XXZ(0.2)
XYZ

1 2 3 4 5 6 7 8 9 10
i

0.1

0.12

0.14

S
z

i

FIG. 1. (Color online) Plot of (a) local temperature profile
and (b) local spin-polarization profile for chains with N = 10.
In all cases, TL = 2.4, TR = 1.6, λ = 0.1, Jx = 0.1, Bz = 1.0.
Other parameters are Jy = 0.1, Jz = 0.0(XX); Jy = 0.1, Jz = 0.05
(XXZ0.05); Jy = Jz = 0.1 (XXX); Jy = 0.1, Jz = 0.2 (XXZ0.2)
and Jy = 0.2,Jz = 0.3 (XYZ). Only the XX chain shows flat
Ti and 〈sz

i 〉 profiles. All other models have essentially linearly
varying profiles for both the local temperatures and the local spin
polarizations.
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with the XX chain (not shown). We find similar results for
ferromagnetic couplings. We also find that the ratio between
the effective temperature difference T2 − TN−1 and the applied
temperature difference TL − TR is not a constant for different
system sizes N . Therefore, in our numerical calculation, it is
not possible to keep the effective temperature difference as
a constant by applying the same temperature difference on
the ends while changing the system size N . This implies that
the dependence of J on N can not be used as an indicator
of normal or anomalous transport. At most, it can provide a
very rough qualitative picture. We have plotted several of the
J versus N curves in Fig. 2. We see that J is independent of N

for XX chains while it decreases with increasing N for XYZ

and XXX chains.
Another way to examine size dependence is to compare

the temperature and spin profiles for all available sizes. We
normalize all the profiles for various models with different
sizes by harvesting only the data in the central regions and
scaling them to vary in [0,1]; for example, instead of (i,Ti),
we plot ( i−2

N−3 ,
Ti−TN−1

T2−TN−1
),i = 2,2.5, . . . ,N − 1. In Fig. 3, we plot

such normalized profiles. We see that curves for all values of
N collapse onto one single straight line and, furthermore, there
is no difference between XYZ and XXX chains. Currently,
we can only study small systems, but from this limited data,
we see no qualitative differences for different sizes.

All these curves correspond to integrable models. The XX

model is special because it can be mapped to noninteracting
spinless fermions with the Jordan-Wigner transformation.33

A finite Jz leads to nearest-neighbor interactions between
fermions. Eigenmodes for models with Jz �= 0 can be found
using Bethe’s ansatz, but they can not be mapped to noninter-
acting fermions.

In order to investigate where this transition between
anomalous and normal transport occurs, we plot temperature
profiles for systems with small Jz in Fig. 4(a).

4 5 6 7 8 9 10
N

0

0.0005

0.001

0.0015

0.002

J

XX
XYZ

J=0.001*(N-1.9)
-0.89

XXX

J=0.0017*(N-0.23)
-0.37

FIG. 2. (Color online) Heat currents J are plotted as a function
of the system size for three models: XX, XYZ, and XXX. J is
independent of N for XX chains, and it decreases with N for the
other two cases. Due to the uncertainty about the effective applied
temperature difference for different N , the fitting curves should only
be regarded as a guide for eyes. The parameters are the same as in
Fig. 1.

0 0.2 0.4 0.6 0.8 1
(i-1)/(N-2)

0

0.5

1

(T
i-T

N
-1

)/
(T

2-T
N

-1
) N=10,XXX

9
8
7
6
5
4
10, XYZ

0 0.2 0.4 0.6 0.8 1
(i-1)/(N-2)

0

0.5

1

(S
z i-S

z 2)/
(S

z N
-1

-S
z 2)

FIG. 3. (Color online) Normalized Ti and 〈sz
i 〉 profiles are plotted.

Curves for different values of N collapse onto a single straight line
and we see no difference between XYZ and XXX chains.

We see that, even for very small Jz, the above observation
still holds. For Jz = 0.01, there is a slight qualitative differ-
ence, namely, that the contact regions seem larger than just
the end spins, as can be seen from the normalized profiles. We
believe that this may be due to limitations of the numerical
accuracy. In Fig. 4(b), we investigate what the minimum value
of Bz is that we can use with confidence. As we pointed out
before, our definition of local temperature and also the idea of a
local spin polarization 〈sz

i 〉 are only meaningful for sufficiently
large Bz. We find that roughly we need to take Bz > 0.3. This
is reasonable since, here, the typical energy due to coupling
to the local Bz field (0.3 · 1/2) is comparable with the energy
related to exchange (3 · 0.1/4).

2 4 6 8 0
i

1.8

1.9

2

2.1

2.2

B
z
=0.1

B
z
=0.3

0 0.4 0.8
0

0.5

1

2 4 6 8 10
i

1.8

1.9

2

2.1

2.2

T
i

J
z
=0.00

J
z
=0.01

J
z
=0.02

J
z
=0.03

J
z
=0.04

(a) (b)

1

FIG. 4. (Color online) (a) Temperature profiles for small Jz values
are shown for Jx = Jy = 0.1, Bz = 1.0. The effective temperature
drop becomes smaller for smaller Jz, but the slope is still finite if
Jz � 0.02. The inset plots normalized profiles, and shows no obvious
differences for models with Jz � 0.02. The case of Jz = 0.01 shows
a finite slope, but the normalized profile indicates a slight difference:
the contact regions seem to be more extended than in the other cases.
(b) Temperature profiles of XXX chains with J = 0.1 and small
values of Bz. A linear temperature drop is observed for Bz = 0.3, but
a flat profile for Bz = 0.1. Other parameters are as in Fig. 1.
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We found this generic behavior for a wide range of
parameters. When λ ∈ [0.03,0.2], T ∈ [0.3,30.0], and δ �
0.01, the spin chain has normal conductivity when Jz ∈
[0.02,0.5] and anomalous conductivity when Jz = 0 (the
conductivity seems to be normal for any Jz > 0, but given
potential accuracy issues for 0 < Jz < 0.02 we refrain from
making a definite statement for these values). These results
lead us to conjecture that it is the presence or absence of
interactions, rather than integrability, that determines whether
or not the heat transport is normal. We find no difference
between thermal transport and spin transport, unlike the
results of Prosen et al.12 based on the local-operator Lindblad
equation.

The conjecture may be tested further on various other
models. One candidate is the Ising model in a transverse field
Bx . It maps to noninteracting spinless fermions34 and if we
add a Bz field, it becomes interacting. Another closely related
model is a system of spinless fermions on a tight-binding chain,
with nearest-neighbor interaction

HS = ε

N∑

l=1

c
†
l cl − t

N−1∑

l=1

(c†l cl+1 + c
†
l+1cl)

+V0

N−1∑

l=1

c
†
l+1cl+1c

†
l cl, (14)

HB =
∑

k,α=L,R

ωk,αb
†
k,αbk,α, (15)

VSB = λ
∑

k,α

(c†αbk,α + cαb
†
k,α). (16)

The XXZ chains map exactly into this fermionic model
after using the Jordan-Wigner transformation. However, the
coupling to the baths in this fermionic system is different from
that in the spin systems. For a spin system, the Jordan-Wigner
transformation maps the σy operator into an operator, which
is much more complicated than the c† or c used in this
fermionic model. Therefore, although the two models are
closely related, they are not identical. Results for this fermionic
model can be interpreted as another test of our conjecture or
at least a check of whether the observations reported above
are influenced by the specific model for the system-bath
coupling.

In Fig. 5, we plot local-temperature profiles for Ising
spin chains in panel (a) and for fermionic chains in panel
(b). The results support our conjecture: interactions lead to
normal transport. Similar results for Ising chains in transverse
field Bx , with and without Bz terms, have been reported in
Ref. 35. However, there the anomalous transport is assigned
to integrability. Note that ε is set to be much larger than t

to mirror the condition Bz � J . When ε is comparable to t ,
both noninteracting and interacting systems show almost flat
temperature profiles.

In summary, the first conclusion we draw from these results
is that integrability is not sufficient to guarantee anomalous
transport: several integrable models show normal heat trans-
port, in agreement with other studies.9,11,12,29 The second
conclusion is that only models that map onto Hamiltonians
of noninteracting fermions exhibit anomalous heat transport.

1 2 3 4 5 6 7 8 9 10
i

1.8

2

2.2

V
0
=0.0

V
0
=0.2

1 2 3 4 5 6 7 8 9 10
i

1.6

1.8

2

2.2

T
i

Ising
x

Ising
xz

(a) (b)

FIG. 5. (Color online) Temperature profiles for (a) Ising spin
chains and (b) the V -t fermionic model described in the text. The
Ising spin chains have anomalous transport when Bz = 0 (Isingx ,
circles) and normal transport when Bz = 1.0 (Isingxz, squares).
The fermionic chains show a flat temperature profile when V0 = 0
(circles) but a linear temperature drop when V0 = 0.2 (squares).
Other parameters are Jz = 0.1, Bx = 1.0, ε = 1.0, t = 0.1, TL =
2.4, TR = 1.6, μ = −1.0, λ = 0.1, N = 10.

This is a reasonable sufficient condition since, once inside the
sample (past the contact regions), such fermions propagate
ballistically. However, we can not, at this stage, demonstrate
that this is a necessary condition as well. We therefore can
only conjecture that this is the criterion determining whether
the heat transport is anomalous. Unless our results are artifacts
due to the boundary effects because of the limited system sizes,
this conjecture is the only consistent qualitative conclusion that
we may draw from all the above results.

In this context, it is important to emphasize again the
essential role played by the connection to the baths. In
its absence, an isolated integrable model is described by
Bethe-ansatz-type wave functions. Diffusion is impossible
since the conservation of momentum and energy guarantees
that, upon scattering, pairs of fermions either keep or
interchange their momenta. For a system connected to baths,
however, fermions are continuously exchanged with the baths,
and the survival of a Bethe-ansatz-type wave function becomes
impossible. In fact, even the total momentum is no longer
a good quantum number. We believe that this explains why
normal transport in systems mapping to interacting fermions is
plausible.

Anomalous transport can also occur in models that map to
homogeneous interacting fermions if the bath temperatures are
very low. Specifically, consider the XXZ models. Because of
the large Bz we use, the ground state of the isolated chain
is ferromagnetic with all spins up. The first manifold of
low-energy eigenstates has one spin flipped (single-magnon
states), followed by states with two spins flipped (two-magnon
states), etc. The separation between these manifolds is roughly
Bz, although because of the exchange terms each manifold has
a fairly considerable spread in energies and usually overlaps
partially with other manifolds. At very low temperatures, we
find anomalous transport for all models, whether integrable or
not, as shown in Fig. 6. This is reasonable since the one magnon
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FIG. 6. (Color online) Temperature profiles for XX and XXZ

chains are calculated within the single-magnon subspace. Parameters
are as in Fig. 1 except here N = 40 and δ = 0.2.

(fermion) injected on the chain at such low temperatures
has nothing else to interact with, so it must propagate
ballistically.

We may repeat this restricted calculation by including
the two-magnon, three-magnon, etc., manifolds in the com-
putation. As expected, when these higher-energy manifolds
become thermally activated, the transport becomes normal for
the models mapping to interacting fermions, in other words,
as soon as multiple excitations (fermions) are simultaneously
on the chain, and inelastic scattering between them becomes
possible. When both TL,TR 
 Bz, effectively only the single-
magnon states participate in the transport and the single-
magnon subspace calculation is reasonably accurate. Then,
even interacting systems have anomalous transport. These
results may explain the heat transport observed experimentally
in compounds such as Sr2CuO3

22 where, at low temperature,
anomalous transport was found, while at high temperature,
normal transport was reported. Reference 37 also finds
similar behavior, but there the relatively small conductance at
high temperature is attributed to phonon-mediated Umklapp
scattering of the spinons. Of course, coupling to phonons or
other degrees of freedom may well determine the behavior
of the system, especially at higher temperatures. Therefore,
we note that our study is relevant only for systems where
phonon interactions are suppressed, due, for example, to low
temperature. While such an assumption may not always hold,
we believe that, from a purely theoretical point of view, it is

an interesting question to understand the conductance of pure
spin systems, as we have tried to do in this paper.

VI. CONCLUSIONS

Based on an extensive study of quantum spin chains using
the Redfield equation, we propose a new conjecture for what
determines the appearance of anomalous heat transport at all
temperatures in finite spin chains. Unlike previous suggestions
linking it to the integrability of the Hamiltonian or the existence
of energy gaps, we propose that, for clean systems, the criterion
is the existence of a mapping of the Hamiltonian onto a
model of noninteracting fermions. While the existence of
such mapping is certainly a sufficient condition for anomalous
transport, we can not prove that it is a necessary condition
as well; this conjecture, however, is the only conclusion
consistent with all of our results.

We must also point out that we can not rule out the
possibility that in the cases where anomalous transport is
observed, there is partial overlap of the heat current operator
with some conserved quantity. If this were the case, then
our findings would be consistent with Ref. 14. Identifying
such conserved quantities is a complicated task even in a
closed system, and here it is made even more difficult by
the coupling to the baths. Because of this coupling, even
quantities such as the z-axis magnetization (total number
of particles), which are usually conserved for isolated spin
chains (fermionic Hamiltonians), are not conserved for the
open system. Understanding how to identify the conserved
quantities for the open system (if any) is certainly a very
interesting question.

Also, our conjecture should be checked for larger systems,
where more reliable information on the relation between J

and N can be extracted. Such an enterprise is computationally
too expensive if direct methods such as those described
here are used. The more efficient methods based on the
BBGKY-type method32 might allow us to undertake such a
study, but they require a clarification of the effect of the further
approximations made there on the integrability of the system.
Finally, we point out that, in this paper, we have not taken
into consideration the possible coupling to other dissipative
degrees of freedom, such as phonon modes,36 which are also
likely a factor in the emergence of normal transport.
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