PHYSICAL REVIEW B VOLUME 61, NUMBER 24 15 JUNE 2000-II

Microscopic model for d-wave charge-carrier pairing and non-Fermi-liquid behavior in a purely
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We investigate a microscopic model for strongly correlated electrons with both on-site and nearest-neighbor
Coulomb repulsion on a two-dimensior@D) square lattice. This exhibits a state in which electrons undergo
a “somersault” in their internal spin spadepin flux as they traverse a closed loop in external coordinate
space. When this spiﬁl-antiferromagneti({AFM) insulator is doped, the ground state is a liquid of charged,
bosonic meron vortices, which for topological reasons are created in vortex-antivortex pairs. The magnetic
exchange energy of the distorted AFM background leads to a logarithmic vortex-antivortex attraction which
overcomes the direct Coulomb repulsion between holes localized on the vortex cores. This leads to the
appearance of preformed charged pairs. We use the configuration intef&fjiomethod to study the quantum
translational and rotational motion of various charged magnetic solitons and soliton pairs. The Cl method
systematically describes fluctuation and quantum tunneling corrections to the Hartree-Fock approximation. We
find that the lowest-energy charged meron-antimeron pairs exhibiéve rotational symmetry, consistent with
the symmetry of the cuprate superconducting order parameter. For a single hole in the 2D AFM plane, we find
a precursor to spin-charge separation in which a conventional charged spin polaron dissociates into a singly
charged meron-antimeron bound pair. This model provides a unified microscopic basistor-Fermi-liquid
transport propertiesiii) d-wave preformed charged carrier paif§i) midinfrared optical absorption(iv)
destruction of AFM long-range order with doping and other magnetic properties(vamgrtain aspects of
angle-resolved photoemission spectroscopy.

[. INTRODUCTION doped system. Accordingly, the challenge is to identify a
strong attractive force based purely on repulsive Coulomb
The microscopic understanding of the effect of charge-interactions. In this paper, we derive such a force, and dem-
carrier doping on spif- antiferromagnetidAFM) Mott in-  onstrate that it leads td-wave pairing of charge carrying
sulators is the central issue of the high-temperature supercoheles introduced by doping a quantum, spin-Mott-
ducting cuprate$.Many puzzling experimental features of Hubbard antiferromagnet.
these systemssuggest that a fundamental law of nature re- The simplest model Hamiltonians used to investigate the
mains to be recognized. Extremely low dopings ( cuprate physics are the Hubbard model and the closely re-
~0.02-0.05 charge carriers per $iteads to a complete latedt-J model. Unlike the one-dimensionélD) problem,
destruction of the long-range AFM order, and a transition toan exact solution for the 2D Hubbard Hamiltonian is not
an unusual non-Fermi-liquid metal. This unusual metal beknown. As a result, various approximations are necessary.
comes superconducting, with the transition temperaiige Although the application of the mean-field theory has been
strongly dependent on the doping The maximumT, is  severely criticized in this context, it provides a valuable ref-
reached for dopings aroun#t=0.15. For higher dopings the erence point for incorporating fluctuation effects. Moreover,
critical temperature decreases to zero, and in the overdopeayen for the 1D Hubbard model, essential features of the
region a crossover toward(aonsuperconducting-ermi lig-  exact solution may be recaptured by judiciously incorporat-
uid takes place. Two central questions require resolutioning fluctuation and tunneling effects into mean-field thebry.
The first one concerns the nature of the charge carriers ré-he most straightforward mean-field theory is the Hartree-
sponsible for this non-Fermi-liquid metallic behavior. This is Fock approximatioiHFA). At half-filling (6=0) the HFA
a fundamental issue, since it lies outside the framework ofredicts an AFM Mott insulator ground state. As the system
Landau’s Fermi-liquid theory, and it necessitates understands doped, the HFA suggests that charge-carrier holes in the
ing the appearance of non-quasiparticle-like charge carrier&FM background assemble in charged stripes, which are
in a system of interacting electrons. The second questioguasi-one-dimensional structurs8.A large effort has been
concerns the nature of the strong attractive pairing betweedevoted to studying these charged stripes and relating them
these charge carriers, given the purely repulsive interactioto certain features of the cuprates.
between the constituent electrons. In conventional supercon- Recently, a more fundamental investigation of the many-
ductors, the pairing attraction is due to overscreening of thelectron problem has suggested the possibility of an alterna-
electron-electron Coulomb repulsion by the ionic lattice. Intive model Hamiltonian for the cuprate physics. This model
the case of high-temperature superconducting cuprates, it h&gamiltonian, called the spin-flux mod&lsuggests that the
been suggestédhat pairing is an intrinsic property of the long-range Coulomb interaction between spirelectrons
electron gas itself mediated by AFM spin fluctuations of theleads to qualitatively new physics, not apparent in the con-
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ventional Hubbard mode(see Sec. )l The results of the effects as fluctuation corrections to the Hartree-Fock mean-
Hartree-Fock studiof this spin-flux model are summarized field theory, the ClI method provides excellent agreement
in Sec. lll. They suggest that the undoped parent compounwith the exact Bethe ansatz solution for the ground-state en-
is also an AFM Mott insulator. However, unlike the conven-ergy of the doped 1D Hubbard chain, over the entirg
tional Hubbard model, the one-electron dispersion relationsange. The Cl method also leads to a clear demonstration of
of the AFM mean field in the spin-flux model match those Spin-charge separation in one dimension. The addition of one
measured experimentally through angle-resolved photoemi§loping hole to the half-filled antiferromagnetic chain results
sion for undoped cuprates. A proper description of the highin the appearance of two different carriers: a charged bosonic
est occupied electronic statéss provided by the spin-flux domain wall (which carries the charge but no spiand a

S . ; - b
mode), is crucial to considerations of doping. The spin-flux "€utral spinz domain wall (which carries the spin but no
model and the conventional Hubbard model differ dramati—Charge' This study demonstrates the effectiveness of the CI

cally in this regard. At the HF level, the doping holes addedmethod. In this paper we use the Cl method to investigate the

to the AFM background of the spin-flux model are trapped indynamics of charged meron vortices in the spin-flux model.
Throughout this paper we exploit and refer to the analogy

the core of antiferromagnetic spin vortices. This composit o
object (the meron vortekis a bosonic charged collective ‘between the charge exc;t?:}'ons of the 1D Hubbard model and
the 2D spin-flux modet?*2 apparent in the CI approach.

mode of the many-electron systdthe total spin of the mag- : .
netic vortex is zerp The reversal of the spin-charge connec-The _CI results for the spm-fl_ux modeﬂ)resented_ in Sec. IV .
confirm that the meron vortices are very mobile, suggesting

tion provides a microscopic basis for non-Fermi-liquid be- ; . . SO
havior. that a collection of such mobile bosonic charge carriers is a
non-Fermi-liquid metal. The CI method also allows us to

A magnetic vortex is strongly attracted to an antivortex.. dentify th ional f1h . )
This attraction increases logarithmically with the distance' entify t € rotational symmetry of the meron-antimeron pair
ve function to bed-wave for the most stable pairs. An

between the vortex cores, and is stronger than the unscreen& . . T
Coulomb repulsion between the charged meron-vortex Coregnnergetlca}lly more expensive meta:_;tablwave pairing 1s -

In effect, the increase in Coulomb energy between a giver"iIISO possm_le. T_he po_s,5|b|l|ty of spin-charge separation in
pair of holes is more than offset by the lowering in exchangetwo dimensions is elucidated. A summary of the results, and

energy between the background electrons as their vorticetge'r interpretation and conclusions, are provided in Sec. V.

approach each other from far away. As the intervortex dis-
tance increases, more and more spins are rotated out of their 1. SPIN-FLUX MODEL
AFM background orientation, and the total energy of the
system increases. Thus, even at the HF level, the Spin-ﬂux The effective 2D Hamiltonian that we use to describe the
model provides a fundamental underpinning for the origin ofstrongly  correlated  electrons  residing in  the
both non-Fermi-liquid behavior, and strong pairing betweerQ(2p) —Cu(3d,2.y2) orbitals of the isolated CuOplane is
the charge carriers. the tight-binding model

While providing a good starting point, the Hartree-Fock
approximation also has serious shortcomings. For instance,
the ground-state wave function in the presence of doping is H=— 2 (tjcl,cj,+H.c)+ 2 Vinin;, (1)
nonhomogeneoughe static meron vortices of the spin-flux bhe b
model, or the charged stripes of the conventional Hubbard N o . .
model, break translational symmetryPhysically, one ex- Wherecj, creates an electron at sitavith spin o, t;; is the
pects that these charge carriers can move along the pland¥®Pping amplitude from sitgto sitei on the square lattice,
resulting in a wave function which preserves the translationahi==25_,c/,Ci, is the total number of electrons at sifeand
symmetry of the original Hamiltonian. The quantum dynam-Vj; is the Coulomb interaction between electrons at sites
ics of the charge carriers also determines whether the dopeahdj. The dominant terms are the nearest-neighbor hopping
ground state is really a metal. Charge carriers in the optitj;=t, and the on-site Coulomb repulsiafy =U/2. If only
mally doped cuprates are quite mobile excitations, althougithese two terms are considered, and we shift the chemical
their scattering rates are radically different from electrons inpotential by U, this reduces to the well-known Hubbard
a conventional Fermi liquid. model. The neglect of the dynamical consequences of

A consistent way of treating the quantum dynamics of thdonger-range Coulomb interaction/=0, if i#j), in the
charge carriers is provided by the configuration-interactiorHubbard model, is based the assumption of uniform charge
(Cl) method®? described in Sec. IV. Here a linear combi- distribution and on the Fermi-liquid theory notion of screen-
nation of HF wave functions is used in order to restore theng of the effective electron-electron interaction. However,
various broken symmetries. For instance, in a doped systefermi-liquid theory fails to explain many of the crucial fea-
the CI wave function is chosen to be a linear combination oftures of the highF. cuprates. In our description, we include
HF wave functions, with the charge carrier localized at dif-the nearest-neighbor Coulomb repulsion, which we assume
ferent sites. Certain types of charge carriers can lower theils on the energy scale df This has important dynamical
total energy substantially by quantum mechanically hoppingonsequences in our model, and cannot simply be absorbed
from one site to the next. We tested the accuracy of the Cinto the Madelung constant. In particular, it leads to the gen-
method against the exact solutidrof the one-dimensional eration of spin flux, to our knowledge, an entirely new type
Hubbard model in Ref. 3. In the 1D Hubbard model the Clof broken symmetry in the many-electron system, which we
method describes the quantum dynamics of charged domashow leads naturally to bosonic charge carriers in the form of
wall solitons in the AFM background. By including these meron vortices, non-Fermi-liquid behavior, and a strong at-
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tractive pairing force between holes in the AFM background. A A
In order to extract the relevant physics from our starting 4 - 4 -
Hamiltonian,
Y Y
A A
H=—1, % (clciot H.c.)+UZ ”iT”iPLV(iZj) nin; , -~ S 2
) Y Y
A 4 A
we introduce bilinear combination of electron operatats 4 0 e B A 3
=cl,0%5Cip, ©=0,1,2, and 3, fori#] (summation over Ty 2y
multiple indexes is assumedHere ¢° is the 2<2 identity ?f—' A E‘ A
matrix, ando= (o*,02,0°%) are the usual Pauli spin matrices. - - ! »
The notation(i,j) means that sitesandj are nearest neigh- lT]_2=_1 Y 2 1 ‘rZ

bors. The quantum expectation vallgof the Afj operators

are associated with charge currents<0) and spin currents FIG. 1. Choice of the gauge for describing the mean-field spin-
(#=1,2, and 3. Nonvanishing charge currents lead to ap-flux background. Physical observables depend on the rotation ma-
pearance of electromagnetic fields, which break the timetrices T' only through the plaguette matrix produEt?T23T34T4L,
reversal symmetry of the Hamiltonian. Experimentally, thisShown above is the simple&pin independehtgauge choice de-
does not occur in the cuprates. In the following, we adopt thescribing a 27 rotation of the internal coordinate system of the elec-
ansatz that there is no charge current in the ground stateon (described by three Euler angless it encircles an elementary
Aioj =0, but circulating spin currents may arise and take theolaguette. To our knowledge, this is a new form of spontaneous
form Af}=(2t0/V)iAi,-ﬁa,a= 1,2, and 3, WherdAij|=A symmetry breaklpg for a _stro_ngly mte_ractlng electron system, in
) ) ~ . ) which the mean-field Hamiltonian acquires a term with the symme-
for all i andj, andn is a unit vector. These spin currents g of 4 spin-orbit interaction. This is a dynamical consequence of a
provide a transition state to the uniform spin-flux mean fieldnearest-neighbor Coulomb repulsivrwhich is comparable to the
that we use in this paper. In principle, nonuniform states ohearest-neighbor hopping matrix elemént
spin flux may arise, in whichA;;| has a nontrivial depen-

dence oni andj. One such case was discussed eaflier, Hamiltonian (3) describes conventional ordered magnetic

Wh'Ch. Skyrmlon text_ures in the. AFM bgckground CaY states of the Hubbard model. The other possibility is that a
qugnnzed units of spin flux. In this caggj is a dynamlcal_ spin flux ®d=m penetrates each plaguette, leading to
variable. However, for the purpose of this paper, we CONsideforasrssra1_ _ 1 "This means that the one-electron wave
gg)l(y a uniform, static, mean-field configuration of the SPNfunctions are antisymmetric around each of the plaquettes,
o i ) o P i.e., that as an electron encircles a plaquette, its wave func-
Using the Pauli spin-matrix identity; o7,5(07,/ ) tion in the internal spin space of Euler angles rotates by 2
=08qq18pp:, It is possible to rewrite the nearest-neighborin response to strong interactions with the other electrons. In
electron-electron  interaction  terms —asnn;=2n;  effect, the electron performs an internal “somersault” as it
—3AK(AL) . If we neglect fluctuations in the spin currents, traverses a closed path in the Guplane® This spin-flux
we can use the mean-field factorizationfj(Af)"™  phase is accompanied by an AFM local-moment background
— (A AL THAL(AL* —(Af)(AL)*. Thus the quartic  (with reduced magnitude relative to the AFM phase of the
nearest-neighbor Coulomb interaction term is reduced to aonventional Hubbard modelln the spin-flux phase, the
quadratic term that is added to the hopping term leading td&inetic-energy term in Eq(3) exhibits broken symmetry as
the effective Hamiltonian: though a spin-orbit interaction has been added. However, it
is distinct from the smaller, conventional spin-orbit effects
M= —tz t i FHC) 4 UE 3 which give rise to anisotropic corrections to superexchange
- l& (CiaTapCiptH.C) = MMy - (3 interactions between localized spins in the AEMn the
B presence of charge carriers this mean field is unstable to the
o e s , proliferation of topological fluctuationgmagnetic solitons
Here T, ,=(8,5T1Aijn-0,4)/V1+A” are spin-dependent ypnich eventually destroy AFM long-range order. In this
SU(2) hopping matrix elements defined by the mean-fieldsense, the analysis which we present below goes beyond
theory, andt=t,y1+A< In deriving Eq.(3) we have gimple mean-field theory. The quantum dynamics of these
dropped constant terms which simply change the zero ofagnetic solitons, described by the configuration-interaction
energy as well as terms proportional ¥gn; which simply  method, corresponds to tunneling effects not contained in the
change the chemical potential. It was shown previdtSly Hartree-Fock approximation. For simplicity, throughout this
that the ground state energy of the Hamiltonian of B).  paper we assume that the mean-field spin flux param@ters
depends on the SB) matricesT" only through the plaquette are given by the simplest possible choidé?= —1T23
matrix productT2T2T34T41= exp(n-o®). Here ® is the =T3*=T41=1 (see Fig. 1 In order to go beyond a mean-
spin flux which passes through each plaquette, ahd<?the field description of the spin-flux, these matrices may also be
angle through which the internal coordinate system of thereated as dynamical variables. In this paper, we go beyond
electron rotates as it encircles the plaguette. Since the elemean-field theory in describing the antiferromagnetic de-
tron spinor wave function is two valued, there are only twogrees of freedom, but restrict ourselves to a mean-field model
possible choices fo. If ®=0 we can seﬂ")w= ij, and  of the spin flux.
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. HARTREE-FOCK RESULTS FOR THE SPIN-FLUX where (0,0, ,0,) are the Pauli spin matrices and the charge
MODEL density
The configuration-interaction method utilizes a linear Ne
comt_)lnatiglg of _Jud|C|_oust chosgn Hartree-Fqck wave Q(i)=<‘1’|0;ra0ia|‘1’>= 2 |¢p(i )2 (8)
functions:~°In this section, we provide a short review of the p=1

relevant Hartree-Fock results for the spin-flux model. A full ) ,

comparison between the HFA for the spin-flux model and thénd Spin density

conventional Hubbard model was published elsewfere. <
4

0'
.
2 5 cisl ¥

>

S(i)=

Cia

> E ok (i, ;%p(i,ﬂ)

One of the most widely used approximations for the ©)
many-electron problem is the static Hartree-Fock approximamust be computed self-consistently. The notafjienV; ap-
tion. In this approximation the many-body problem is re-pearing in Eq(7) means that the sum is performed over the
duced to one-electron problems in which each electroritesj which are nearest neighbors of the siteThe self-
moves in a self-consistent manner depending on the meagonsistent Hartree-Fock equaticfTs-9 must be satisfied by
field potential of the other electrons in the system. While thisthe occupied orbitalp=1, ... N, but can also be used to
method is insufficient, in itself, to capture all of the physics compute the emptyhole) orbitals.
of low-dimensional electronic systems with strong correla- The ground-state energy of the system in the HFA is
tions, it provides a valuable starting point from which essengiven by
tial fluctuation corrections can be included. In particular, we
use the Hartree-Fock method to establish the electronic struc- Ne 1 .
ture and the static energies of various magnetic soliton struc- Egs=(V|H|¥)= E Ep— UE (ZQ(i )2— (i )2).
tures. In the more general ClI variational wave function, the (10)
solitons acquire quantum dynamics and describe large ampli-
tude tunneling and fluctuation effects that go beyond meanwhere the single particle energies are obtained from(Bq.
field theory. The approximation scheme described above is called the

In the HF approximation, the many-body wave function unrestricted Hartree-Fock approximation, because we did not
|W) is decomposed into a Slater determinant of effectiveimpose constraints on the wave functipfi) which would
one-electron orbitals. The one-electron orbitals are foundequire it to be an eigenfunction of various symmetry opera-
from the condition that the total energy of the system istions which commute with Hamiltoniaf8). If these symme-

A. Static Hartree-Fock approximation

minimized: tries are enforced, the method is called the restricted Hartree-
Fock approximation. We use the unrestricted HFA, since it
(U|H|P) leads to lower energies. The breaking of symmetries in our
M (4) on X X .
(W|Ww) case implies that electronic correlations are more effectively

taken into account® The restoration of these symmetries is
In order to approximate the ground state of the spin-fluxdeferred until the Cl wave function is introduced.
Hamiltonian[Eq. (3)], we consider a Slater determinant trial  In the undoped (half-filled) case, the self-consistent
wave function of the form Hartree-Fock equations can be solved analytically for an in-
finite system, using plane-wave one-particle wave functions.
+ In the unrestricted Hartree-Fock approach, doping the system
|q’>:p1:[1 ap|0), (5 leads to the appearance of inhomogeneous solutions, which
break the translational invariance. In this case, we solve the
where |0) is the vacuum state\, is the total number of unrestricted self-consistent Hartree-Fock equations numeri-
electrons in the system, and the one-electron states are giveally on a finite lattice. Starting with an initial spin and

by charge distribution§(i) andQ(i), we numerically solve the
eigenprobleniEq. (7)] and find the HF eigenenergiés and
= ; T 6 wave functionsg,(i,«). These are used in Eq&) and (9)
an= 4 (i, o io- (6) . A
to calculate the new spin and charge distribution, and the
i , ) procedure is repeated until self-consistency is reached. Nu-
Here the one-particle wave-functiods,(i,o) form a com-  erically, we define self-consistency by the condition that

plete and orthonormal system. the largest variation of any of the charge or spin components

Using wave functior(5) in Eq. (4), and minimizing with 5, ' of the sites of the lattice is less that 1detween
respect to the one-particle wave functiops(i,o), we ob- ¢ cessive iterations.

tain the Hartree-Fock eigenequations

B. Undoped ground state

Enn(i,a)= —t]g} T a1, B)+ For the undoped system, Hartree-Fock equatighsfor
an infinite system are easily solved. In the cuprates, long-
range AFM order is experimentally observed. Accordingly,

we choose a spin distribution at the siteéxixa+ 5yiya of

N
%2 | 50asQ) = 0egS0) | (1B, (D)
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-0.8 T T T T T T

the formS(i) = (— 1)x"¥)Se wheree is the unit vector of
some arbitrary direction, while the charge distribution is \
Q(i)=1. In the spin-flux phase, it is convenient to choose a \
square unit cell, in order to simplify the description of tHé 09 \
phase factors. We make the simplest gauge choice compa # \
ible with the spin-flux condition for th& matrices, namely,

that — T??=T2=T**=T41=1 (see Fig. 1 This leads to the
reduced square Brillouin zone w/2a<k,<w/2a,— w/2a
skyg ml2a. A detailed comparison of the Hartree-Fock en-
ergies of the spin-flux phase relative to that of the corre-
sponding non-spin-flux phase were presented elsewfere.
Here it was shown that in the range Gft and doping rel-
evant to high¥. superconductors, a uniform spin-flux state
has a lower Hartree-Fock energy than a conventional spira
antiferromagnet. From the Hartree-Fock equations we find

|
-
=}
T

=11 F

nergy relative to E¢

-12

- - . . . _1.3 1 1 1 1 1 1
two electronic bands, characterized by the dispersion rela 00 o =0 00 = om
tions k position
)Py S 2k 2
ESH(K) = £ Egq(K)=+ \eX (k) +(US)?, 11 FIG. 2. A comparison between the experimentally determined

. - E(k) quasiparticle dispersion relation, from angle-resolved photo-
where_each level is fourfold degenerate amgy(k)= emission studiesARPES, for the insulating SICuO,Cl, (open

- 2t\/[COS(<xa)]2+[C03(<ya)]2 are the noninteracting electron circles with error bassand the HF AFM spin-flux model dispersion
dispersion relations in the presence of spin flux. The HFelation (full line) and the HF AFM conventional Hubbard model
ground-state energy of the spin-flux AFM background isgispersion relatior{dash-dotted line Three directions ik space
given by[see Eq(10)] are shown: (0,0) to 4,), (7,0) to (0,0), and €,0) to (O).
While the peak in the (0,0) to#,w) direction is equally well
described in both models, the mean-field spin-flux model gives a
much better agreement for ther,0) to (0,0) and ¢,0) to (0m)
directions. The fitting corresponds td=2.01 eV andt=0.29 eV
where the AFM local-moment amplitude is determined byfor the spin-flux phase, and=1.98 eV andt=0.21 eV in the

i

Eds=—42 Eq(k)+ NZU(32+ -
k

the self-consistency conditiai®): conventional phase. The experimental results are the ARPES results
of Ref. 17.
2 us
S= > ——. (13)
N" % Esi(k)

spin-flux model also provides a much better agreement with
the dispersion relations, as measured by ARPES. As in the
1D case the effect of doping is the appearance of discrete

. . +) . _
p:e:e:y fllleo: thedconl\o/llui:ttlan bii)angEg (k)f>0) Ist Cd(.)enéz levels deep inside the Mott-Hubbard gap. These levels are
pietely emply, and a Mott-riubbard gap of magnitu drawn into the gap from the tofbottom of the undoped

opens between the valence and conduction bands. Tnf“alence (conduction bands. Accordingly, the type of excita-

ground state of the undoped spin-flux model is an AFM Motttlons created b
y doping depends strongly on the topology of
insulator. It is interesting to note that the quasiparticle dis- the electronic structure near the band edges.

persion relation obtained in the presence of the spin[ig
(11)] closely resembles the dispersion as measured through
angle-resolved photoemission spectroscdpRPES in a
compound such as SEuQ,Cl, (Ref. 17 (see Fig. 2 There C. Charged solitons in the doped insulator: Spin bag and
is a large peak centered atf2,7/2) with an isotropic dis- meron vortex
persion relation around it, observed on both the (0,0) to
(7r,7) and (0s7) to (7,0) lines. The spin-flux model in the
HFA exhibits another smaller peak at {2) which was If we introduce just one hole in the plane, the self-
observed in more recent experimental d&tahe quasipar- consistent HFA solution is a conventional spin polaron or
ticle dispersion relation of the conventional Hubbard model‘spin bag” [see Fig. 8)]. This type of excitation is the 2D
(TP?=T23=T7%4=T4=1) has a large peak atr{2,7/2) on  analog of the 1D spin polarchThe doping hole is localized
the (0,0) to Gr,7r) line (see Fig. 2, but it is perfectly flat on around a particular site, leading to the appearance of a small
the (Oq) to (#,0) line (which is part of the large nested ferromagnetic core around that site. The spin and charge dis-
Fermi surface of the conventional 2D Hubbard modalso,  tribution at the other sites are only slightly affected. In fact,
it has a large crossing from the upper to the lower band edgthe localization length of the charge dependsWit, and
on the (0,0) to (Of) line. This dispersion relation is very becomes very large d4S—0, since in this limit the Mott-
similar to that of thet-J model (see Ref. 1). Hubbard gap closes. For intermediate and laJgg the dop-
While both the conventional and spin-flux models predicting hole is almost completely localized on the five sites of
AFM insulators at half-filling(at least at the HF levglthe  the ferromagnetic core.

At half-filing the valence band E.;(k)<0) is com-

1. Spin bag
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FIG. 3. (a) Self-consistent spin distribution of a X0 lattice FIG. 4. (a) Self-consistent spin distribution of a X0 lattice

with a spin bag centered &,5). The spin bag has a small ferro- with a meron vortex in the spin-flux phase. The core of the meron is
magnetic core, and the magnetic order is only locally affea@d. localized in the center of a plaquette, in the spin-flux ph@se¢he
Electronic spectrum of a spin bag on aX.00 lattice, forU/t=5 in conventional phase, the core of the meron vortex is localized at a
the spin-flux model. Eigenenergi€s, are plotted as a function of site). This excitation has a topological winding number 1, since the
a=1,200(=2N?). Only the firstN?—1=99 states are occupied. spins on either sublattice rotate by-®n any curve surrounding the
There are two empty bound discrete levels deep in the Mottcore. The magnitude of the staggered magnetic moments is slightly
Hubbard gap ¢=100 and 10}, one of which comes from the diminished near the vortex core, but is equal to that of the undoped
valence band of the undoped AFM compougée the ins¢t There ~ AFM background far from the coreéb) Electronic spectrum of a
is also an occupied discrete level below the valence bandX(). meron vortex on a 1810 lattice, forU/t=5, in the presence of the
The valence band is spin paired, since it has an even number gpin flux. Eigenenergie€E, are plotted as a function of
levels. Thus the total spin of the spin bag comes from the discrete= 1,200(= 2N?). Only the firstN2— 1= 99 states are occupidthe
occupied level below the valence band. The spin bag is a chargegalence band There are two discrete empty levels deep in the
spin-% fermion. Mott-Hubbard gap, one of whichy(=100) comes from the valence
band of the undoped AFM parent. Merons must be created in
vortex-antivortex pairgfor topological reasonsEach pair removes
The spin bag is a charged fermion, as can be seen byvo levels from the undoped AFM valence band. Thus the valence
direct inspection of its charge and spin distributions. This ishand remains spin paired, and the total spin of this excitation is
also confirmed by its electronic structysee Fig. 8)]. The  zero. This meron is a spinless, charged, bosonic collective excita-
spin bag is accompanied by a total of four discrete levels thaion of the doped antiferromagnet.
split off from the valence band and conduction band. Two
localized electronic states emanate from the top and bottogyerall spin of this collective mode. Thus the 2D spin bag is
of the valence band. Two more such localized levels emanat@deed the analog of the 1D spin polarbn.
from the top and bottom of the conduction band. Of these
four discrete levels only the state below the valence band is
occupied. The occupation of this low-lying bound level by a
spin+ electron ensures that the overall spin-bag configura- The 2D analog of the 1D charged domain wall is the
tion is a charged fermion. The occupied continuum states ofneron vortex(see Fig. 4. Like the 1D domain wall, the
the valence band are spin paired, and do not contribute to theeron vortex(antivorte® is also a topological excitation,

2. Meron vortex
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characterized by a topological winding numberl (—1) — T T
[the spins on each sublattice rotate by 2—27) on any 100 ¢ v 4 v 2 AV Ay
closed contour surrounding the center of the meron vortex o v A v A v Ay ANy A
(antivortex]. As such, a single meron vortex cannot be cre- N S S
ated in an extended AFM background with cyclic boundary

conditions by the introduction of a single hofpist as a Lo LA 2R TR L WL S T
single isolated charged domain wall cannot be created on an L6l F v 2 e A > x NN}
AFM (ev_er) chain With cyclic boundary cond_itions, _by the bl v 2 v 2 «Ma v § 4 -
introduction of a single hole From a topological point of

view, this is so because the AFM background has a winding H Pt 7 ez eV
number 0, and the winding number must be conserved, un- 3 v A A A
less topological excitations migrate over the boundary into 2 I AR RV AN W A WA
the considered region. However, excitations can be created in ' I RV S SV S
pairs of total topological number 0. In the 1D case, this

means the creation of pairs of domain walls, while in two I % 8 & 6 B T 8 9 U
dimensions this means the creation of vortex-antivortex (@) i

pairs.

From Figs. 4a) and 4b), we can see that the total spin of
the meron vortex(antivorteX is zero, while it carries the
doping charge trapped in the vortex core. Moreover, from its
electronic spectrurfiFig. 4(b)], we can see that only the ex-
tended states of the valence band are occupied. They are the
only ones contributing to the total spin. Since only one state
is drawn from the valence band into the gap, to become a
discrete bound level, it appears that an @ddpaired num-
ber of states remains in the valence band. However, one must
remember that, for topological reasons, merons must appear
in vortex-antivortex pairs. Therefore, the valence band has an
even number ofppaired levels, and the total spin is zero. 9
This argument for the bosonic character of the meron vortex 5,
is identical to that for the charged domain wall in '
polyacetylenéd®®?° This shows that the net spin of a Mo
charged meron plus a charged antimeron is always zero. The ®) L 2 3 45 .
fact that the individual meron and antimeron are spinless is !
ev'de_nt from the f,aCt that ne,'th,er of them have an OCCUp'ed FIG. 5. (a) Self-consistent spin distribution for a tightly bound
Iocallzeq electromc s.tate. Th.|s is very different from the spin.,oron-antimeron pair. The merdhl) and antimeroriA) are local-
bag, which acquired its fermionic character through an ocCur,eq on neighboring sites. The total winding number of the pair is
pied discrete level below the valence band. zero. The magnetic AFM order is disturbed only on the region

Unlike in the 1D casé,we cannot directly compare the \where the vortices are localized. The attraction between holes is of
excitation energy of the spin bag with the excitation energyopological nature, and on a long length scale is stronger than the
of the meron vortex. The reason for this is that the excitatiorunscreened Coulomb repulsion between char@@Self-consistent
energy of the latter increases logarithmically with the size ofcharge distribution for a tightly bound meron-antimeron pair. The
the sample, and therefore an isolated meron vortex is alway$oping charge is mostly localized on the two plaquettes containing
energetically more expensive than a spin bag. However, tahe meron and antimeron cores. The two holes localized in the
pology requires that merons and antimerons are created Wortex cores are responsible for the fact that the meron-antimeron
pairs. The excitation energy of such a meron-antimeron paipair does not collapsé&due to Fermi statistics, it is impossible to
is finite, allowing a meaningful comparison between excita-have two holes at the same 3ite
tion energies of a pair of spin bags and a meron-antimeron
pair.

of the underlying electrons prevents two holes from being
localized at the same site, in spite of the bosonic character of
the collective excitation.

A very interesting feature of this configuration is the

In Figs. 5a) and 3b) we show the self-consistent spin strong topological attraction between the vortex and the an-
and charge distributions for the lowest-energy self-consistertivortex. The closer the two cores are to each other, the
HF configuration found when we add two holes to the AFMsmaller the region is in which the spins are rotated out of
background, in the spin-flux model, fa#/t=5. This con-  their background AFM orientation by the vortices, and there-
figuration consists of a meron and an antimeron centered ofore the smaller the excitation energy of the pair is. Since the
second-nearest-neighbor sites. As a result of interactions, thles are localized in the cores of the vortices, this topologi-
cores of the vortices are somewhat distorted. If the vorticesal attraction between vortices is an effective attraction be-
were uncharged, vortex-antivortex pair annihilation would between holes in the purely repulsive 2D electron system. This
possible. However, for charged vortices, the fermionic natureffect is unique to the spin-flux phase. In the conventional

3. Meron-antimeron pair
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Hubbard model, vortices are not stable excitations. In thédFA), but a judiciously chosen linear combination of such
spin-flux phase, the vortex-antivortex attraction increases aSlater determinant®. Given the fact that the set of all pos-
the logarithm of the distance between the cores. Thereforgible Slater determinantsvith all possible occupation num-
the pair of vortices remains bound even in the presence derg generated from a complete set of one-electron orbitals
Coulomb repulsion between the Charged cores. Eventually, @bnstitute a Comp|ete basis of th%-partide Hilbert space,
long distances the charge carriers can overcome their logayr aim is to pick out a subset of Slater determinants which
rithmic attraction by decaying into a pair of spin bags. Forcaptures the essential physics of the exact solution.

this to occur the logarithmic exchange energy cost would ~qnsider the CI ground-state wave function given by
need to exceed the kinetic energy of delocalization gained by

the moving meron-antimeron pair. In the doping range rel-

evant to superconductivity, this would only occur if the N

meron-antimeron pair were pulled further apart than the |‘I’>=E ai| vy, (14)

(doping-dependeptantiferromagnetic correlation length. As i=1

a result, the decay of a meron-antimeron pair into a pair of

spin bags is not realized in practice. The logarithmic attrac-

tive force provides a compelling scenario for the existence ofvhere eachV;) is a distinctNx N, Slater determinant, and

strongly bound preformed pairs in the underdoped regime. the coefficientse; are chosen to satisfy the minimization
There is another possible self-consistent state for the syg+inciple

tem with two holes, consisting of two spin bags far from

each other(such that their localized wave functions do not

overlap. The excitation energy of such a pair of spin bags is 5 ((V|H|WP)

simply twice the excitation energy of a single spin bag. E(W

When this excitation energy is compared to the excitation

energy of the tightly bound meron-antimeron pair, we find

that it is higher by 0.16(for U/t=5). In fact, forU/t<8 the  This leads to the system of ClI equations

HFA predicts that the meron-antimeron pair is the low-

energy charged excitation, while fat/t>8, the spin bag is

the low-energy charge carrier. This is analogous with the N N

situation in one dimension, where the spin bag was predicted > Hijoy= ED, Ojjaj, i=1N, (16)

to be the low-energy excitation fdg/t>6.5, in the HFA? =1 =1

As in one dimension, however, we expect that this conclu-

sion will be drastically modified once the charged solitons . .

are allowed to move along the planes and the lowering ofVheréE=(W[H|W)/(W[W) is the energy of the system in

kinetic energy through translations is also taken into considtne W) state,Hj;=(W[#|¥;) are the matrix elements of

eration. the Hamiltonian in the basis of Slater determinafjt;),i
We complete this review of the HF results by pointing out = 1N}, and O;; =(W¥;|¥;) are the overlap matrix elements

that the strong analogy between the 1D Hubbard model an@f the Slater determinantévhich are not necessarily or-

the 2D spin-flux model is due to the similarity between thethogonal. The CI solution is easily found by solving the

electronic structures at zero doping. As seen from Fig. 2, théinear system of equatior(d6), once the basis of Slater de-

2D spin-flux model has isotropic dispersion relations abouterminants {|¥;),i=1N} is chosen. If we denote by

the (/2,m/2) point. This acts as a Fermi point for the non- ¢("(i,o) thep=1, . . . N, one-electron occupied orbitals of

interacting system as it does in the 1D system. The twahe Slater determinan® ), these matrix elements are given

empty discrete levels drawn deep inside the Mott-Hubbarcﬂ)y

gap in the presence of the meron-vortex split from the

(7/2,7/12) peaks of the electron dispersion relation. The dif-

):o, i=1N. (15)

ferent topology of the large nested Fermi surface of the con- Bm g

ventional Hubbard model leads to an instability of the L1 1N
meron-antimeron pair. In fact, in the conventional Hubbard o. = i : 17)
model doping holes assemble in charged stripes, as opposed nm nm nm '

to the liquid of meron-antimeron pairs, which is the low- Nel —--- Ne:Ne

energy state of the doped spin-flux model.

The matrix elements of Hamiltoniai3) can be written as

IV. CONFIGURATION INTERACTION METHOD
RESULTS FOR THE 2D SYSTEM

Hom=—t-Tamt U2 Vom(i), (18)
A. Configuration interaction method !
The essence of the Cl method is that the ground-state

wave function, for a system witN, electrons, is not repre- where the expectation values of the hopping and on-site in-
sented by just a singIB. X N, Slater determinanfas in the teraction terms are:
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y BT ..ty ... BT?JG
€ .
m— 2 :
p=1 nm thm nm
Ne'l P Ne*p P Ne'Ne
and
oL g 1p2(|) ... BN,
Vnm(i): ; nm nm H nm
P17P2 ’BNe!l - uNe*pl(I) . N p2(|) . ’BNe'Ne
|
Here fined by Eq.(10). The Cl method lifts the degeneracy be-
tween states with the hole-induced configuration localized at
=S 6™*(i,0) ™M, o) different sites[see Eq.(16)], thereby restoring translational
o N ’ P invariance. We may identify the lowering in the total energy
due to the lifting of this degeneracy as quantum-mechanical
(n)* Tl $M(j,B)+H.c. kinetic energy of deconfinement which the doping-induced
pl P2 .E (45,7 (1ha) %2 .8 ¢l configuration saves through hopping along the lattice. In ad-
dition, quantum fluctuations in the internal structure of a
(iy= ¢(n)*( )¢>(m)(lT) magnetic soliton can be incorporated by including the
pl P2 lowest-order excited-state configurations of the static
and Hartree-Fock energy spectrum. Such wave functions are
given by agah|\I’>, wherep>N, labels an excited particle
Ao (=% (1 ) pP(i 1), state anch=<N, labels the hole which is left behirdee Eq.

(5)]. Once again, all possible translatiof@d nontrivial ro-
We now consider the specific choice of the Slater detertationg of these “excited” configurations must be included

minant basig|W¥;),i=1, ... N}. Strictly speaking, one may in the full CI wave function. These additions can describe
choose an optimized basis of Slater determinants from thehanges in the “shape” of the soliton as it undergoes
general variational principle: guantum-mechanical motion along the plane. However, such

particle-hole-excited configurations have much higher ener-
1) (Y|H|TP) gies than the ground-state HF configurations. This is due to
56M(i, o) (W]W) ):0' n=1N, p=1Ne. (19  the .fact that thg vglenc_e band is filled at all dopings, so
P particle-hole excitations involve at least the excitation of an
However, implementation of this full trial-function minimi- electron from the valence band to one of the empty midgap
zation scheme(also known as a multireference self- electronic levels trapped in the vortex cores, raising the total
consistent mean-field approathis numerically cumber- energy by roughlyU/2. As a result, these much higher-
some even for medium-sized systems. Instead, we select tlemergy states do not contribute significantly to the CI ground
Slater determinant bas{$¥;),i=1N} from the set of bro- state, but rather to states higher up on the dispersion curve
ken symmetry, unrestricted Hartree-Fock wave functiongroughly fromU/2 above the CI ground-state energn this
[Eqg. (5)], their symmetry-related partners, and their excita-paper we concentrate on the Cl ground states. Accordingly,
tions. Clearly, Eq.(5) satisfies Eq(19) by itself, provided we do not include such high-energy particle-hole-excited
that thea coefficients corresponding to the other Slater de-states in the set of Slater determinaf{t¥;),i=1, ... N}.
terminants in Eq(14) are set to zer@see Eq(4)]. Since this The CI method was described in more detail in Ref. 3,
unrestricted HF wave function is not translationally invariantwhere it was used to study the 1D Hubbard chain in order to
(the doping hole is always localized somewhere on the latgauge its accuracy by comparing its results with the exact
tice), we can restore the translational invariance of the CIBethe ansatz solution. We showed that the CI method recap-
ground-state wave function by also including in the basis otures the essential physical features of the exact solution of
Slater determinants all the possible lattice translations of thithe 1D Hubbard chain, such as spin-charge separation, as
unrestricted HF wave function. Furthermore, if the self-well as leading to a remarkable agreement of ground-state
consistent configuration is not rotationally invarigetg., a  energies of doped chains for all values @ft. The main
meron-antimeron pair all possible rotations must be per- difference between the 1D and 2D cases is the computation
formed as well. By rotation we mean changing the relativetime required. The computation time for one matrix element
position of the meron and antimeron while keeping their cen?,,,, scales roughly likeN®, whereN is the number of sites.
ter of mass fixed. The number of configurations included in the CI set scales as
Clearly, all the translated HF Slater determinants lead tdN!/Ng!(N—Ng)! when Ng solitons are present. For both an
the same HF ground-state ener@¥ | H|¥,)=Egs as de- N-site chain and alNXxN lattice, the HF “bulk” limit is
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reached foN=10. In the 1D casewe used chains witiN
=10-25, and numerical calculations can be easily per-
formed. However, in two dimensions the smallest acceptable
system has 100 sites, leading to an enormous increase in the
computation time. Nevertheless, our sample of results in two
dimensions suggests a simple and clear physical picture
which we describe below.

B. Spin-bag dissociation: Spin-charge separation precursor
effects in two dimensions

The charged spin bag carries a spin of 1/2. Let
|¥.),|¥_) be the HF determinants for a spin bag centered

at any two nearest-neighbor sites, respectively, andlet
=3,5,()=3%%; ,o¢! c;, be the total spin operator in the
direction. ThenS,|¥ _)=3|¥ ) while S,|¥_)=—3|¥_)

(or vice versg since moving the center of the spin bag by
one site leads to a flip of its total spisee Fig. 8a)]. Con-
sequently,(¥ _|W,)=0. Since the Hubbard Hamiltonian

commutes withS,, it follows that (¥ _|H|¥,)=0. From

the Cl equation(16) we conclude that there is no mixing
between states with different total spins. As a result, it is
enough to include in the CI set only those configurations
with the spin bag localized on the same magnetic sublattice.
Let us denote byW o)) the initial static Hartree-Fock con-
figuration, and by |¥ ) the configuration obtained
through its translation by sites in thex direction andn sites

in they direction (cyclic boundary conditions are imposed
The condition that only configurations on the same sublattice
are included means thatt m must be an even number, and

1.0
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the cyclic boundary conditions mean thasf@<N-1,0

=m=N-1, foraNXN lattice. As explained in detail in the FIG. 6. Dispersion relation of the charged spin tag(k) (in

1D analysi§i mixing configurations with the charged spin units of t) plotted along lines of high symmetry in the Brillouin
bag localized at different sites and then subtracting out theone. The upper plot shows the dispersion band of the spin bag in
contribution of the undoped AFM background allows us tothe conventional model, while the lower one shows the dispersion

calculate the dispersion band of the spin bag itself: band of the spin bag in the spin-flux model/t=5 in both cases.
Circles, squares, diamonds, and triangles show the results obtained

from Cl analysis of 66, 8X8, 10X 10, and 1X 12 lattices. We
conclude that the results are already almost converged, even for
such small lattices. The full lines show the excitation energy of the
spin bag at the static HF level.

Eop(K)=E(k,N)— N2egs. (20)

Here the total energy of the lattice with the spin bag,

- (W H[PR)
E(k,N)= ——, I F . . :
(W Wi we also show the excitation enerBY, obtained in the static
HFA as a full line. For both models, we see that the spin-bag
dispersion band is almost converged, even though we used
quite small lattices. The convergence is somewhat slower in
the spin-flux case, as seen most clearly at @®€) point.
Although the values obtained from the four lattices all differ
at (0,0, the extremum values correspond to the @ and 8
X8 lattices, while the values for the X0 and 1X12
lattices are indistinguishable. We conclude that th¢E.
(20)] is legitimate.

and the CIl wave function,

V=2 exililkntkymal¥ om).

are the solutions of the Cl equatiof5). The finite size of
the lattice and cyclic boundary conditions restricts the calcu

lation tok points of the formk=2m/Na(ae,+ je,), where

(a,B) is any pair of integer numbers. As usual, oklpoints From Fig. 6 we also see that the dispersion relations for
inside the first Brillouin zone need to be considered. _ the spin bag in the two different models are very different.
An analysis of the dependence of the spin-bag dispersiofthe dispersion relations over the full 2D Brillouin zone are
relation Egp(k) on the sizeNX N of the lattice is shown in  shown in Fig. 7, and they are seen to mimic the electronic
Fig. 6, for the conventional Hubbard modelpper pangl  dispersion relation of the underlying undoped AFM back-
and the spin-flux moddlower pane), andU/t=5. We used  ground, shown in Fig. 2. This is consistent with the quasi-
6x6, 8x8, 10x10 and(only for the spin-flux model12  particle nature of this charged spjnspin bag. In the con-
X 12 lattices. The dispersion relation is plotted along lines ofventional Hubbard model, the undoped AFM background
high symmetry of the full Brillouin zone. For comparison, has a large nested Fermi surface along ther)Gp (,0)
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FIG. 7. Dispersion band of the spin bag in the conventional
model (upper pangl and the spin-flux mode(lower pane), for
U/t=5. We show the full 2D Brillouin zonek(is measured in units

of 7r/a). The spin-bag dispersion relations have the same symmetr&}1

as the dispersion relations of the underlying undoped AFM back
ground, shown in Fig. 2. While then{2a,/2a) point corresponds
to the minimum excitation energy of the spin-flux spin bag, in the
conventional model all points along the {9, to (,0) direction
have almost the same energy.

line, and it is exactly along this line that the spin bag disper
sion band has a minimum. Similarly, the lowest energy o
the spin bag of the spin-flux model is airf2,7/2), corre-
sponding to the Fermi points of the underlying undoped spin
flux AFM background.

The extra kinetic energfy(w/2,m/2)—E5 saved by
the spin bag through quantum hopping is @.8vthe con-
ventional model and 0.56n the spin-flux modekfor U/t

=5). Since the spin bag is confined to one magnetic sublaffy

f

/U

FIG. 8. The extra kinetic energ§in units oft) gained by the
spin bagAE=Eg(m/2,7/2)—EL (circles as a function ot/U.
The log-log graph clearly shows the linear dependence. This is
expected, since the spin bag must tunnel two sites to the next al-
lowed position. This is a second-order hopping process, and there-
fore this charged excitation is rather immobile.

elsewheré?® As in the 1D case, we conclude that the spin
bag in two dimensions is a rather immobile quasiparticlelike
excitation.

In the 1D model it is energetically favorable for the im-
mobile spin bag to decay into a charged bosonic domain wall
and a neutral fermionic domain wall, resulting in spin-charge
separatiorf. The analog of the 1D charged bosonic domain
wall is the 2D charged bosonic meron vortex of the spin-flux
model. If the spin bag decays into a charged meron-vortex, a
magnetic antivortex must also be created for topological rea-
sons. Unlike the pair of domain walls in the 1D case, the
vortex-antivortex pair is tightly bound by a topological bind-
ing potential that increases as the logarithm of the vortex-
antivortex separation. Therefore, we expect that the doping
charge is shared between the two magnetic vortices. One
technical problem for testing this hypothesis is that such a
configuration(a vortex-antivortex pair sharing one doping
hole) is not self-consistent at the static Hartree-Fock level. In
the static approximation we require two doping holes to sta-
bilize two vortex cores and create a meron-antimeron pair.
We can, however, construct a trial wave function to describe
the singly charged vortex-antivortex pair, by adding one
electron in the first empty state of the self-consistent doubly
tharged meron-antimeron configuration. The first empty lev-
els of the meron-antimeron pair are the localized levels
bound in the vortex cores, two for each vortgsee Fig.
4(b)]. Because of degeneracy between the two lower discrete
levels of the pair, we have in fact two distinct trial wave
nctions, obtained by adding one electron in either of these

tice, it must tunnel two lattice constants to the next allowedwo lower localized gap electronic states of a self-consistent

site. Consequently, the energy gained through hopjpafg
ordert?/U) is small. This is displayed, for the spin bag of
the spin flux model, in Fig. 8, where we plot the lowering in
kinetic energy of the deconfined spin ba&g(w/2,7/2)
—E"" as a function oft/U. A similar dependence for the

meron-antimeron pair. These wave functions are not invari-
ant to rotationgsee Fig. 5. Therefore, in the CI set of Slater
determinants we must include the configurations obtained
through /2 rotations of the vortex-antivortex pair about its
fixed center of mass in addition to translated configurations.

spin bag of the conventional Hubbard model was presenteds a result, we have a total oN& configurations describing
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the singly charged vortex-antivortex pair localized at all pos- e @
sible sites with all possible orientations about the center of
mass.

We performed this Cl analysis for a X0 lattice and @ e
U/t=5. The HF energy of a simple static spin bag is
—0.82 (measured with respect to the HF energy of the un-
doped AFM background, equal t676.7@). The energy of @ @
the static singly charged vortex-antivortex pair-€.23.
Thus we see that because this singly charged pair trial wave
function is not self-consistent, in the static case this configu- e @
ration is energetically much more costly than the self-
consistent spin-bag configuration. However, if we allow for FIG. 9. Schematic representation of the four different meron-
quantum motion of these configurations, the situatiop@ntimeron pair configurations obtained througl® rotation about
changes dramatically. Performing a Cl analysis for the set of€ir fixed center of mass. The upper-left picture is a schematic
all possible translated spin-bag configurations, we find thalie.presentatlon of the self-consistent meron-antimeron pair shown in
the energy of the spin bag is lowered-tdl.24. Performing Fig. >.
a Cl analysis for the set of all translated and rotated sing| . . . .
charged \yortex-antivortex pairs, we find that this configurga)-{he opening of the spin pseudogap. Thl.JS’ at hlgh.er doping
o ) ) we effectively see spin-charge separation even in a two-
tion’s energy is lowered to-2.18. This shows that the dimensional system
vortex-antivortex pair has lowered its translational and rota- '
tional kinetic energy by almostt2thereby becoming a low-
energy charge carrier. This large number is not surprising C. D-wave pairing of charge carriers
since, unlike the spin bag, the vortex-antivortex pair is not From the static HF analysis we found that the most stable
constrained to motion on one magnetic sublattice. As a restatic self-consistent configuration with two doping holes
sult, such configurations lower their kinetic energy by anadded to the AFM background of the spin-flux model is the
amount on the scale ¢fas opposed tt?/U for the spin-bag meron-antimeron pair, for 8U/t<8. At larger U/t, two
configuration. For larget/t values this effect is even more charged spin bags become more stable, in the static HF ap-
pronounced. proximation. This is in close analogy to the prediction that

We conclude that these results strongly support the hythe spin bag is energetically more favorable than the static
pothesis of spin-bag dissociation into a much more mobileharged domain wall fo/t>6.5, in the HFA of the 1D
singly charged vortex-antivortex pair, analogous to the 10Hubbard modef. However, in the 1D case the charged do-
spin-bag dissociation into a pair of a charged bosonic domaifain wall is considerably more mobile than the charged spin
wall and a neutral fermionic domain wallUnlike in the 1D bzag, gaining a kinetic energy on the ordertafs opposed to
case, however, we do not have distinct charge and spin caf-/U €nergy gained by the spin bag. As a result, when this
riers for the composite excitation. Instead, the spin andcnetic energy of deconfinement is taken into account within

charge are shared equally between the vortex and antivorte{!€ C! method, the charged domain wall is found to be the
If, on the other hand, there was a mechanism whereby th@Ievant charged_excnatlon for all values Gft. A similar _
vortices became unbound, complete spin-charge separati(?r\ ture emerges in the 2D case, because the meron vortices

. . . are much more mobile than the spin bags.
could occur, in which one vortex traps the h()dm.d is there_ For the 2D system, we have shown that the charged spin
fore a charged mergrand the other vortex carries the spin

in a lotus-flowet?™ (or undoped magnetic merpoonfigu- bag has a behavior very similar to that of the 1D charged

) : ) spin bag. The analog of the 1D charged bosonic domain wall
rations. At very low doping, the strong vortex-antivortex to- is the 2D charged bosonic meron vortex. We now consider

_polo_gical attraction binds the spin and charge together. Thig,o properties of the doubly charged meron-antimeron pair.
is different from the 1D case, where the absence of longa|| the numerical results quoted in the rest of this section

range interactions between the domain walls allow for &efer to a meron-antimeron pair on a0 lattice, in the
complete spin-charge separation even if there is just one dO%-pin_ﬂux model withU/t=5.
ing hole on the chain, and even at zero temperature. As already discussed, the meron-antimeron pair is not ro-
This scenario opens an avenue for research into how thegtionally invariant. We can find the rotational kinetic energy
system evolves with doping. If each hole is dressed into &aved by the pair as it rotates about its center of mass. In the
singly charged vortex-antivortex pair, when two such pairspresent case, only four configurations need to be included,
overlap it is possible that both doping charges move to theorresponding to the four possible self-consistent arrange-
same pair, creating a more stable meron-antimeron pair ohents of the meron and antimeron about their fixed center of
charged bosons. Such preformed charge pairs may condens@ss (see Fig. 9. A simple rotation byw/2 of the one-
into a superconducting state at low temperatures. The othgrarticle orbitals¢,(i,o) about the center of mass is not,
uncharged vortex-antivortex pair may either collapse andiowever, sufficient to generate the rotated configurations.
disappearthis is likely to happen at low temperatuyesr  First of all, the 7/2 rotation also changes the spin-flux pa-
remain as a magnetic excitation of the systathigher tem-  rametrization. If the spin flux of the initial configuration is
perature mediating the destruction of the long-range AFM T*=—1 and T®=T3*=T*=1, a /2 rotation leads to a
order, the renormalization of the spin-wave spectrum, andtate corresponding to the rotated configurafidi=1,T%3
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FIG. 10. Total energi(k) (in units oft) vsk of the lattice with
a (unrotated meron-antimeron pair as a function of the total mo-  Fig 11. The lowest-energy dispersion bff'ELir('Z) (in units

mentumk of the pair. The momentum units arg/a. The HF en- ¢ ¢) a5 4 function of the total momentuknof the meron-antimeron
ergy of the static meron-antimeron pair+s78.52. Quantum ROp-  pair The momentum units are/a. For convenience, the reference
ping lowers the overall energy of the pair by 1t2®ince the  gnergy is taken to be the static HF energy of the self-consistent
meron-antimeron configuration is not rotationally invariant, the dis-aron-antimeron pair. Quantum hopping and rotation lowers the
persion relation is also not invariant te/2 rotations. overall energy of the pair by 1.75The rotational symmetry of the

=—1, andT*=T*=1. Thus, following ther/2 rotation, a dispersion relation is restorgdompared to Fig. 10

unitary transformation must be performed in order to restore

the initial spin-flux parametrization. For the case cited above@Ntimeron pair lowers its total energy by an extra 1.2%vo

this simply implies the change in the one-particle orbitalsOther interesting features are observed in Fig. 10. The first
bo(isiv,0)— — bo(iy.iv,o) for all sites fy.i,) which are one is that the dispersion relation of this rigidly polarized
p\ixslys p\ixsty>» X1ty

a type '2' site of the unit cell, in other words sites with even P’ IS not invariant to rotations by/2, as expected. More

i and odd, (also see Fig. )L The second observation is that important is that the minima of the dispersion relation occur
X y . . . . .
the rotation by/2 also changelips) all the spins of the at the @, ) points. Since the momentum of the pair is twice

AFM background surrounding the pair. Thus an extrao- the momentum of either the meron or the antimeron, this is

tation about an axis perpendicular to the lattice plane is necgo?r?'ts;em okl thed fac:. that, 'T} their Iowesi—e;;rgy;zstate,
essary to restore the alignment of the AFM background. Fol: 0 € meron and antimeron nave momenta (m/2) .
n the spin-flux model. The doubling of the size of the Bril-

lowing these transformations it is straightforward to generate . . . ; .
ouin zone is also a direct consequence of this doubling of

the Slater determinantsV',),|¥;) and|W¥,) corresponding : _ )
to the meron-antimeron pairs rotated by2,7, and 3m/2 the total momentun_{for comparison with undoped disper-
sion relation, see Fig.)2

from the initial self-consistent HF meron-antimeron pair de- ¥ to obtain the t fthe ch d pai
scribed by|¥,). The CI method can be used to find the owever, 002 ain the true energy of the charged pair, we
ust mix all 4N“ rotated and translated meron-antimeron

rotational energy saved by superposing these rotated merofiYSt . )
antimeron configurations. The lowest Cl energy found isconﬁguranons. All have the same static HF energy and are
0.4& below the energy of the static pair, and corresponds t
d-wave symmetry. By this we mean that the coefficiemts

multiplying the four rotated states in the Cl wave function

W) =21 W), satisfy the conditiona, =—a;=ay tion andm sites in they direction, as well as a rotation by an

—ay. . .
Translation of a pair over the whole lattice can also beangle of (/2) of the pair about its center of mass. Here

. . ) . ) <¢<3 and O0sn=N-1,0sm=N-1 (cyclic boundary
investigated. Since the pair does not carry any spin, all pos= " . .

. . . . - conditions are imposed The CI wave functions are then
sible translations must be includétthere is no restriction to

qually important in the Cl method. L¢#4(0,0)) denote
he initial self-consistent static Hartree-Fock meron-
antimeron configuration, arl@ ,(n,m)) denote the configu-
ration obtained through translation Ioysites in thex direc-

the same magnetic sublattice configuratjofi$is leads to a given by

total of N2 possible configurations for ablxN lattice. 3

Again, when various configurations are generated from the W= > ei(kxn+kym)a( > ag|\lf0(n,m)>). (21)
initial self-consistent HF meron-antimeron st ), care (n,m) 6=0

must be taken to preserve the same spin-flux parametrization

and the same AFM background orientation. This can be The dispersion relation
achieved by performing transformations similar to the ones
described above. As a result of performing the Cl method on
the set of translated states, we find the dispersion relation of
the (unrotatedl meron-antimeron pair. This is shown in Fig.
10. In this plot we show the total energy of the lattice with obtained from this complete set, is shown in Fig. 11. The
the moving meron-antimeron pair, as a function of the totareference point is the HF energy of the self-consistent
momentum of the pair. Quantum hopping of the meron-meron-antimeron paiE';;,=—78.52. Thus we see that the

(PIHTD

Epalr(k): <\Ir|2 \Ir|2> pairl
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states in the intermediate area may be modified from the
ones shown in Fig. 11. However, the minima at, ) and
(0,0) are at energies well below zero. Their energies and
s-wave rotational symmetry are unaffected by additions of higher-
energy configurations to the CI set.
The fact that we obtain two distinct minima is not very
s+d surprising. As argued above, we expect that individual
merons and antimerons are created with momenta of
(x#7/2,=7/2). As a result, two different couplings are pos-
d-wave sible. A (7/2,7w/2) meron can pair with as/2,7/2) antim-
eron, creating a pair of total momentun,@r). This is the
most stable coupling, leading to the lowest possible energy
-1 0 1 of —1.73 below the static HF energy. This pair hd&svave
kx symmetry. The second possible coupling is between a

FIG. 12. The rotational symmetry of the meron-antimeron wave(W/z’W/Z) meron and a{ /2,—w/2) antimeron. This pair
function as a function of the total momentum carried by the pair/aS @ fotal momentum of (0,0), astvave symmetry. How-
(measured in units ofr/a). The outside regioficontaining the ab-  €Ver, this coupling is less strong. For thét=5 case con-
solute minima points 4, )] hasd-wave symmetry §=2), while ~ Sidered, the energy of thewave (_an) pair is 1.28above
the core region about the (0,0) point hassawave symmetry J the energy of thel-wave (7, 7) pair. The existence of both
=0). The intermediary area is a mix of{ d)-wave symmetry. ~ d- and swave pairings, and the dominance of tlavave

pairing, have been established experimentally for the Righ-
total kinetic energy saved by the freely moving and rotatingcuprates: We are not aware of any other microscopic theory
meron-antimeron pair is 1.75when the total momentum of that predicts the two types of pairing to appear in different
the pair is @r,7). This energy equals the sum 0t461.2a  regions of the Brillouin zone.
of rotational and translational kinetic energies found before The total kinetic energy saved by the meron-antimeron
(the number of significant figures indicates the estimated adair through quantum hopping and rotation is of ortleas
curacy of the computational methodhe rotational invari- ~€xpected, since the pair is not restricted to one magnetic
ance of the dispersion band is also restored. Besides the agHblattice, and tunneling is not required for motion. Conse-
solute minima about the#, ) points, there is a more quently, we expect that the energy saved by the meron-
shallow minimum region about the (0,0) point. antimeron pair for larger values &f/t is comparably large.

The rotational symmetry of the meron-antimeron pairOn the other hand, the energy saved by the spin bag through
wave function, defined by the coefficients), is a function  tunneling motion scales like?/U. In fact, we argued that a
of the total momentum carried by the pair, as shown in Figspin bag may dissociate into a singly charged vortex-
12. The absolute minima pointsr(7) and the area around antivortex pair in order to enhance its mobility. However,
them correspond to pairs with d-wave symmetry. By this, weeven if dissociation does not occur, the kinetic energy saved

ky

mean that the coefficienis, have the form by a pair of spin bags is significantly smaller than the kinetic
energy saved by the meron-antimeron pair. This shows that

T for U/t=5 the meron-antimeron pair is even more favorable

ex;{i\] 95) o, (22) energetically than the HFA predicts, and suggests that the

U/t range where meron-antimeron pair formation occurs
with J=2, i.e.,a¢p= — a;=a,= — a3. The core area, about may extend well beyond thg/t=8 limit found within the
the local minimum (0,0) point, corresponds to s-wave symHFA.9 In the 1D case, the range of stability of the charged
metry. In this region the coefficientsy) again satisfy Eq. domain wall versus the charged spin bag is exten(iean
(22), but for J=0, i.e., @g= a;=a,= a3. The intermediary the HF prediction otJ/t=6.5) to allU/t rangesg.A numeri-
area appears to be a mixture of differdntalues. A simple cal analysis is needed to determine if the limit is extended to
decomposition of the form of Eq22) is no longer possible. infinity in the 2D case as well.
Instead, a sum of such terms corresponding to diffedent
values is required. Since we only have rotationsg, a
unique identification of the composite symmetry is not pos-
sible. Moreover, the energy of the states in this intermediary
area is at the top of the dispersion band. In order to find the The configuration-interaction approximation incorporates
correct Cl states for energies well above the static HF valuerucial quantum translational and rotational motion of the
(i.e., larger than zero, in this casee must add to the Cl set charge carriers, which are absent in the static Hartree-Fock
the first set of excited HF states. For a meron-antimeron paimpproximation. Given the accuracy of the Cl method in re-
excitation of an electron from the valence band onto thecapturing certain features of the exact Bethe ansatz solution
empty localized levels inside the Mott-Hubbard gap costf the 1D Hubbard modélwe believe that the Cl method is
about 1.5t of energy, fod/t=>5, so such states should con- likewise a very powerful tool for describing effects beyond
tribute significantly in the CI states with positive energiesmean-field theory in two dimensions. For 2D systems, nu-
and modify their dispersion and symmefifpr this reason, merical calculations are much more time consuming. How-
we do not show the upper three high-energy bands in Figever, our small sample of results is quite suggestive of a
11). Consequently, both the energy and symmetry of thesimple physical picture. In direct analogy with the 1D re-

V. SUMMARY AND CONCLUSIONS
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sults, we find that the bosonic charged meron vortices are The optical behavior of the cuprates is also explained
much more mobile than the fermionic charged spin bagsnaturally using our model. Two features develop in the
The extra kinetic energy gained by the meron vortices veroptical-absorption spectra with doping: a broad midinfrared
likely extends their region of stability beyond thé/t=8  temperature-independent absorption band, and a strongly
limit suggested in the HFA.There are also strong indica- temperature-dependent low-frequency Drude #ailn our
tions that a charged spin bag is unstable to decay into eodel the broad midinfrared band is related to the excitation
singly charged bound vortex-antivortex pair. This appears t@f electrons from the valence band onto the empty levels
be a 2D precursor to the spin-charge separation in the 1bound in the vortex coreswhich are localized deep inside
case. Nucleation of such pairs of vortices with doping isthe Mott-Hubbard gapsee Fig. 4b)]. The number of local-
expected to further influence the magnetic behavior of thézed levels scales with the number of vortices, and intervor-
cuprates. The bound state and the unbound continuum statesx interactions lead to their splitting into a broad band. As
of the singly charged meron-antimeron pair may account fosuch, this mechanism is similar to the one leading to a broad
the anomalous “quasiparticle” spectral widths observed ommidinfrared absorption band in polyacetylene with dopifg.
angle-resolved photoemission experiments. The polyacetylene band is due to electronic excitations in-
The symmetry of the meron-antimeron pairs emerges vergide the cores of the polyacetylene domain-wall solitdns,
clearly from the CI treatment. We find two regions of stabil- which are the topological analogues of meron vortices.
ity of the meron-antimeron pair. Pairs with a total momen-Another strong argument in favor of this interpretation is
tum of (7,7) have d-wave symmetry, and are the most provided by photoinduced absorption experiméhtt. the
stable. Pairs with a total momentum (0,0) hawsave sym-  undoped parent compounds are illuminated with intense vis-
metry and have a smaller gap. Thus we find that differentble light, they develop absorption bands that resemble the
pairing appears in different regions of the Brillouin zone. midinfrared bands of the doped compounds. A similar be-
These results appear to have a direct bearing on numerobswvior is observed in polyacetylene, and is attributed to the
experiments, which show a mixture of a strahgvave com-  nucleation of solitons by photoexcited electron-hole pZirs.
ponent and a smallerwave component in the superconduct- The second component of the optical spectrum is the Drude
ing state of the cupratés. tail. It results from the response of the freely moving charged
Many other features of our model are in agreement withvortices to the external electric field. The strong temperature
experimentally observed properties of the cuprate supercomtependence of this tail is determined by the scattering
ductors. Nucleation of magnetic vortices with doping ex-mechanism for meron@resumably due to interactions with
plains a variety of magnetic properties, starting with com-other merons and spin wavesThis interpretation is also
plete destruction of the long-range AFM order for very low supported by the fact that the superconducting transition
doping concentration. As we can see from Fi@)5a tightly  leaves the midinfrared absorption band unchanged. Merons
bound meron-antimeron pairs disturbs the long-range AFMwith internal electronic structure are still present on the
ordering of most of the spins on the Q0 lattice. For very planes, but pair condensation leads to a collapse of the Drude
low dopings, these pairs are far from each other, and therail into a 6(w) response.
are many spins on the plane whose orientations are not af- As already discussed, nucleation of charged meron vorti-
fected by any pair. Thus most of the spins maintain long-ces with doping provides a microscopic basis for non-Fermi-
range AFM order. However, as the doping increases to aboliguid behavior, due to the bosonic nature of the mobile
5% (which is roughly equivalent to having two meron- charged excitations. The model also predicts the existence of
antimeron pairs on the 2010 lattice the areas occupied by preformed pairs witld-wave symmetry, which are thought to
each meron-antimeron pairs start to overlap with those occube responsible for the pseudogap efféétas the number of
pied by the neighboring pairs. At this doping the orientationpairs of charged bosons increases with doping and the tem-
of all the spins on the Cu{planes is affected by at least one perature is lowered, the meron-antimeron pairs Bose con-
pair of vortices, and therefore the long-range ordd®O) is  dense and become coherent, leading to superconductivity.
severely disrupted. The local ordering, however, is stillThis mechanism naturally explains the puzzling scaling of
AFM. This picture explains the extremely low doping nec-the superfluid density with dopings~ &, in other words
essary for the disappearance of LR AFM order, as well as theith the number of holes, not of electrons. In our model, it is
fact that the spin correlation length is basically equal to thehe doping-induced positively charged meron vortices that
average distance between holesrtices and does not de- are the mobile charge carriers. As a result, the density of
pend strongly on the temperatuffeEach hole carries its vor- preformed meron-antimeron Cooper pairs is obviously pro-
tex with it, and the spins in each vortex are correlated withportional to doping. Finally, for large dopings &(
each other. The correlation length is thus roughly equal to>0.30—-0.40) the average vortex size become extremely
the average size of the vortex which is defined by the aversmall, and the very cores of the merons start to overlap. In
age intervortexinterhole distance. The nucleation of mag- this limit the Mott-Hubbard gap is completely filled in by the
netic vortices also explains the split of ther,@@) AFM discrete levels, and the spin-flux state becomes energetically
Bragg peak into the four incommensurate peaks whose posimnstable relative to a normal Fermi liquid.
tions shift with doping’® as observed in LaCuO and, more It is noteworthy that all of the independent features de-
recently, in YBaCuG* The form factor of any given vortex scribed above are in qualitative agreement with our model,
already gives rise to an apparent splitting of the neutron scawhich has essentially no free or adjustable parameters. The
tering peak. As demonstrated in Ref. 9, even at the mearchoice ofU/t is fixed by the experimentally measured size of
field level we recapture the neutron scattering data using the Mott-Hubbard charge-transfer gap at zero doping. More
random distribution of meron vortices. detailed comparisons with specific experiments may require
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