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Abstract — We show that for models with nearest-neighbour (nn) hopping, the lattice Green’s
functions can be calculated without the need to perform integrals. Our method applies to
rectangular, triangular and honeycomb lattices in two dimensions, and to simple, face-centered and
body-centered lattices in three dimensions. External magnetic fields can be dealt with trivially. As
an example, we show that our method works for any ratio ¢/¢o of the magnetic flux through the
unit cell, i.e. irrespective of the change in the size of the magnetic unit cell. Other straightforward
generalizations are to models with multiple orbitals per site, with any spin-orbit coupling, on-site
disorder, and any combinations thereof. The method works equally well in the presence of surfaces.
In all cases, accurate values for large distances can be obtained very efficiently and without finite-
size effects. The relationship to other computational methods is also analyzed.

Copyright © EPLA, 2010

Lattice Green’s functions are needed in a multitude of
contexts in condensed matter [1], for instance in prob-
lems involving disorder [2], surfaces [3,4], interactions [5],
modeling of mesoscopic devices [6] etc. The densities of
states which can be obtained from these quantities are of
key interest in methods such as the Dynamical Mean-Field
Theories (DMFT) [7]. While in principle the Green’s func-
tions are straightforward to calculate, their evaluation by
usual means turns out to be a cumbersome numerical task.

The lattice Green’s function is defined as

G(R1,Ra,w) = (0[cr, G(w)ck, |0), (1)

where |0) is the vacuum, cg annihilates a particle at site R
of the lattice, and G(w) = [w+in—H] " is the resolvent
corresponding to the Hamiltonian H of the system (h=1).
In the absence of disorder, in clean systems, the expression
of the lattice Green’s functions can be obtained if the
eigenspectrum H|on k) = Epn(k)|¢pn k) is known. Here, n
indexes the various bands and k is the quasi-momentum
defined in the Brillouin zone (BZ) of the specific model.
In terms of these,

G(Rl,RQ,w):Z/ dk
W J/BZ

where ¢, k(R)=(R|¢n k) =(0|cr|dn k) are the Bloch wave
functions. Evaluating these integrals directly is inefficient.

bnx(R1)9;, 1 (Ra2)
w+ i77 - En(k) ,

(2)

To see why, consider the simplest possible case of nn
hopping on a d-dimensional simple hypercubic lattice
with no external magnetic field. There is a single band
with E(k)= -2t Z?:l cos(k;a), the wave functions are
¢nx(R) =e®R/\/(2m)? and the BZ is |k;| < Z,Vi=1,d,
where a is the lattice constant. Using the invariance to
translations, if Ry — Ry =a(ny,na,...,ng) then

dky...dkg el >4 kinia

Gml,...,nd,w):/ (3)

Since G(...,ni..., gy, w) =G ., =Ny NG,
w)=G(...,nj,...,n4,...,w) etc., we only need
G(ni,...,ng,w) for ny >--->nyg>0; all other Green’s

functions can be obtained from these. Moreover, since a
local self-energy Y (w) may be present, i.e. w —w — X(w)
in eq. (3), we may need these Green’s functions for
arguments with large imaginary parts. Thus, we rename
w+1in— z in egs. (1)—(3), and allow z to be any complex
number.

In eq. (3), one integral can be performed analytically [2],
however for d>1 one has to evaluate the other d—1
integrals numerically. This becomes difficult for larger d
and for large values of |n;|, where the integrand is a
strongly oscillating function. Note that d > 3 results are
needed to solve many-particle problems —for instance,
two-particle Green’s functions for non-interacting particles
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in 3D can be expressed in terms of the d=6 Green’s
functions of eq. (3) [8]. The situation gets significantly
worse if a magnetic field is applied, e.g. transverse to a
d=2 square lattice. If the magnetic flux per unit cell
¢ = Ba? is ¢/¢po=p/q, where ¢o=h/e is the magnetic
flux quantum and p and ¢ are mutually prime integers,
then the magnetic unit cell is ¢ times larger, implying
a BZ that is folded ¢ times and thus hosts ¢ distinct
bands —the Hofstadter butterfly [9]. Any minute change
in B, which may modify ¢ significantly, will require a
very different calculation to extract the Green’s functions
out of eq. (2). Similar difficulties are encountered, even
at B =0, for other lattices like the honeycomb in 2D or
FCC and BCC in 3D, which have rather oddly shaped BZ.
Finally, this integration-based approach fails completely in
the presence of disorder.

Multiple alternatives to the inefficient brute-force inte-
gration of eq. (2) have been proposed [1]. Some start from
the equation of motion for the Green’s function, which is
derived from the identity (z —H) G(z) =1, and which for
nn hopping on the hypercubic lattice reads

d d
zG(...,ni,...,z)—&—tZ ZG(-~-7ni+57-~-’2’):H5m,0-
i=1

i=10=%£1
(4)

For example, in 2D Morita [10] found a special recur-
rence relation between G(n,n,z),G(n—1,n—1,2) and
G(n+1,n+1,z2). As a result, one only needs to evaluate
numerically G(0,0,z) and G(1,1,2), and then all other
G(n,m,z) are obtained either from this special recur-
rence relation, or from eq. (4). However, this works only
for isotropic 2D nn hopping and even then, there are
computational issues for large n; values [11]. Work linking
these Green’s functions to elliptic integrals, hypergeomet-
ric functions, wavelets and other special functions has also
been pursued [1,12], however this usually either redefines
the integrals which need to be performed, or expresses
them as infinite power series which have their own chal-
lenges in terms of accurate and efficient evaluation.

A much more general —and probably the most used—
approach is the recursion method reviewed in ref. [13],
which is linked to the Lanczos method [14]. Briefly, to
find (ug|G(2)|uo) one uses iterations H|uy) = b [tn_1) +
ap|Un) + byy1|tng1) to generate the orthonormal vectors
{|un)} starting from |ug), and to calculate the constants
{an},{bn}. Because in this basis H is a tridiagonal matrix,
the matrix element of its resolvent is found to be

1

Z—ag—

<U0|G'(Z)\Uo> = (5)

[b1?
Z—ap—...

Various ways to terminate the continued fraction are
reviewed in ref. [13]. To find G(R,R,z) one starts
with |ug) =|R). To find G(R1,Rz,2) for Ry #Ra,
one performs two calculations for |u0i)> =|R1) £ |R2).
Because our method is somewhat related to this recursion
method, we compare them in more detail below, to

emphasize why our approach is much more efficient for
nn hopping.

For clarity, we first discuss our method for simple hyper-
cubic lattices in d-dimensions, with isotropic hopping and
no on-site disorder. We begin with d =1 to illustrate the
approach and recover the known solution analytically.
Then, we generalize to higher d and show that we can find
all Green’s functions with Z?:l 1 < Nypeo in one run. As
an example of its capabilities, we prove that addition of a
homogeneous external magnetic field can be treated just
as easily, and one can study everything from the forma-
tion of Landau levels in the limit of very small magnetic
fields to the appearance of Hofstadter butterflies at large
magnetic fields within the same framework. We also show
how the method can be extended to triangular and honey-
comb lattices in 2D, respectively BCC and FCC lattices
in 3D, and list many other possible generalizations.

In 1D, we start with eq. (4) for n =0, to find

2G(0,2) +2tG(1, 2) =1, (6)

since G(1,z) = G(—1, 2). For any n > 1, eq. (4) reads

ZG(n,z):ft [G(n7132)+G(n+17Z)]3 (7)

which is a trivial recurrence relation. We solve it using
arguments which can be generalized to higher d. We
expect G(n, z) — 0 as n — oo because its Fourier transform
G(n,t) is the amplitude of probability for the particle
to move a distance na in the time t. As n — oo, this
probability has to vanish for any Imz#0. Let N be a
large enough value so that we can take G(N +1,z)~0
(we will allow N — o0, so there is no actual truncation).
From eq. (7) for n = N we find that G(N, z) x G(N — 1, z).
Using eq. (7) for n=N —1 we find that G(N —1, z)
G(N —2,z2) ete., so if N — oo then for any n > 1 we have

(8)

from which G(n,z)=[A(2)]"G(0, z). Clearly, |A(z)| <1
so that G(n,z) —0 as n— oco. Substituting in eq. (7)
we get z=—t[1/A(z) + A(2)], thus A(z) equals the root

A/ (%)2 — 4] whose modulus is less than 1. Since

the product of these two roots is 1, the correct one
is uniquely identified for any Imz #0. Finally, using
G(1,2z) = A(2)G(0,2) in eq. (6) we find G(0,2)=1/[z+
2tA(z)]. This completes the derivation of all 1D Green’s
functions using only basic arithmetics.

We now generalize this to the square 2D Green’s
functions G(n,m, z), with n>m >0. At first this seems
impossible, since eq. (7) here reads —%G(n,m,2) = G(n —
1,m,z)+G(n+1,m,z)+Gn,m—1,2)+Gn,m+1,z)
and this is not a simple recurrence relation. The solu-
tion, however, is immediate if we think in terms of the
“Manhattan distance” |n|+ |m| and realize that the terms
on the right side either increase it or decrease it by 1.

To formalize this, we introduce the vectors Vil =
(G(2n,0,2),G(2n—1,1,2),...,G(n,n,2)) and Vi 4 =
(G(2n+1,0,2),G(2n,1,2),...,G(n+ 1,n, z)) that collect

G(n,z)=A(z)G(n—1, 2),

11_z

2 t
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all distinct Green’s functions with Manhattan distances
of 2n, respectively 2n+ 1. For any Manhattan distance
larger than 1, eq. (4) can be written in the matrix form

9)

where a,(z) and (3,(z) are easy to identify sparse matri-
ces, e.g. ag(2)]ii=—%, (V)i=1,n; agm(z)ii-1=—1,
(V)i =2,n while aa,(2)]n41,, = — 2, and all other matrix
elements are zero. Note that none of the matrix elements
depend on n, they are simple multiples of —t/z. However,
the dimensions of these matrices depend on n.

As shown before, we must have for any n > 1,

V'n, = An(z)vn—la

Vn - Oln(Z)Vn_l + ﬂn(z)vn-&-ly

(10)

where the matrices A, (z) are found from eq. (9) to be
An(2) = [1 = Bn(2)Ant1(2)] " an(2). (11)

They can be computed starting from a sufficiently large N
with Any1(2) =0. The multiplication by « and 8 matrices
is very efficient; the time-consuming part is the matrix
inversion. Even this is not a big problem, because the
dimension of these matrices decreases fast with decreasing
n. The choice of the cutoff IV and a better “initial guess”
than An1(z) =0 are discussed below.

Once A, (z) are known, we have V,, = A,,(2) ... A1(2)V,
where V5 =G(0,0,z). In particular V3 =G(1,0,2) =
A1(2)G(0,0, 2), which used in eq. (4) with n=m=0,
i.e. 2G(0,0,z) +4tG(1,0,z) =1, gives G(0,0,2)=1/[z+
4tA1(z)]. This completes the 2D calculation using again
only elementary operations and no integrals.

From G(0, 0, z) one should calculate other Green’s func-
tions using V,, = A, (2) ... A1(2)G(0,0, 2), not eq. (9). The
latter seems more efficient since it does not require storing
the A,, matrices, however it leads to wrong results for large
Manhattan distances. The reason is that just like eq. (7),
eq. (9) has a general solution which is a linear combination
of exponentially increasing and exponentially decreasing
terms with the Manhattan distance. The physical solution
is the exponentially decreasing one. The “initial condition”
2G(0,0, z) +4tG(1,0, z) =1 is guaranteed to eliminate the
non-physical contribution. However, any numerical errors
in G(0,0, z) or accumulated as the solution is propagated
to larger Manhattan distances will mix in some of the non-
physical solution, and eventually this wrong, exponentially
increasing term will dominate the exponentially decreas-
ing, physical solution.

This is avoided using V,, =A,(z)...A1(2)G(0,0, z),
because the A, (z) matrices are calculated coming down
from asymptotically large Manhattan distances. As they
are propagated towards smaller Manhattan distances, it
is the physical solution that now increases exponentially
and overcomes the errors made in deciding how to start
the iterations at a large Manhattan distance N. This
explains why even with the simple-minded initial choice
of Ant1(2) =0 one can obtain good accuracy in rather
few steps (an even better choice is presented below).

Generalization to d > 2 hypercubic lattices is straight-
forward. First, we collect all distinct Green’s functions
with a Manhattan distance n in a vector V,,. Then, because
the Hamiltonian only involves nearest-neighbour hopping,
the equation of motion (4) for n > 1 becomes a recurrence
relation linking V,, to V,,_1 and V,,41 and the solution
proceeds similarly to the one described above. Of course,
the size of V,, increases with d. For d=2 we have (for
the clean system on a square lattice) dim(V,,)~ %, for

d =3 we have dim(V},) ~ "72, etc. If the system has disor-
der or other inhomogeneities, then the dimension of V,
will increase further as symmetries are broken. The maxi-
mum possible dimension of V;, on the hypercubic lattice
is Asld) = Zzlzfn T szzfn 5\n1|+...+\nd|,n~

Before showing results and better ways to terminate
the continued fraction, let us contrast our method to the
recursion method when both are terminated at the same
step n by setting A, 1 =0, respectively |un41) =0. Their
results are identical, however the calculation is approached
very differently. The recursion method calculates a new
basis |un) =) g an(R)R) which makes (un|H|un)
tridiagonal, so that the first matrix element of its inverse
(ug|(z —H) Y ug) is given by eq. (5). Let us assume that
|ug) has the electron at the origin. Acting n times on
it with 4 means that |u,) is a linear superposition of
states with the electron at a Manhattan distance n from
the origin. This implies that to properly generate all the
vectors up to |u,), one needs to keep in the basis |R) all
sites up to the Manhattan distance n. In other words, one
has to deal with vectors of dimension Z;:o A%) ~nd at
each step of the iteration H|un,) = bk, |um—1) + am|um) +
bmt1|tumy1). Moreover, to get an off-diagonal matrix
element, one needs to repeat the whole calculation twice
(and to appropriately increase the dimension of the basis).

In contrast, our method deals directly with the matrix
elements of the resolvent, not of H, in the basis {|R)}.
One immediate advantage is that we can take symmetries
(if any) into account. Instead of finding a new basis
in which the matrix of eqs. (4) can be inverted, we
use the fact that because of nearest-neighbour hopping
the equations of motion can be put into the recurrence
form of eq. (9) which allows for a solution in terms of
a continued fraction of matrices. The dimension of the
largest matrix V,, scales like n9~! since it contains only
the sites on the hypersurface of Manhattan distance n,
while the recurrence method groups all the sites in the
volume bounded by this surface together. This is why our
method involves much smaller matrices, and therefore can
be used up to much higher n. Furthermore, it also gives all
the Green’s functions with |R; — Ra| <n from the same
calculation.

If |ug) :C(T)|0> has the electron at origin, both calcu-
lations truncated at iteration n+1 give the spectrum
for a finite system with open boundary conditions and
which includes only sites up to Manhattan distance n
from the origin. The Green’s function is a sum of poles
describing the discrete states of this finite-size system. If
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Fig. 1: (Color online) 3D DOS p(w)=—2Im G(0,0,0,w) wvs.
the cutoff N. Panels (a), (b) and (c¢) are for n=0.1, (d) is
for n=10.01 and (e) for n=0.001. Panels (c), (d) and (e) are
for w/t = —1.5. The dashed black lines in all panels show the
numerical integration results. See text for more details.

n is large enough that level spacings are less than 7, the
Green’s function converges smoothly towards that of the
bulk system. Another way to see this is that 7~ 1/n is
the lifetime of the electron. If 7 is short enough and n is
large enough, the electron cannot reach the boundaries
of the system, and this simple truncation procedure gives
an excellent approximation. For a small 7, one needs to
either go to a large enough n or to find a better truncation
scheme.

In figs. 1 and 2 we show results for d =3, to substanti-
ate our claims. They are compared against highly accurate
(but very slow) numerical values obtained with Mathe-
matica from eq. (3). We start with results obtained with
the truncation Ax41(2z) =0. We plot the density of states
(DOS) p(w) =—1Im G(0,0,0,w) vs. the cutoff value N
for energies in the gap in fig. 1(a), and in the contin-
uum in fig. 1(b). Since p(w) = p(—w) we only explore the
w < 0 region. As expected, for energies in the gap |w| > 6t,
results converge fast to the expected values, shown by the
dashed black lines —the further away from the band-edge,
the faster the convergence. This is because in the gap the
propagators decrease exponentially with the distance, as
there are no eigenstates at these energies. The character-
istic lengthscale increases with 1/(Jw|—6t) and is insen-
sitive to 7 unless one is very near the band-edge. Thus,
An+1(2) =0 is good enough for energies in the gap, and
a very small N suffices to achieve high accuracy.

Figure 1(b) shows results for w/t = —5.5,—3.5, —1.5 and
a rather large n/t=0.1. Here n controls how fast the
solution convergences, since 1/n defines the “lifetime”. In
all cases a cutoff N ~ 50 suffices, although full convergence
is rather slow. This is clearer in fig. 1(c), where the
w/t=—1.5 data (circles) is shown on an expanded scale.
It oscillates about the expected value (dashed line) with
a decreasing amplitude. This is problematic, because it
suggests that the appropriate cutoff value N scales like
1/n, making convergence difficult for small 7.

Re G(n,m,k,z) Im G(n,m,k,z)
0.02 ———— 0.02 —————
¥ 0 0eca o, ® ° e o] N A_A‘;AAA FVOVVVVIVIV VOV WY
0.01 [BReSTateetutoeeeTuteststene
L (a) | 0.001- ()
0.00 _ ..l--....'-'-.-----. S SOV S
—— =egiytant W -0.021- B
-001 ] I o 1=10, m=0, k=0| |
- _ N L A n=5, m=5,k=0| _|
—0.02- ] 0.04 = nod me3. k=3
-0.03 " adhiassiasaahansaais]  -0.06k%m
. . I . ! . . I . I .
0'0450 60 N 70 80 50 60 N 70 80

Fig. 2: (Color online) Various G(n,m,k,z) for z/t=—1.5+
0.017 vs. N. Solid lines show numerical integration results.

Thus, here we need a better truncation than Ay, =0.
The red squares in fig. 1(c) show our best solution,
obtained by assuming that for very large Manhat-
tan distances N=n+m-+k>1, we have asymp-
totic dependence G(n+1,m,k,z)~Gn,m+1,k,z)~
G(n,m,k+1,2) =A(2)G(n,m,k,z) with |A(z)|<1, in
other words all propagators decrease at the same rate, as
N increases. This is certainly true [11] for d=1,2 and
although we have been unable to prove it in higher d,
it is a reasonable guess in the continuum limit N > 1.
Equation (4) then becomes z+ dt[A(z)+1/A(2)]=0,
from which the physical solution |A(z)|<1 is imme-
diate. As expected, for |w|<2dt, 1—|A(2)|~n, i.e. in
the continuum 7 indeed controls how fast the physical
solution decreases with IN. The new “initial guess” is
extracted from eq. (4) by replacing the propagators
corresponding to N +1 by A(2)G(n,m,k,z). This gives
an approximate relation between Vy and Vy_; and
therefore an initial guess for Ax(z). Note that this new
truncation automatically identifies the proper location of
the continuum |w| < 2d¢. This is to be contrasted with the
various termination schemes for the recurrence method
described in ref. [13].

Figures 1(d), (e) show results for n/t=10"2, 102 for
this new Ay (z). The spread increases with 1/, but slowly.
Accurate values are obtained averaging over a range of
N. The solid lines show best fits for consecutive ranges
of 20. The average values for these intervals converge
monotonically, e.g. for n/t=10"2 the average over the
60-80 range is 0.143701, while that over 100-120 is
0.143740; the integration result is 0.143739. Thus, one gets
decent accuracy even with N < 80, which requires vectors
V,, of dimension below 600. To go to N =80 in 3D with
the recursion method, one needs to work with vectors of
dimension 695681; the mismatch is worse as N increases.

The accuracy is maintained for finite Manhattan
distance, as shown in fig. 2 for G(n,m,k,w) with
n+m+k=10. Averaging over the 50-60 range already
gives relative errors below 0.006, and they decrease fast
with increased range/N values. Of course, the average
must be over values obtained from cutoffs NV larger than
the distances of interest, but even inside the continuum
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Fig. 3: (Color online) (a) DOS ws. w for small magnetic
fields, for a square lattice. Equally spaced Landau levels
(broadened by 1n=0.01) are observed; (b) energy difference
AE between the first Landau level and the bottom of the
band vs. ¢/¢g. Circles show the data, the line is the prediction
in the continuum limit.

one does not need to use very much larger N to achieve
convergence.

Our method generalizes trivially to hypercubic lattices
with anisotropic nn hopping including phases due to
an external magnetic field and/or spin-orbit coupling
terms [15], to addition of on-site disorder, or to having
multiple orbitals per site, since in all these cases the nn
hopping links V,, to only V,,_; and V,,;1 and the solution
carries over. As an example, consider the 2D square lattice
in a homogeneous transverse magnetic field B. If one
uses the symmetric gauge A(r)=2(—y,z,0), then the
lattice Green’s functions remain highly symmetric with
G(n,m,z)=G(m,—n, z) =G(—n, —m, z) = G(—m, n, z)
so the number of distinct Green’s functions with a
Manhattan distance N =|m|+ |n| is dim(Vx)=N. The
vector potential modifies the hopping integrals by adding
Peierls phases t;; — texp (% fij Adr). This changes the
matrix elements of a,(w) and G,(w), but nothing else:
the same method works for any value of ¢/¢g.

To prove this, we look first at the ¢/¢g— 0 limit in
fig. 3(a). In this case, the magnetic length is very large
and the solution must agree with the one in the continuum
limit. In particular, at the bottom of the band where the
dispersion can be approximated in the parabolic limit, we
expect to see the emergence of the Landau levels [16].
Instead of the continuous band E(k)~ —4t + h%k?/(2m),
where m = h%/(2ta?®), the spectrum should consist of
equidistant Landau levels E,, = —4t + (n + %)hwc with the
cyclotron frequency hiw. = eB/m. Indeed, as the magnetic
field is turned on, the (almost) constant 2D DOS of the
free electrons fractionalizes into a sum of discrete peaks
(here broadened by n=10.01). As B increases, the spacing
between levels increases linearly, as does the DOS at
the peak values. To check this, in fig. 3(b) we plot the
distance between the location of the lowest energy peak
and the bottom of the band, which should be AFE =
hwe/2 =2mt¢/do. The thick line shows this prediction, in

p(w) P(®)
L (b) |
0.8 47 T
08 g
0.6 g
0.6 g
041 —
041 g
02} i
0211 ¢rg=10/31 i
Hl— o/0,=1/3
1 T 1 T 1 T I
0 Y826 2422 2

o/t

Fig. 4: (Color online) (a) DOS wvs. w showing two examples
of the Hofstadter butterfly on the square lattice. (b) As the
flux is decreased from 1/3 to 10/31, the lower band of the 1/3
Hofstadter butterfly splits into 10 distinct bands. See text for
more details.

excellent agreement with the data (circles) for small B.
As B increases, non-parabolic corrections kick in and
differences become apparent (this is also seen in panel
(a), where the B=0 DOS is not constant, as expected
in the parabolic limit). As a technical aside, this data was
obtained in minutes on a regular desktop, starting from
AN =0 for N ~200. As gaps open for larger ¢/¢g values
the convergence is much faster: for ¢/¢o=0.01 a cutoff
N ~ 50 gives already perfectly converged data.

The same method can be used to look at the Hofstadter
butterfly, for large ¢/¢o. As explained, if ¢/po=p/q
we expect ¢ distinct (possibly touching) bands. This is
demonstrated in fig. 4(a) for ¢ =2 and ¢ = 3. In fig. 4(b) we
show the high sensitivity to the value of ¢: changing ¢/¢o
from 1/3 to 10/31 should result in the 3 bands splitting
into 31. Indeed, the lower band (and by symmetry, the
upper one) split into 10 new bands each, whereas the
central band splits into 11 new bands (not shown).

While all of this is well known, it is worth emphasizing
again that all these results are obtained from the same
code, by simply changing the Peierls phases appropriately.
The method works just as well for ¢/do =1/1000 (small-
est value shown in fig. 3(b), which has 1000 bands and a
magnetic unit cell of size 1000) as it does for ¢/¢po=1/2.
In fact, one does not even need to choose ¢/do=p/q
(however, in a computer any number is approximated
to a rational value). Moreover, the method can deal
just as easily with inhomogeneous magnetic fields —the
LDOS will then vary in space, but it can be calculated
anywhere with the same method, simply adjusting the
Peierls phases.

Another advantage becomes apparent when considering
that magnetic fields can just as easily be treated in 3D
systems (and as shown below, on many types of lattices),
for any orientation of B desired. Again, this simply
modifies hopping integrals but nothing else. Because we
obtain directly the density of states, it is then trivial
to estimate the location of the Fermi energy for any
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Fig. 5: (Color online) Indexing of sites on (a) 2D triangular;
(b) 2D honeycomb; (¢) 3D face-centered, and (d) 3D body-
centered lattices, for which nn hopping links only sites with
“Manhattan distances” i+ j, respectively i+ j + k, that vary
by £1 or 0.

desired electron concentration, and calculate the magnetic
field dependence of various thermodynamic and transport
quantities. As shown in 2D, this can be done for arbitrarily
small magnetic fields, and it therefore permits the easy
study of quantum oscillations such as the de Haas - van
Alphen phenomenology, on realistic discrete lattices, away
from simple continuous models.

Indeed, the method also generalizes to other lattices,
such as triangular and honeycomb in 2D and BCC and
FCC in 3D. The reason is that nn hopping on these
lattices also changes a certain “Manhattan distance” only
by £1 or 0, if the lattice sites are indexed appropriately.
This indexing is shown in fig. 5(a) and (b) for triangu-
lar and honeycomb lattices, and indeed links any site ij
with a “Manhattan distance” n =1+ j to only sites with
Manhattan distance n 41 (for honeycomb) and also n, for
triangular lattices. In the latter case, the recurrence rela-
tion changes to v,(2)V,, = an(2)Vi—1 + Bn(2)Vpt1, where
Yn is another known sparse matrix. The solution is still
of the general form V,, = A,(2)V,_1, but now A,(z)=
[Yn(2) = Bn(2)Ans1(2)] "t (2). The calculation therefore
proceeds in essentially the same way.

The same is true for BCC and FCC lattices, if one uses
the “Manhattan distance” n =1+ j + k where the lattice
sites R;j, =ia+ jb+ kc are defined in terms of the unit
vectors shown in figs. 5(c), (d). For the FCC lattice,
nn hopping links site (i,7,k) to its 6 nn in the same
(111) triangular layer, namely (i £1, 7, k); (4,5 = 1,k) and
(i£1,jF1,k); and 3 nn each in the (111) layer above,
(i,7,k+1), (i—1,5,k+1), (i,7j—1,k+1), respectively
below, (¢,j,k—1),(i+1,5,k—1),(i,5+1,k—1). Al
12 nn sites have Manhattan distances of either n — 1,n or
n + 1. Similarly, for the BCC lattice a site (4, j, k) is linked
to its 4 nn sites in the layer above, (i,5,k+1), (i — 1,7,k +
1),(,7—1,k+1) and (i —1,j —1,k+1), respectively in
the layer below, (4,7, k—1),(i+1,5,k—1),(¢,j+ 1,k —1)

and (i+1,7+1,k—1). All these neighbours have
Manhattan distances of either n or n+ 1, so the method
works in the same way. Again, generalizations to
anisotropic hoppings, addition of magnetic fields or
spin-orbit coupling, multiple orbitals per site, disorder,
etc. are all straightforward.

Finally, while we focused here on bulk calculations, the
method also works near a surface, which is defined by
the absence of hopping across it (other parameters near
the interface can be changed as well). None of this affects
the overall structure of recurrence relations. If the surface
is smooth and the “in-plane” momentum k| is a good
quantum number, then for any value of k| one needs to
solve a 1D recurrence relation tracking the distance from
the surface, which often can be solved analytically [4]. This
allows one to look at the spectrum of surface states and
their dispersion with the in-plane momentum for a single
surface, since the system is semi-infinite. This is important
for identifying topological insulators, and our method is
much more efficient than the brute force diagonalization
of finite-size systems, currently used in the literature.

In conclusion, we have presented a new efficient way to
compute Green’s functions for models with nn hopping,
solving a long-standing cumbersome numerical challenge.
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