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Abstract –We investigate the existence of end points in the dispersion of Holstein polarons in vari-
ous dimensions, using the Momentum Average (MA) approximation which has proved to be very
accurate for this model. An end point separates momenta for which the lowest-energy state is
a discrete level, i.e., an infinitely-lived polaron, from those where the lowest-energy feature is a
continuum in which the “polaron” is signalled by a resonance with a finite lifetime. While such
end points are known to not appear in 1D, we show here that they are generic in 3D if the particle-
boson coupling is not too strong. The 2D case is “critical”: a pure 2D Holstein model has no end
points, like the 1D case. However, any amount of interlayer hopping leads to 3D-like behavior.
As a result, such end points are expected to appear in the spectra of layered, quasi-2D systems
described by Holstein models. Generalizations to other models are also briefly discussed.

Copyright c© EPLA, 2010

Introduction. – Understanding the properties of a
novel material is inherently linked to understanding the
physics of its underlying quasi-particles. The formation
of such quasi-particles is a very old problem that comes
up again and again in condensed matter physics. In
particular, the formation of a quasi-particle qp due to
the coupling of the particle to bosonic degrees of freedom
is relevant in many systems of current interest, such as
manganites, cuprates, most other oxides, various organic
materials, etc. [1–4]. This coupling can be to phonons,
magnons, orbitons, or any combination thereof, and the
resulting composite object is known as a polaron.
Such polaron problems continue to attract considerable

analytical and numerical interest, particularly for simple
lattice Hamiltonians like the Holstein model [5] which can
be studied by many means [6]. The ground state is a
discrete eigenstate, i.e., it describes a true quasi-particle
with an infinite lifetime. At higher energies, however,
the eigenstates may describe incoherent scattering of the
particle on bosonic excitations, and have finite lifetimes.
One important question which has not been answered

for lattice models of polarons, and which we settle for
the Holstein polaron in this letter, is whether the lowest
eigenstate for a given momentum is an infinitely-lived,
discrete state throughout the Brillouin zone, or not. The
existence of end points for a dispersion curve has been first
discussed in the context of the He4 excitation spectrum
by Pitaevskii [7]. In the context of polaron physics, they
are known to appear in the dispersion of the Fröhlich

(a)E-mail: goodving@phas.ubc.ca

polaron [8,9], which is a three-dimensional, continuous
model. It is interesting to see if similar phenomenology
is possible for lattice models, and under what conditions.
As we show below, the answer depends strongly on

both the dimensionality of the system, and the value
of the effective particle-boson coupling. At first sight,
the former seems surprising, since many authors have
demonstrated that dimensionality plays a very small role
in determining the qualitative features of the ground-
state properties of the Holstein polaron [10–12]. However,
the bare electron and polaron densities of states vary
significantly with dimension [12,13], and this plays an
essential role in deciding whether a discrete level is
pushed below the polaron+one-phonon continuum, or not.
This continuum appears at Ω (the energy of the boson,
modelled as an Einstein mode) above the ground-state
energy, and describes excited states with a boson far from
the polaron [14].
That the effective coupling is also very important is, on

the other hand, not surprising. At very large couplings, the
polaron effective mass is exponentially large, and therefore
the polaron dispersion is very flat. As a result, one expects
that the entire polaron band fits below the continuum,
i.e., a true quasi-particle state exists at low energies in
the entire Brillouin zone. At weaker couplings, however,
the polaron dispersion is considerable and its band may
overlap with the continuum at larger momenta. For the
most studied case —the 1D chain— it is well known
that irrespective of the coupling, (at least) one discrete
state is pushed below the continuum everywhere in the
Brillouin zone, although it flattens out just underneath
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the continuum at larger momenta. We show here that this
is not true in 3D, where at weak couplings, an infinitely-
lived polaron exists only in a finite region near the Γ
point. The 2D case is marginal: while a low-energy discrete
state always exists in a purely 2D model, any amount
of 3D anisotropic hopping renders the system effectively
3D-like, and the transition from a true quasi-particle to
a resonance becomes possible if the coupling is not too
strong. In other words, layered quasi-2D systems are not
guaranteed to have a long-lived quasi-particle as the low-
energy eigenstate throughout the Brillouin zone.

Formalism. – Our results are based on the Momen-
tum Average (MA) approximation, initially developed to
study the Holstein model [11] and then extended to more
complex models [15]. The approximation allows one to
sum all self-energy diagrams, albeit with exponentially
small contributions discarded so that this sum can actu-
ally be performed analytically. The MA approximation
has been shown to be accurate for all parameters (except
the extremely adiabatic limit), in all dimensions, and
for all energies. Furthermore, the approximation satisfies
the first six spectral weight sum rules exactly, and all
higher-order sum rules to a good degree of accuracy. It
can also be systematically improved by including addi-
tional states, allowing for the correct reproduction of
the polaron+one-phonon continuum. These improvements
also lead to increased accuracy. Recently, the MA approx-
imation has also been generalized to treat broken trans-
lational symmetry, due to disorder or surfaces [16], and
also to obtain two-particle Green’s functions needed for a
calculation of the optical conductivity [17]. In conclusion,
the MA approximation is a powerful and well-understood
tool that allows us to understand very accurately the
Holstein polaron physics. Also, because it is an analytical
approximation, we can easily probe large regions of para-
meters space that are difficult for numerical techniques to
investigate, especially in higher dimensions.
The Holstein model describes the simplest possible

electron-phonon coupling on a lattice, and is given by [5]:

H=
∑

k

(

εkc
†
kck+Ωb

†
kbk

)

+
g√
N

∑

k,q

c†k−qck
(

b†q+ b−q
)

.

The first term is the kinetic energy of the free electron,
with c†k being electron creation operators for a state with
momentum k (the spin is irrelevant in this model, and we
ignore it in the following). For the free-electron dispersion,
we use nearest-neighbour hopping on a d-dimensional
simple hypercubic lattice of lattice constant a:

εk =−2t
d
∑

i=1

cos(kia). (1)

The coupling is to a branch of Einstein optical phonons
of frequency Ω, where b†k and bk are the phonon creation
and annihilation operators. The last term describes
a momentum-independent on-site linear coupling
g
∑

i c
†
i ci(b

†
i + bi), written in k-space. All sums over

momenta are over the first Brillouin zone. For all results
shown here, the total number of sites N is taken to be
infinity. We also set �= 1 and a= 1 throughout.
The MA approximation has been applied to the Holstein

model previously, and its meaning and accuracy is very
well understood [11]. Although the MA(0) level of approx-
imation has been shown to be quite accurate at describing
ground-state properties, it fails to reproduce the correct
location for the polaron+one-phonon continuum. At the
MA(1) level and beyond, this continuum is accurately
reproduced. While the discussion and conclusions below
do not qualitatively depend on the precise location of this
continuum, we employ the more accurate MA(1) level so
that our results are quantitatively accurate.
Application of the MA approximation to the

Holstein Hamiltonian allows us to calculate the
single-particle (retarded) Green’s function, defined

as G(k, ω) = 〈0|ck(ω−H+ iη)−1c
†
k|0〉 [18]. The solution

for this Green’s function can be written in the standard
form [11]:

G(k, ω) =
1

ω− εk−ΣMA(n)(k, ω)+ iη
, (2)

with the MA(1) self-energy given by

ΣMA(1)(ω) =
g2ḡ0(ω̃)

1− gḡ0(ω̃) [A2(ω)−A1(ω−Ω)]
, (3)

where

ḡ0(ω) =
1

N

∑

k

G0(k, ω) (4)

is the momentum average over the Brillouin zone of the
free propagator G0(k, ω) = (ω− εk+ iη)−1. The functions
An(ω) are infinite continued fractions, defined as

An(ω) =
ngḡ0(ω−nΩ)

1− gḡ0(ω−nΩ)An+1(ω)

=
ngḡ0(ω−nΩ)

1− (n+1)g
2ḡ0(ω−nΩ)ḡ0(ω− (n+1)Ω)

1− · · ·

. (5)

We have also used the short-hand notation ω̃= ω−Ω−
gA1(ω−Ω). As discussed at length elsewhere [11], this MA
self-energy is k-independent simply because the Holstein
model is so featureless. Indeed, momentum dependence
for Σ(k, ω) is obtained for the Holstein model for MA(n)

with n� 2 (although it is very weak). For other models
with momentum-dependent couplings, a k-dependent self-
energy is found even at the MA(0) level [15]. Further details
on the derivation and meaning of the MA approximation
can be found in ref. [11].
With an explicit expression for the Green’s function of

the Holstein polaron, we calculate the spectral weight

A(k, ω) =− 1
π
ImG(k, ω), (6)

from which we can extract the polaron dispersion, average
number of phonons, effective mass, etc. [11]. In our
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calculations we employ a small but finite value for η. This
moves the poles of Green’s function off of the real axis
and changes the δ-peaks of the spectral weight A(k, ω) =
∑

α |〈α|c
†
k|0〉|2δ(ω−Eα) into Lorentzians. In practice, it

is necessary to choose η small enough to allow detection
of the Lorentzian peaks in regimes where the qp weight
is extremely small. It is also convenient to define the
dimensionless coupling constant λ= g2/(2dΩt). We now
turn our attention to the conditions that lead to the
formation of an infinitely-lived polaron.

Results. – Separating the self-energy in terms of its
real and imaginary parts, Σ(ω) =Σ′(ω)+ iΣ′′(ω), we can
write the spectral function in the following form:

A(k, ω) =
1

π

η−Σ′′(ω)
[ω− εk−Σ′(ω)]2+ [η−Σ′′(ω)]2

. (7)

We are interested in the dispersion of the polaron,Ek. This
can be found by tracking the lowest pole in the spectral
weight [11], its energy being the smallest value of ω which
satisfies

ω− εk =Σ′(ω). (8)

This is a discrete eigenstate (not the lower edge of
a continuum), if the imaginary part of the self-energy
vanishes:

Σ′′(ω)|ω=Ek = 0. (9)

The latter requirement is essential, as eq. (7) does not
have singular behavior when the imaginary part of the
self-energy is finite. If eq. (9) holds, we call the solution a
true polaron qp, meaning that it has an infinite lifetime. If
eq. (9) is not satisfied, then the lowest-energy feature is not
a discrete state but the polaron+one-phonon continuum.
In this case, we find the energy where this continuum has
a maximum in the density of states (DOS), and call it
a polaron resonance. This resonance has a finite lifetime
which, for simplicity, we take to be equal to 1/Σ′′(ω),
where ω is its energy1.
As mentioned, the onset of the continuum is at E0+Ω,

where E0 is the ground-state energy of the polaron [11,14],
therefore for ω <E0+Ω it is guaranteed that Σ

′′(ω) = 0.
To summarize, we thus look for the region(s) in parameter
space where Ek, the lowest-energy solution of eq. (8),
satisfies Ek <E0+Ω. If this condition is satisfied, we have
a true polaron bound state at that momentum. Otherwise,
we have a polaron-like resonance with a finite lifetime lying
inside the continuum, as described above.
Obviously, it is the self-energy that controls which of

the two possible cases is encountered. To understand how
this occurs, we first quickly analyze the well-known 1D
case, where —as already mentioned— there is always a
true polaron qp state below the continuum. The reason
for this is made obvious by fig. 1(a), where we show a

1This definition of the lifetime is true only if the resonance is
narrow, otherwise one should use the width at half amplitude. Just
above the critical point the resonance is very narrow, so we use the
former (simpler) definition.
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Fig. 1: (Color online) (a) The real part of the 1D self-energy
Σ(ω) vs. ω/t, and (b) the polaron dispersion Ek, for effective
el-ph coupling strengths λ= 0.1, 0.3 and 0.6. In (a) we also plot
ω− εk, for k= 0 (solid blue line) and k= π (dashed blue line).
The intersection of these curves with ReΣ(ω) give the polaron
energy eigenvalues, shown by the respective circles in (a) and
(b). The shaded areas indicate the onset of the continuum, i.e.,
where ImΣ(ω) �= 0.

geometric solution of eq. (8) for three different values
of the effective coupling λ. The real part of the self-
energy, Σ′(ω), goes asymptotically like g2/ω as ω→−∞,
so it starts as a negative function which, in 1D, diverges
and changes sign at a value marking the onset of the
polaron+one-phonon continuum (above this energy, in the
shaded regions, Σ′′(ω) becomes finite). The left-hand side
of eq. (8) is a straight line —the limiting k= 0 and k= π
are drawn explicitly— and a true polaron solution exists
if the two intersect below the onset of the continuum. The
divergence of Σ′(ω) ensures that in 1D there is always such
a solution. Its energy Ek is shown in fig. 1(b), where we
also plotted the onset of the continuum, E0+Ω, for the
three cases.
As expected, at very weak couplings and sufficiently

large k, Ek flattens out just below the continuum [14].
Geometrically, we see that this is due to the fact that
for a large region of the Brillouin zone, the intersection
between the two curves occurs very close to the divergence
in Σ′(ω), so the value of the solution ω varies little and is
asymptotically close to E0+Ω. The value of k where this
“flattening” begins is also easy to estimate for λ→ 0: in
this limit, to zero order in perturbation theory we must
have Ek ≈ εk, therefore the “flattening” must happen for
momenta k such that εk > ε0+Ω. Here, because of the
divergence in the free-electron DOS at the band-edge,
arbitrarily weak coupling to the phonons suffices to repel
a bound state below the continuum. As the coupling λ
increases, the self-energy curve shifts to lower energies,
but the divergence is always there.
Clearly, the next step is to understand why the self-

energy has this shape and in particular the reason for the
divergence in its real part. If such a divergence is always
guaranteed to mark the onset of the continuum, then a
discrete polaron state will always be found.
As already discussed, we are actually primarily inter-

ested in the limit of weak el-ph coupling, since at large el-
ph coupling the polaron band is very flat and guaranteed
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Fig. 2: (Color online) (a) The real part of ḡ0(ω) and (b)
the bare electron DOS (−1/π)Im ḡ0(ω), shown for d= 1, 2, 3.
A broadening factor of η/t= 0.005 has been used.

to obey Ek <E0+Ω everywhere in the Brillouin zone. For
weak coupling g→ 0, eq. (3) gives a self-energy

Σ(ω)≈ g2ḡ0(ω−Ω)+ · · ·=
g2

N

∑

k

G0(k, ω−Ω)+ · · ·

after using eq. (4). We recognize this as being the lowest-
order diagram contributing to the self-energy (the Born
approximation), in agreement with perturbation theory.
The correction ω−Ω→ ω̃ in the argument of ḡ0(ω) will
further shift the self-energy towards lower energies, and is
due to corrections from higher-order diagrams. However,
this shift cannot be responsible for the appearance of a
singularity in the real part of the self-energy.
It follows that for the Holstein model (we discuss other

models below) the real part of ḡ0(ω) controls the energy
dependence of Σ′(ω) for small λ, and therefore whether
it has a singularity or not. Both the real and imaginary
parts of ḡ0(ω) are shown for various dimensions in fig. 2.
Actually, the right panel shows (−1/π)Im ḡ0(ω), which
from eq. (4) is seen to be the bare electron total DOS.
Since ḡ0(ω) is the momentum average of a retarded

propagator, its real and imaginary parts are related by
Kramers-Kronig relations. Given that the imaginary part
(the DOS) is finite only inside the free-electron bandwidth
|ω|� 2dt, it follows that it is the DOS at the band-edge
that controls whether the real part has a singularity at
the band-edge energy: if the band-edge DOS diverges, or
at least has a discontinuous jump, then the real part has
a singularity at the band-edge; otherwise it is finite.
This explains why in 1D we always find a singularity in

the real part of ḡ0(ω), and therefore in Σ
′(ω): it is well

known that the free-electron DOS for nearest-neighbor
hopping in 1D has van Hove singularities at the band-
edges. In 2D, the DOS has discontinuities at the band-
edges. As a result, based on the discussion above, we
expect that in 2D a discrete polaron state must also exist
in the entire Brillouin zone, just like in 1D. However, this
is a very weak logarithmic singularity (as it is due to
a discontinuity, not a singularity in the DOS) and one
may expect that it can be easily removed. This is indeed
the case, as we show below where we analyze quasi-2D
systems.
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Fig. 3: (Color online) (a) The real part of the 3D self-energy
for an intermediate el-ph coupling λ= 0.7. The shaded region
shows where ImΣ(ω) �= 0. The straight lines show ω− εk curves
for k1 = π(0.2, 0.2, 0), k2 = π(0.3, 0.3, 0), k3 = π(0.44, 0.44, 0).
An intersection of ω− εk and ReΣ(ω) corresponds to a solution
of eq. (8); (b) contours of the end points for various el-ph
coupling strengths. The λ= 0.7 contour is shaded, and the
arrow marks the end point kc = k3 found in (a).

However, first we focus on the 3D case, where the
DOS at the band-edge is continuous, leading to a real
part of ḡ0(ω), and therefore to a low coupling Σ(ω) =
g2ḡ0(ω̃), that is finite everywhere. The geometric solution
of eq. (8) in this case is illustrated in the left panel of
fig. 3, for an intermediate effective coupling λ= 0.7. The
low-energy part of Σ′(ω) still resembles the real part of
ḡ0(ω), although due to higher-order diagrams, the shape is
somewhat distorted. The differences are more considerable
at higher energies (this issue is revisited below). The onset
of the continuum at E0+Ω is marked by a discontinuity
in the slope of Σ′(ω) (shaded area). Because Σ′(ω) does
not diverge below this energy, it is now apparent that
eq. (8) only has solutions with Ek <E0+Ω up to a critical
value kc which marks the “end point” in the polaron
dispersion [9]. For λ= 0.7 and along the (1, 1, 0) direction,
the critical value is at kc = π(0.44, 0.44, 0), as shown in
fig. 3(a).
Repeating this along various directions allows us to

identify the surface described by the “end points” kc in
the Brillouin zone, which marks the separation between
the region near the Γ point where an infinitely-lived
quasi-particle exists, and the region near the edges of the
Brillouin zone where only a resonance with a finite lifetime
appears. The end points contours in a quadrant of the
kz = 0 plane are shown in fig. 3(b), for various values of λ.
The arrow marks the particular kc found in fig. 3(a).
For any given value of the phonon energy, the smallest

surface of end points is for λ→ 0. By analogy with a
previous discussion, in this case we can estimate it to be
given by εkc ≈ ε0+Ω, since for λ→ 0, Ek ≈ εk. It follows
that for any Ω> 0, there is a vicinity of the Γ point where a
true polaron exists. In general, however, there are regions
in the Brillouin zone that do not satisfy this condition
for small λ. Indeed, since the maximum value of εk is 6t
while ε0 =−6t, we estimate that for any Ω< 12t there
exist such regions of momenta without an infinitely-lived
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Fig. 4: (Color online) The (a) real and (b) imaginary parts of
the 3D self-energy, for increasing el-ph coupling strengths. The
self-energy becomes divergent for large enough coupling.

polaron state. Ω< 12t is likely to hold in most materials,
therefore such a case is rather typical. If Ω is not too
large, then in the limit λ→ 0 the surface of end points is
spherical, since at low energies the free-electron dispersion
can be approximated by a parabola. As either Ω or λ
increase, the shape will expand and distort, due to non-
parabolic corrections, as seen in fig. 3(b) for increasing
λ. For any value of Ω< 12t, there is a critical value λc > 0
above which an infinitely-lived polaron solution appears in
the entire Brillouin zone. For Ω= 0.5dt, fig. 3(b) reveals
that this λc is just above 0.84.
As already discussed, the fact that a true polaron solu-

tion exists everywhere in the Brillouin zone at strong(er)
coupling is not surprising, because the significant increase
in the polaron effective mass guarantees that eventually
the whole polaron band will fit below the continuum.
In terms of the geometrical solution, what happens is
revealed in fig. 4 which shows that for large enough λ, the
real part of the self-energy does eventually gain a singu-
larity at low energies. This divergence is a higher-order
effect, not coming from a divergence/discontinuity in the
DOS, but due to the structure of the self-energy itself.
Equation (3) reveals that at large enough el-ph coupling
g, the denominator itself can vanish giving rise to a differ-
ent type of divergence in the self-energy. The appearance
of this divergence explains the phenomenology related
to λc (for Ω= 0.5dt, this divergence is first observed
at λc = 0.842). Physically, it is linked to the formation
of the second bound state [11,19], which is known to
form below the polaron+one-phonon continuum as the
crossover towards the small polaron regime is approached
for λ∼ 1.
For completeness, we mention that as the coupling

increases further, more and more divergences appear in
Σ′(ω) due to the structure of the continuous fractions,
see eq. (5). These additional divergences occur at higher
and higher energies that are well above the onset of the
continuum, thus they are not relevant for the problem we
consider here (they are linked to the crossover towards
a Lang-Firsov type of spectrum expected in the limit
λ→∞).
What happens for λ< λc as we sweep through kc is

shown in fig. 5(a), where we plot the spectral weight
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Fig. 5: (Color online) (a) The spectral weightA(k, ω) vs. ω with
ky = kz = 0, and kx/π= 0, 0.2, 0.4, 0.6, 0.8, 1.0. The dashed line
denotes the onset of the continuum. With the parameters
shown, there is no longer a polaron qp for kx/π > 0.48, but
a polaron-like resonance. (b) The lifetime of the polaron-like
resonance as a function of momentum. The dashed lines denote
the transition to an infinitely-lived polaron state.

A(k, ω) vs. ω, for several values of k. The onset of the
continuum is marked by the dashed vertical line. For
momenta below kc, we see a Lorentzian peak below the
continuum. Its width is controlled by η. This is the discrete
level whose energy is Ek. As k increases, Ek approaches
the continuum. Unlike in 1D and 2D cases, however, where
the singularity/discontinuity in the DOS ensured that
a discrete level is always pushed below the continuum,
here we see that above kc, the low-energy feature is
the continuum, with a broad maximum that disperses
towards higher energies while broadening even more as
k increases —this is the polaron resonance. Its lifetime
τ = 1/Σ′′(ω) where ω is its energy, is shown in fig. 5(b)
along various cuts in the Brillouin zone (see footnote 1). It
diverges as kc is approached from above, and it decreases
very fast towards the edges of the Brillouin zone. This is
a T = 0 calculation, so this finite lifetime is an intrinsic
effect. While the divergence at kc is present in all cases
we investigated, the exponent a in the fit τ ∼ |k−kc|−a
does not seem to be universal. We found values ranging
between 0.4 and 0.8, depending on λ, Ω/t, the direction
of the cut, etc. The same is true for the dispersion Ek
just below kc. While we can confirm the conjecture [8]
that dEk/dk→ 0 as k→ kc, fits of Ek−Ekc ∼−|k−kc|b
produce exponents b ranging between 1.3 and 2. We do
not know if this lack of universality is intrinsic behavior,
due for example to non-parabolic effects in εk, or is due to
the MA approximation. Comparison with highly accurate
numerical methods, such as of ref. [9], are needed to settle
this issue.
Based on all these results, we can now quickly analyze

the 2D case. For a purely planar 2D hopping model, the
well-known discontinuity in the DOS at the band-edge
guarantees that a low-energy singularity always exists in
Σ′(ω), see fig. 2. As a consequence, a true polaron is
guaranteed to form for all k at any λ, just like in 1D.
However, most layered materials are in fact quasi-2D,
because there is some small anisotropic hopping between
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Fig. 6: (Color online) Anisotropic hopping —transition from
2D to 3D DOS.

different planes. The effect of a small tz = 0.1t on the ḡ0(ω)
function is shown in fig. 6. Any tz 	= 0 will smooth out the
band-edge discontinuity in the DOS, and remove the weak
singularity in the real part of ḡ0(ω) and in Σ

′(ω) at weak
coupling. As a result, quasi-2D systems behave similarly to
3D systems: for weak-to-intermediate coupling, we expect
that a surface of end points separate the region near Γ
where a true polaron quasi-particle forms, from a region
near the Brillouin zone edges where only a finite-lifetime
resonance appears. The detailed shape of this surface and
the critical couplings λc above which a true polaron exists
everywhere will, of course, depend on the parameters of
the problem. However, the reasons we uncovered here to
explain this phenomenology are robust and therefore such
surfaces of end points should be quite generic in quasi-2D
and 3D materials with not too large el-ph coupling.
The existence of such surfaces of end points, especially

in layered systems, should be directly visible using angle-
resolved photo-emission spectroscopy [20]. This technique
measures the spectral weight and should be able to iden-
tify significant changes in its shape, like those shown
in fig. 5(a). Very different temperature dependence of
features in different regions of the Brillouin zone would
also be consistent with such phenomenology, because the
true qp peaks should only exhibit thermal broadening,
while the finite-lifetime resonances have an intrinsic life-
time. Of course, many other properties should be strongly
influenced by the existence of such a surface of end points,
especially if the Fermi surface is not too far from it (this
statement assumes that interactions between polarons do
not qualitatively change this phenomenology. Whether
this is the case or not is a very interesting question which
still awaits resolution).
To summarize, for a Holstein model and weak-to-

intermediate coupling one can deduce easily whether an
infinite-lifetime polaron qp is expected everywhere in the
Brillouin zone or not simply from knowing whether
the DOS of the free electrons is continuous or not at the
band-edge. To pinpoint the surface of end points, more
detailed calculations like the ones shown here are needed.
For more complicate polaron models, with a particle-
boson coupling that depends on either (or both) the
particle and boson momentum, and also with a possibly

dispersing boson mode, one can certainly gain intuition
about what is likely to happen from studying the Born
approximation Σ(k, ω)≈ 1

N

∑

q |gk,q|2G0(k−q, ω−Ωq)
and whether it generically predicts infinitely-lived quasi-
particles for all k or not (if there are no end points
at weak coupling, they are very unlikely to appear at
stronger couplings for reasons already discussed). If either
gk,q or Ωq have strong momentum dependence, then
Σ(k, ω) may acquire a sufficiently strong k-dependence
to modify the conditions found above for the Holstein
model. In particular, it is not a priori obvious that a
singularity in Σ′(k, ω) is then needed to guarantee a
discrete low-energy solution everywhere in the Brillouin
zone, if the momentum dependence is strong enough to
shift the curve around significantly.
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