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Holstein magnetopolarons: From Landau levels to Hofstadter butterflies
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We study the Holstein polaron in transverse magnetic field using nonperturbational methods. At strong fields
and large coupling, we show that the polaron has a Hofstadter spectrum, however, very distorted and of lower
symmetry than that of a (heavier) bare particle. For weak magnetic fields, we identify nonperturbational

behavior of the Landau levels not previously known.
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The single polaron is the quintessential example of a
dressed quasiparticle: as the electron interacts with bosonic
modes from its environment, such as phonons, magnons, or
orbitons, it becomes “dressed” by a cloud of bosonic excita-
tions. The properties of the resulting composite object, the
polaron, can be significantly renormalized as compared to
those of the bare particle. Accurate numerical'! and
analytical>? ways to study such problems for any strength of
the electron-boson coupling and in various dimensions have
been developed in recent years. This is to be contrasted with
the case of dressed quasiparticles in strongly interacting sys-
tems, whose clouds consist of particle-hole excitations. Ex-
cept for the few models with known exact solutions, their
study away from perturbational regimes is still hampered by
lack of accurate and efficient methods.

Even though it is known that polarons have complex
spectra, with substantial weight up to quite high energies
above the low-energy polaron band, it is quite customary to
expect that their behavior can be understood by thinking of
them as bare particles with a renormalized mass m*. In this
Rapid Communication, we test this assumption by studying
the response of polarons on two-dimensional (2D) lattices to
an applied transverse magnetic field B. Note that for weak
electron-phonon coupling, this problem has been studied ex-
tensively in continuous (as opposed to lattice) models using
perturbation theory, because of its relevance to magne-
totransport in 2D heterostructures.* For weak B fields, it con-
firms the above-mentioned expectation by finding that the
cyclotron frequency is defined by the polaron effective mass
m”. At strong fields, it predicts an “undressing” of the qua-
siparticle and a cyclotron frequency controlled by the bare
mass m.

We use accurate nonperturbational methods to study the
lattice problem for both weak and strong electron-boson cou-
pling. To the best of our knowledge, this is the first time that
a polaron lattice model in a transverse magnetic field has
ever been investigated nonperturbationally. For weak cou-
pling and weak fields we confirm the results of perturbational
studies at low energies. However, at higher energies we show
the emergence of a complex pattern not predicted before,
which is due to higher energy features of the polaron spec-
trum.

For large magnetic fields and strong couplings, we inves-
tigate the Hofstadter spectrum of small polarons. As is well
known, if the flux ¢)=Ba?® through the unit cell of a square
lattice with lattice constant a is ¢/ ¢g=p/q, where ¢y=h/e is
the quantum of magnetic flux and p and ¢ are mutually prime
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integers, the free-particle band splits into ¢ subbands, the
Hofstadter butterfly.” We show that this splitting into g sub-
bands holds for the small polaron as well. However, the pat-
tern is significantly distorted and of lower symmetry than
that of the bare particle, even for a coupling so large that
m*/m=100. This disagrees with the strong-coupling pertur-
bational prediction of a simple mass renormalization. Taken
together, these results show that at higher energies and/or for
intermediary electron-boson couplings, the behavior of po-
larons is quite different from that of bare particles with larger
mass m”.

Model. We investigate the Holstein model,® the simplest
and most studied lattice model of electron-phonon interac-
tions. The method we use is the momentum-average (MA)
approximation, which has been shown to be highly accurate?
not only for this but also for many other models, e.g., with
complex lattices, g(g) and g(k,q) coupling,’ and disorder or
inhomogeneities.” Here we show that MA can also treat mag-
netic fields without any further approximations. The Hamil-
tonian is

H=2 [1clci+Hel+ QX bib+g> cleb] +b)),
(i) i i

where i indexes sites on a square lattice and c;, b; are
electron/boson annihilation operators. The nearest-neighbor
(nn) hopping ; j— texp[’e 1) JA(r)dr] has a Peierls phase de-
fined by A(A=2(-y,x), Q is the energy of the Einstein
bosons and g is the strength of the electron-boson coupling.
For B=0, the spin of the electron is irrelevant and is custom-
arily ignored. For finite B, the spin degree of freedom is
responsible for a trivial Zeeman splitting between spin-up
and spin-down polaron states, which we also ignore in the
following.
The quantity of interest is the Green’s function,

Glirj, ) = 0lc,Glw)c]]0) = EW 0
- +1in

where |0) is the vacuum, (A}(w)=[fiw—H+i7]]‘1 is the resol-
vent, 7>>0 is infinitesimally small, and the second equality is
the Lehmann representation in terms of the single-electron
eigenstates H|a)=E,|a). In particular, we will focus on the
density of states (DOS),
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Because this Hamiltonian is invariant to translations, there is
no difference between local and total DOS.

The MA approach has been discussed at length
elsewhere;>>” we review here only the salient points. We
start with the MA© formulation, which is equivalent to a
variational expansion |a}=E,<,j,n¢,-,j,ncf(b;)”|0), ie., a cloud
with any number of phonons can form at arbitrary distances
from the electron but all phonons are restricted to be at the
same site.® Using this, we generate equations of motion link-
ing G(i,j,w) to the generalized Green’s function F,(i,;, ®)
:(O|c,»é(w)c}(b;)"|0>, as shown in Ref. 2. The first (exact)
equation reads

G(i,j, ) = Goli,j,w) + g 2, Fi(i,,w)Go(l,j,®).  (3)
1

For any n=1, we find within MA®©  that F,(i,j,o)
=gGO(j 5j5w_nﬂ)[nFn—l(i7j7 (1))+Fn+1(i,j, (.0)] This recur-
rence equation is solved in terms of continuous fractions? to
give F,(i,j,w)=A,(w)F,_(i,],w), where

ngGoy(j,j,w— nd)

B P P R PS E

are independent of j because H, is invariant to translations.
Using G(i,j,w)=Fy(i,j,w) in Eq. (3) gives

G(i,j,w) = Goli.j, 0 = 2pa0(w)], (5)

where 2 a0(w)=gA,(w). The only difference between this
and the B=0 solution is that here Gy(i,j,w) is the free-
electron propagator in the transverse magnetic field. This can
be calculated efficiently as shown in Ref. 9.

While MA©) is accurate in describing ground-state (GS)
properties for any effective coupling A=g?/(41()) so long as
one avoids the extreme adiabatic limit }/¢— 0, it does not
properly account for the polaron+one-boson continuum that
starts at Egg+{), where Egg is the polaron GS energy. This
feature in the spectrum is due to excited states with a boson
far away from the polaron. To properly describe it, one needs
to use MA() or a higher level.® At the MA!) level, the varia-
tional basis is augmented with states such as cj(b;)"bHO)
with [#j, i.e., precisely the states contributing to the con-
tinuum. The equations of motion now also involve general-
ized Green’s functions related to these states, which can be
solved similarly like for the B=0 case.” The final result is
similar to Eq. (5) but the self-energy has the more accurate
expression,

gZGO(jJ?a)
1= gGO(/’J’(B)[AZ((U) - Al(w - Q)] '

where @=w—-Q-3ya0(w—Q). Again, the only difference
from the B=0 result is the Gg(j,j,w) value. The self-
energy’s dependence only on w is due to the simplicity of the
Holstein model.> It becomes (weakly) nonlocal from the
MA® Jevel. Models with g(g) and g(k,g) coupling have
strong momentum dependence in 3 (Ref. 3) but a finite B

2MA<1)(w) =
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FIG. 1. (Color online) Density of states p(w) vs energy w, for
(a) A=0 and (b) A=0.2. Dashed lines are for B=0 (X5, for visibil-
ity) and full lines for ¢/ ¢po=0.005. The arrow in (b) marks the edge
of the polaron+one-phonon continuum. (c) Energies w, of the Lan-
dau levels vs n for ¢/¢y=0.0025, N=0.2. The solid line is the
prediction of Eq. (6); (d) the energy of the four lowest Landau
levels as a function of ¢/ ¢ for A=0.2. The lines are the predictions
of Eq. (6). Other parameters are r=1, Q=0.5, 7=0.002.

also only requires replacing free-electron propagators with
those in transverse field.

All the results shown below are for the MA(! level. Like
at B=0, this method is also equivalent to a summation of all
diagrams in the self-energy, up to exponentially small terms
discarded from each. The resulting Green’s function satisfies
exactly the first eight spectral weight sum rules and with
good accuracy the higher order ones.”? While we do not know
of any finite B numerical results for a direct comparison, the
fact that the field is exactly included in the free propagator
together with the arguments listed above, give us confidence
that MA remains at least as accurate at finite B as it is at B
=0.2

Results. We begin with a weak field and weak electron-
boson coupling, where we can compare with known pertur-
bational results.* In Fig. 1(a) we plot the DOS with/without
(full/dashed line) a very small field ¢/ ¢;=0.005, in the ab-
sence of electron-boson coupling A=0. The B=0 DOS is
increased fivefold for ease of view. As expected, it has a
sharp rise at —4¢ and then increases slowly. For B # 0, we see
the Landau levels (LLs) as a succession of Lorentzian peaks
with width defined by #.

Figure 1(b) shows the DOS at a weak coupling A=0.2.
The B=0 band edge has moved below —4¢ due to the forma-
tion of the polaron band. The top of the polaron band and the
jump marking the edge of the polaron+one-boson continuum
at Egg+{) are clearly visible (arrow). For B # 0, the polaron
band splits into LLs with smaller spacing. Figure 1(c) shows
their energies w, when ¢/ ¢,=0.0025. The line shows the
perturbational prediction,
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FIG. 2. Contour plot of the density of states p(w) vs ® and
&/ by € [0.005,0.06], for A\=0.2, 1=1, 0=0.5, 7=0.005.

1
ﬁwn=EGS+ﬁw:(n+5), (6)

where w,=eB/m" is the cyclotron frequency and we used the
B=0 value of polaron effective mass, m* and of Eqg. (Here,
Egg=—4.1288¢ and m"/m=1.0765). At low energies the
agreement is very good but it worsens as the LLs approach
the continuum. Note that as expected, as the spacings de-
crease near the top of the polaron band, so does the spectral
weight in each LL. Even for low LLs, the agreement is worse
at larger B, as shown in Fig. 1(d). The solid lines are Eq. (6)
using again m". The dashed lines show fits using a m*(B)
=m"*(1+yB), a correction to the polaron effective mass pre-
dicted by perturbation theory.* The agreement is much better
although v increases with n, it is not a constant. Neverthe-
less, we conclude that at low energies the agreement with
perturbation-theory predictions is good.'?

At higher energies, however, it is not. Figure 1(b) shows
very different DOS in the continuum than below it. The fail-
ure of perturbation theory here is not surprising. Reference 4
use the free-electron part as the large component while
electron+one-boson states are the small perturbation in the
wave function. This is an accurate description at low ener-
gies but it fails at the top of the polaron band and inside the
continuum, where the electron+one-boson states are domi-
nant (for small \) while the free-electron part is small. This
failure of nondegenerate perturbation theory at these higher
energies is well known for B=0 models, see, for example,
Fig. 4 of Ref. 11.

What happens at these higher energies and also higher
fields is shown in Fig. 2: the polaron LLs move to higher
energies as B increases, until reaching an avoided crossing at
an energy defined by the continuum band edge as B— 0, and
which also moves higher with B. Above it, we see a whole
sequence of such avoided crossings at energies that increase
faster and faster with increasing B.

The reason for this beautiful spectrum is easy to find. As
mentioned, the B=0 polaron+one-boson continuum is due to
excited states with a boson far from the polaron. At finite B,
the continuum splits in a set of excited discrete states of
energy fhiw,+{), each with a boson far from the polaron in a
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FIG. 3. (Color online) Density of states p(w) vs energy w, for
N=1.2, r=1, 0=0.5, and various magnetic fluxes ¢/ ¢,. The thick
black lines correspond to 7=5X 10~ while the thin red line in
panel (b) is for 7=107. The polaron band shows the Hofstadter
signature, splitting into ¢ subbands if ¢/¢y=p/q. Higher energy
features are not shown.

LL state. The DOS weights the spectrum with the overlap
with a free-particle (zero bosons) state, see Eq. (2), so it
vanishes at these energies. This explains the sequence of
avoided crossings that occur at energies () above that of the
low-energy LLs.

Perturbation theory* predicts an avoided crossing at fiw,
=, i.e., at ¢/ Ppy=0.04 for the values of Fig. 2. This is
wrong but not surprising since as mentioned, nondegenerate
perturbation theory is no longer valid at these energies. Per-
turbation theory also makes predictions about high fields
hw,.> ). Here, Hofstadter butterfly effects become impor-
tant for our model (they are absent in Ref. 4 which use con-
tinuous models). For small \, the DOS is quite complex
because of overlap with the continuum and higher energy
features. The results will be discussed elsewhere.

Instead, here we focus on another interesting question,
namely, how like a particle is a strongly dressed quasiparti-
cle? To answer this, we look at the Hofstadter spectrum of a
small polaron, for N> 1. As is well known, at B=0 the small
polaron band flattens considerably and a gap opens between
it and the higher energy features.!> This gap allows us to
look at the polaron response alone, avoiding overlap with
these higher energy features.

Figure 3 shows results for A=1.2, a value just above the
crossover into the small polaron regime.!?> Panel (a) is the
polaron band DOS at B=0. The GS energy is significantly
lower because of the much larger binding energy and the
bandwidth is very narrow because of the large effective mass
m”*. As mentioned, this band is now separated by a gap from
higher energy features.

Panels (b)—(f) show the low-energy DOS for a magnetic
flux ¢/ ¢y=1/6—1/2. The B=0 band indeed splits into ¢
subbands for ¢/ ¢y=p/q, as expected for a bare particle. For
larger g the subbands become narrower and a smaller 7 is
needed. In panel (b) the thin line shows the DOS for 7
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FIG. 4. Polaron energy E(k) (top) and quasiparticle weight Z(k)
(bottom) vs k, for B=0, t=1, Q=0.5, A=1.2.

— n/5. The peaks increase much less than five times, prov-
ing that these are true continua (although very narrow and
thus not yet fully converged at this 7), not discrete Lorentz-
ians. For smaller ¢ the subbands become much wider than #
and are already converged.

We have checked (not shown) that, as required, spectra
are unchanged if ¢/ dy— 1 = ¢/ ¢,. We also see that Egg(B)
increases significantly with ¢/ ¢, reaching its maximum at
¢/ ¢py=1/2, consistent with the Hofstadter spectrum of a par-
ticle on a square lattice.> However, there are also big differ-
ences. The polaron spectra are asymmetric: the lowest sub-
band has most of the weight and is quite distinct from the
other subbands. This is very unlike the Hofstadter spectrum
of the bare particle on a square lattice, which has particle-
hole symmetry.

This symmetry is lost even at B=0, where the DOS is not
symmetric about the center of the band. The reason (see Fig.
4) is that while the Van Hove singularity is still due to the flat
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E(k) along the (0,7)—(,0) line, it is now located just be-
low the upper band edge. Moreover, as shown in panel (b),
the quasiparticle weight is ~2 orders of magnitude smaller
here than near k=0. Taken together, these explain the
skewed shape of the B=0 DOS. They also show that nn
hopping with a ¢*/t=m/m*=exp(-g>/Q?) as predicted by
first order, strong-coupling perturbation theory,'?> is not
enough to fit E(k), even though m*/m=91. Second-order
perturbation adds second- and third-nn hopping,'?

o0k 2t2 —2(82/92)§L 8 2n
=== oge “a\a)

which also give a poor fit with nonmonotonic behavior along
all cuts shown in Fig. 4, except the (0, 7)—(7,0) line whose
flatness is preserved. Indeed, to reasonably fit E(k) one needs
to add cos(nk,a+mk,a) terms with up to |n|+|m|=6. In
other words, one needs to include terms at least up to sixth
order in perturbation theory in the hopping Hamiltonian to
properly describe it.

The long-range hopping in E(k) and the varying Z(k)
explain the asymmetry of the polaron Hofstadter spectra.
Taken together with the low-\ results, they also show that a
polaron is not behaving just like a bare heavier particle with
mass m”. Instead, its composite structure and the existence of
higher energy states signal their existence in its finite-B re-
sponse. This has obvious implications for the interpretation
of experimental data.
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