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Abstract – Non-local, inhomogeneous and retarded response similar to that observed in
experiments is studied theoretically by introducing the Inhomogeneous Momentum Average (IMA)
approximation for single-polaron problems with disorder in the on-site potential and/or spatial
variations of the electron-phonon couplings and/or phonon frequencies. We show that the electron-
phonon coupling gives rise to an additional inhomogeneous, strongly retarded potential. This
potential describes essential physics ignored by “instanteneous” approximations. The accuracy
of IMA is demonstrated by comparison with single-impurity results from the approximation-free
Diagrammatic Monte Carlo (DMC) method. Its simplicity allows for easy study of many problems
that were previously unaccessible.
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Understanding the properties of materials which are the
focus of current research, as well as the development of
novel applications, is closely linked to the physics of quasi-
particles (qp) in disordered systems and coupled to various
bosonic modes. For example, the manganites which exhibit
colossal magnetoresistance are doped materials [1] with
considerable electron-phonon (el-ph) as well as electron-
magnon and electron-orbiton couplings [2]; the interplay
between disorder [3] and the coupling to bosons mani-
fests itself in the peculiarities of their phase diagram [4].
Similarly, underdoped high-Tc cuprate superconductors
are inhomogeneous materials [5] with rather strong and
inhomogeneous coupling to phonons [6,7], besides strong
coupling to magnons. Other examples are charge transport
in organic thin-film transistors [8] and in organic photore-
ceptors [9], dominated by polaron jumps between poten-
tial traps [10]. The importance of the interplay between
disorder and coupling to bosons is magnified by the fact
that weak coupling, which is relatively unimportant in a
clean system, may result in dramatic effects in disordered
compounds [11–13].
The tremendous computational difficulties for studying

a polaron even near a single impurity resulted in the 30
year delay between the first results based on the adiabatic
approximation [14] and the recent approximation-free
solution by the DMC method [11,12]. What is needed

in practice, however, is the ability to generate accurate
theoretical predictions for systems whose inhomogeneity is
not limited to a single impurity but may have any spatial
profile, including potential barriers to model interfaces,
and also cases where the bosons’ energies and their
coupling to the electron are inhomogeneous as well [15].
Accurate numerical solution of such problems for large
systems is still effectively impossible —while polarons in
the presence of Anderson disorder have been investigated
by calculating the distribution of the local density of
states using statistical dynamic mean-field theory [16],
this approach takes spatial correlations into account in
an effective way only.
In this letter we study accurately yet efficiently the

single-Holstein-polaron problem with arbitrary disorder
by developing the Inhomogeneous Momentum Average
(IMA) method. This is based on the Momentum Average
(MA) approximation for translationally invariant systems,
like Holstein [17] and more general models [18]. IMA
takes any potential inhomogeneity into account exactly
and also can handle inhomogeneities of the coupling and
of the energy of the bosons. Comparing results of IMA
with approximation-free data from DMC allows us to
gauge its accuracy. The IMA approximation can then be
systematically improved [19] so that in combination with
DMC [11] one gets an accurate and fast tool to study all
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the systems described above within the framework of a
controllable and efficient approximation scheme.
Given the low computational cost of IMA, a rapid scan

of the entire parameter space is now possible. To show its
relevance for experimental data analysis, we compute STM
images of inhomogeneous systems of large enough sizes
to render DMC studies impractical, due to the enormous
computational costs [20]. This allows us to prove the
nonlocal nature of a system’s response to disorder and
demonstrate the importance of the retardation effects.
Consider the Holstein Hamiltonian with disorder

H=H0+ V̂d+ V̂el−ph, (1)

where H0 = T̂ +Ω
∑

i b
†
i bi is the energy of the free elec-

tron, e.g. due to nearest-neighbor hopping on the lattice
of interest, plus the free bosons (�= 1). V̂d =

∑

i ǫic
†
i ci is

the disorder potential, and V̂el−ph = g
∑

i c
†
i ci

(

b†i + bi

)

is

the el-ph interaction. The electron’s spin is irrelevant. For
simplicity, we first take Ω and g to be spatially homoge-
neous and discuss generalizations later on.
The goal is to compute the retarded Green’s function:

Gij(ω) = 〈0|ciĜ(ω)c
†
j |0〉=

∑

α

〈0|ci|α〉〈α|c
†
j |0〉

ω−Eα+ iη
, (2)

where Ĝ(ω) = [ω−H+ iη]−1 and H|α〉=Eα|α〉 are the
one-electron eigenstates. The local density of states
(LDOS) A(i, ω) =− 1

π
ImGii(ω) is measured by STM.

Let G
(d)
ij (ω) = 〈0|ci [ω−Hd+ iη]

−1
c†j |0〉 be the “disor-

der” Green’s function in the absence of el-ph coupling,
corresponding to Hd =H|g=0 . Since Hd is quadratic, it

can be diagonalized and thus G
(d)
ij (ω) is straightforward

to calculate and treats the on-site disorder exactly. The
diagrammatic solution is depicted in fig. 1(a). Given that
H=Hd+ V̂el−ph, we can use the Dyson identity Ĝ(ω) =

Ĝ(d)(ω)+ Ĝ(ω)V̂el−phĜ
(d)(ω) to calculate Gij(ω) in terms

of G
(d)
ij (ω). This leads to the equation of motion

Gij(ω) =G
(d)
ij (ω)+ g

∑

j1

F
(1)
ij1
(ω)G

(d)
j1j
(ω), (3)

where F
(n)
ij (ω) = 〈0|ciĜ(ω)c

†
jb
†n
j |0〉 is a generalized prop-

agator, with F
(0)
ij (ω) =Gij(ω). Using the Dyson identity

again, we find its equation of motion for n� 1:

F
(n)
ij (ω) = g

∑

j1 �=j

G
(d)
j1j
(ω−nΩ)〈0|ciĜ(ω)c

†
j1
b†j1b

†n
j |0〉

+ gG
(d)
jj (ω−nΩ)

[

nF
(n−1)
ij (ω)+F

(n+1)
ij (ω)

]

.

(4)

In the IMA(0) approximation, we set in all these equa-

tions G
(d)
j1j
(ω−nΩ)→ 0 if j �= j1 and n> 0. This is a good

low-energy approximation, because the ground-state (GS)
of the polaron lies below the spectrum of Hd and so for

ω∼EGS , G
(d)
ij (ω−nΩ) decreases exponentially with the

Fig. 1: (Color online) (a) The disorder Green’s function (bold
red line) is the usual sum of diagrams involving the free-
electron propagator (thin line) and scattering on the disorder
potential (dashed lines ending with circles). (b) One of the
second-order diagrams contributing to the full propagator
Gij(ω). The wriggly lines are phonons. For more details, see
text.

distance |i− j|. Thus, IMA(0) ignores only exponentially
small contributions, while keeping the large terms fully.
Its physical meaning becomes more apparent in terms of
a diagrammatic expansion, which can be obtained from
the equations of motion in the limit of weak coupling.
(Note that the equations of motion are valid for any
coupling strength, they are not perturbative.) Following
arguments similar to those of ref. [19], one can show that

IMA(0) keeps all the diagrams in the diagrammatic expan-
sion, up to exponentially small contributions which are
discarded. For example, instead of the exact expression for

the diagram of fig. 1(b), namely g4
∑

n,mG
(d)
in (ω)G

(d)
nm(ω−

Ω)G
(d)
mn(ω− 2Ω)G

(d)
nm(ω−Ω)G

(d)
mj(ω), in IMA

(0) we keep all
n=m terms but ignore the exponentially smaller n �=m
terms. This holds true for all diagrams, to all orders, and
it is in this sense that we claim that IMA(0) sums all the
diagrams. This approximation can be improved system-
atically, just like in the bulk case [19]. In IMA(1), off-
diagonal terms are ignored only for disorder propagators
with energy ω−nΩ, where n> 1 (the lower the energy, the
faster the exponential decay), and so on and so forth. It is

also worth pointing out a variational meaning. IMA(0) is
equivalent to working in the Hilbert subspace spanned by
ci(b

†
j)
n|0〉, for all i, j, n. In IMA(1), one extra phonon can

be present at any other site [19,21], etc.
For both zero coupling and zero free-electron bandwidth

limits, these approximations become exact. The arguments
above explain why the low-energy part is expected to
remain accurate for any intermediate coupling. Then we
can use spectral-weight sum rules to gauge the accuracy
of the entire spectral weight. Following the steps detailed
in refs. [17,19], it is straightforward to show that IMA(0)

obeys six spectral-weight sum rules exactly, while IMA(1)

obeys eight spectral-weight sum rules exactly. As a result,
we expect that these approximations are accurate for all
couplings, at all energies, just like their bulk counterparts.
Within IMA(0), then, only the terms with F (n)

functions remain in eq. (4), whose solution becomes
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F
(n)
ij (ω) =An(j, ω)F

(n−1)
ij (ω) [17]. The continued fractions

An(j, ω) =
ngG

(d)
jj (ω−nΩ)

1− gG
(d)
jj (ω−nΩ)An+1(j, ω)

(5)

are easy to compute. Using F
(1)
ij (ω) =A1(j, ω)Gij(ω),

eq. (3) becomes

Gij(ω) =G
(d)
ij (ω)+ g

∑

j1

Gij1(ω)A1(j1, ω)G
(d)
j1j
(ω). (6)

This allows Gij(ω) to be calculated from a system of linear
equations, however the results converge extremely slowly
with the cutoff in j1. To improve efficiency, we define

An(ω) =An(j, ω)|V̂d=0 =An(j, ω)||j|→∞, (7)

i.e. An(ω) are the values for the clean system, familiar

from MA(0). The second equality holds because we assume
that the disordered region, however large it may be,
is finite: ǫi→ 0 when |i| →∞. Then, sites located very
far from the disordered region are not sensitive to it,
and propagators at such sites approach the bulk values.
Introducing the “effective interaction” potential

v0(j, ω) = gA1(j, ω)−ΣMA(0)(ω), (8)

where the bulk MA(0) self-energy is ΣMA(0)(ω) =
gA1(ω) [19], we can rewrite eq. (6) as

Gij(ω) =G
(d)
ij (ω̃)+

∑

j1

Gij1(ω)v0(j1, ω)G
(d)
j1j
(ω̃), (9)

where ω̃= ω−ΣMA(0)(ω). This renormalized energy
reveals that certain classes of diagrams have been
explicitly summed (see below), and eq. (9) is now very
efficient to solve numerically since v0(j, ω)→ 0 rapidly
with increasing |j|. For a single attractive impurity
ǫi =−Uδi,0, we find that a cutoff |j|� 5 suffices for
convergence, although a cutoff of 0 or 1 does not, showing
that v0(j, ω) is spread over a few sites even if the impurity
is local.
Equation (9) reveals a twofold role of the el-ph inter-

action. The first is the renormalization ω→ ω̃ . If we had
found the solution Gij(ω) =G

(d)
ij (ω̃), it would mean that

the renormalized quasiparticle — the polaron — interacts
with the disorder potential V̂d. However, the second term
in eq. (9) shows that the disorder is renormalized as well

V̂d→ V̂d+
∑

j

v0(j, ω)c
†
jcj . (10)

In other words, due to el-ph interactions, the polaron inter-
acts with a renormalized, retarded disorder potential.
The origin of this additional, retarded potential becomes

clear if we again analyze the meaning of IMA(0) in
terms of diagrams. As already discussed, IMA(0) sums all
diagrams, such as the one depicted in fig. 1(b), except
for exponentially small terms whose removal allows us to

Fig. 2: (Color online) (a) The bulk polaron propagator in
the clean system. MA(0) discards exponentially small contri-
butions from each of these diagrams (see text for details).

(b) Diagrammatic series for G
(d)
ij (ω̃), which is represented by

the thick red double line. Circles indicate scattering on the
disorder potential. (c) Diagrammatic representation of eq. (9).
The thick dashed blue line represents the full propagator
Gij(ω). The square box represents the additional scattering
potential v0(j, ω). (d) Diagrammatic expansion for v0(j, ω).
All phonon lines begin and end at the same site j, and each
diagram contains at least one scattering on the bare disorder
potential.

sum infinite classes of diagrams explicitly, in the continued
fractions. However, the resulting eq. (6) cannot be summed
efficiently. Unlike eq. (6), eq. (9) involves disorder propa-

gators with the renormalized energy G
(d)
ij (ω̃) . These are

given by a diagrammatic expansion like in fig. 1(a), but
now all free electron propagators have the renormalized
energy ω̃, G0(i, j, ω)→G0(i, j, ω−ΣMA(0)(ω)), i.e. they
equal the bulk polaron propagator (in the absence of disor-
der). This propagator and its diagrams are depicted in
fig. 2(a) as a double thin line. As discussed, within the

MA(0) approximation, it equals the sum over all diagrams
shown in fig. 2(a), except for exponentially small contri-
butions which are discarded.
The diagrammatic expansion of G

(d)
ij (ω̃) (denoted by a

double thick line) is then shown in fig. 2(b) and should
be contrasted with fig. 1(a). This figure explains our

statement that G
(d)
ij (ω̃) represents the bulk polaron being

scattered by the bare disorder potential. Given that the
bulk polaron diagrams all begin and end with a free-

electron propagator, see fig. 2(a), it follows that G
(d)
ij (ω̃)

has contributions only from processes where the electron
scatters on the disorder potential when no phonons are
present. This clearly illustrates why a second term is
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needed in eq. (9), to account for the processes where the
electron scatters on the disorder potential while phonons
are present.
Figure 2(c) depicts the diagrammatic analog of eq. (9),

showing these extra terms which are due to scattering on
the additional potential v0(j, ω), depicted as a box (the
bare potential is depicted by a filled circle, see fig. 1(a)).
The diagrams contributing to v0(j, ω) are obtained by
expanding eq. (8) in powers of g; the first few terms are
sketched in fig. 2(d). All phonon lines in all diagrams
contributing to v0(j, ω) start and end at site j. This is a

consequence of the fact that only diagonal terms G
(d)
jj (ω)

appear in the expression of v0(j, ω), see eqs. (5) and (8).

However, since G
(d)
jj (ω) is calculated exactly, these terms

allow the electron to scatter on disorder at any other site
in the system. This explains why v0(j, ω) is not local,
even if the bare disorder V̂d is: there is a distribution of
probabilities for the electron to be at various distances
away from its phonon cloud, and so it can scatter on
disorder potential located away from where the phonons
are. Finally, the origin of the retardation effects encoded
in v0(j, ω) is now also apparent: at different energies, the
structure of the phonon cloud is different, so the scattering
of the electron in the presence of its cloud will be different.
Typically v0(j, ω) changes sign as ω varies, going from
strongly attractive to strongly repulsive and back. Its plot
for a different but related problem is shown in ref. [22].
Since V̂d is treated exactly, we expect the validity of

IMA(0) to mirror that of MA(0), and thus to worsen in
lower dimensions d, and when the effective el-ph coupling
λ= g2/(2dtΩ)∼ 1 (remember that IMA is exact for both
λ→ 0,∞) and for small Ω→ 0 [19]. Even then, attrac-
tive potentials improve the accuracy as they push the
GS to lower energies. However, for small Ω and λ∼ 1
we may need to go to a higher level of the approxi-
mation. As already explained, in IMA(1) we neglect the
exponentially small terms in eq. (4) only if there are
n� 2 phonons present. After long but straightforward
calculations, we find that the IMA(1) solution is similar
to eq. (9), but as expected ω̃ is now renormalized by
the bulk ΣMA(1)(ω) self-energy [19], while the renormal-
ized potential is also more accurate: v1(j, ω) = g

2xj,ω/[1−
gxj,ω[A2(j, ω)−A1(j, ω−Ω)]]−ΣMA(1)(ω) where xj,ω =

GMA(0),jj(ω−Ω) is the MA
(0) solution of eq. (9) at a

shifted energy. If necessary, one can go to a higher IMA(n)

level with n� 2.
In fig. 3(a) we plot the LDOS A(0, ω) at the impurity

site, for a single attractive impurity ǫi =−Uδi,0 in 1D (we
plot tanhA so that low-weight features are visible). At
U = 0, it shows the expected spectrum: a narrow polaron
band, a wider band for the second bound state [23], the
continuum above ω≈−2.5 etc. For U > 0 bound states
split from all the bands, redistributing the LDOS.
The accuracy of IMA is gauged against DMC results

available for this single-impurity case. The GS energy and
qp weight Zgs at the impurity site vs. the impurity strength
U is shown in figs. 3(b)–(g). The agreement is very good
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Fig. 3: (Color online) (a) tanh[A(0, ω)] for IMA(1) LDOS
A(0, ω) at the impurity site as a function of ω and U , for
t= 1,Ω= 0.5, g=

√

1.25, η= 0.0025; (b),(d) GS energies; and
(c),(e)–(g) spectral weights Zgs at the impurity site vs. U in
DMC, IMA(0) and IMA(1), for Ω= 2, λ= g2/(2tΩ)= 0.5626 in
(b) and (c), respectively, Ω= 0.2 and λ= 0.5, 0.75, 1 in (d)–(g).
The dot-dashed lines in (b) and (c) show results for the case
of a simple energy shift by −g2/Ω, i.e. for v0(i, ω) = 0.

in panels (b), (c) even though these are 1D results, where
IMA is least accurate. This is partially due to the large
Ω= 2t [19]. For a worst-case scenario, we plot in (d)–(g)
results for a much smaller Ω= 0.2t, for weak, medium and
strong couplings. Here we see quantitative differences. For
Egs, the accuracy at small U mirrors that of MA in the
bulk [19]. As noted, when U increases and Egs moves to
lower energies, the accuracy improves. Zgs shows more
significant errors at small U , with IMA overestimating the
answer. This is not surprising, since for such small Ω one
expects phonons at many different sites and a higher level
n of IMA is needed. However, even n= 0, 1 levels capture
the results quantitatively quite well, even in 1D. Given the
6 (8) spectral-weight sum rules satisfied exactly by IMA(0)

(IMA(1)), we expect the spectral weight at all energies to
be similarly accurate.
Figures 3(b), (c) also show results (dash-dotted line)

for the instantaneous approximation [24,25], where the
el-ph coupling is assumed to simply shift energies by the
polaron formation energy −g2/Ω. In IMA, this shift comes
from ΣMA(ω≈Egs)≈−g

2/Ω appearing in ω̃, so it implies
setting v0(j, ω)→ 0. In fact, using the full bulk self-energy
instead of −g2/Ω also accounts for the renormalization
of the polaron mass, which is linked to the ∂Σ(ω)/∂ω.
Even so, this works rather poorly even for this small
λ and it gets worse as either U or g increases. This
demonstrates that v0(j, ω) cannot be ignored, and that
instantaneous approximations that do so are of limited
accuracy. This is not surprising, given the meaning of
v0(j, ω) revealed in fig. 2. Ignoring v0(j, ω) means that one
only allows the electron to scatter when no phonons are
present. However, the stronger the coupling g is, the bigger
is the probability that phonons are always present, and
therefore the more important the scattering of the electron
in the presence of the phonon cloud, captured by v0(j, ω),
becomes.
This conclusion must be of much wider generality: even

for interacting particles in the presence of disorder, one
should expect such a renormalization of the disorder, due
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to scattering of the electron on disorder in the presence of
its cloud of particle-hole excitations. Ignoring this renor-
malization, as done by instantaneous approximations, is
unjustifiable if the interactions are strong.
Note that all the analysis so far assumed homogeneous
g and Ω values. Inhomogeneities in g and Ω are easy to
treat with our method, since all its equations and approx-
imations are formulated in real space. Repeating the same
steps, one finds that at the IMA(0) level one simply has to
use the appropriate gj and Ωj values in eqs. (5) and (8),

and similar changes are needed for IMA(1). However, the
general structure of all the equations and the computa-
tional effort required to solve them is unchanged. The
extra diagrams contributing to v0(j, ω) when g or Ω
are inhomogeneous can also be identified easily. Even if
there is no bare disorder, a v0(j, ω) will appear at all
sites j with a different gj or Ωj , to account for differ-
ences between their contributions and those of the bulk
diagrams.
This shows that IMA allows us to consider all possible

sources of disorder on equal footing, at no added computa-
tional cost, and that all lead to the renormalization of the
bare disorder. It is true that unlike V̂d, inhomogeneities in
g and Ω are not treated exactly. However, they are treated
at the same level of accuracy as all other electron-phonon
interactions, based on the same arguments of disregarding
exponentially small contributions while obeying exactly
multiply spectral-weight sum rules. We are thus confi-
dent that IMA maintains the level of accuracy shown in
fig. 3, although lack of exact numerical results for cases
with inhomogeneous g or Ω prevents us from verify-
ing this.
Besides revealing interesting physics, as already

discussed IMA allows for efficient study of large disor-
dered samples, including their Fourier transform (FT)
analysis. FT-STM, pioneered in ref. [26], is being applied
not only to cuprates [27] but also quasi-1D systems
with charge density waves, semiconductors and semi-
metals [28]. FT-STM of a 0.8% Fe covered surface of
InAs revealed its quasiparticle dispersion, but its el-ph
coupling is weak. In materials such as KCl, CsI, SrTiO3
and RbCl, however, the el-ph coupling is up to two orders
of magnitude stronger, while in In1−xGaxAsyP1−y it
varies more than twice depending on the value of y [29].
Such systems at a low density of carries, or for very weak
interactions between carriers, can be studied with our
method.
As an example of its capabilities, we use IMA to

generate results for a problem whose study by DMC is not
feasible due to enormous CPU costs. We consider a case
where there is no bare disorder, but the el-ph coupling
varies randomly, λi = g

2
i /(2dtΩ)∈ [0.9, 1.1] inside a finite

region embedded in an infinite system with λ= 1. We
consider the case of random el-ph coupling without on-
site disorder because i) it demonstrates the usefulness of
our method in a less familiar situation, and ii) it is relevant
for studies like of ref. [7], where such inhomogeneous el-ph
coupling is believed to exist.

Fig. 4: (Color online) (a) 1D LDOS A(i, E). The polaron
band and part of the second bound-state band are shown. The
vertical dashed lines mark the edges of the disordered region.
The slanted lines suggest that some features’ location changes
with energy. (b) Analog of (a) for a 2D sample. The plot shows
A(i, j = 25, ω) vs. i; (c),(d),(e) show the 2D A(i, j, E) vs. i, j
for E = 0, 0.25 and 0.5, respectively. In all plots the energy E
is measured from the GS polaron energy of the surrounding
uniform system with λ= 1, Ω= 0.5t, t= 1.

Figures 4(a),(b) show clear evidence of nonlocal
response, as some features change their spatial location
with the energy (the slanted lines track a few such
cases). This is more clear in 1D; in 2D some shifts
are perpendicular to the direction shown. The LDOS
maps of figs. 4(c)–(e) illustrate the retarded nature
of the solution, with different looking LDOS inside
the disordered region at different energies. There are
no obvious correlations between these LDOS maps,
in particular no common patterns that could be used
to identify either a very large or very small local
gj . Our results also reproduce the expected Friedel-
like oscillations in the surrounding region of uniform
medium.
In ref. [7], the Fourier transform analysis of the LDOS

maps assumes, as is usually done, that peaks occur at
momenta k where the quasiparticles scatter most strongly
at that energy. This fact can be used to extract the
quasiparticle dispersion in the clean system, see also
ref. [5]. However, in the absence of impurities, V̂d = 0, it is
not clear how this scattering occurs. IMA reveals that it
is due to the additional, el-ph induced potential v(j, ω). If
this is true, FT of LDOS maps like those of figs. 4(c)–(e)
should reveal the same phenomenology. Note that here we
use nearest-neighbor hopping for the free electron, not the
dispersion appropriate for a free quasiparticle in a clean
d-wave superconductor, but this should not influence the
general analysis. Moreover, IMA allows for straightforward
generalization of the free particle dispersion.
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Fig. 5: (Color online) (a) Fourier transform of the 2D LDOS
map at energy E = 0.06t above the bulk GS (λ= 1, Ω= 0.5t).
(b) Same for ky = 0 and E/t= 0.03, 0.06, 0.12. The lines show
predicted scattering ks vectors. For more details, see text.

In fig. 5(a) we show the average FT of 200 LDOS
maps like those of fig. 4(c), but for disordered areas of
50× 50 sites and at an energy E = 0.06t above the bulk
polaron GS. A large peak at k= 0 peak was removed
for clarity. As E→ 0, the bulk polaron dispersion E(k) =

−2t∗(cos kx+cos ky − 2)≈
�
2
k
2

2m∗ , so we expect signal up

to a ks = 2
√

2m∗E
�2

when k→−k scattering occurs. For

the parameters used here, the effective polaron mass is
m∗/m= t/t∗ = 1.86. The dashed line in fig. 5(a) shows ks,
in good agreement with the location of the FT maxima.
This is revealed more clearly in fig. 5(b). (The second
peak visible at higher E may be due to inelastic scattering
between the first and second polaron bands, but this needs
further study.) The good agreement proves that indeed it
is the polaron of massm∗, not the bare particle of massm,
that is scattered. It also shows that even in the presence of
such significant inhomogeneity, the polaron maintains its
character. Our results are the first to provide a theoretical
basis for FT analysis in such systems.
Because IMA is extremely efficient (LDOS maps like

fig. 4(c) take ≈ 50 s on a desktop) one can now easily
study very large samples with disorder in the on-site
potential, the el-ph coupling and phonon energy, in any
dimension, to reveal the effects of each kind of disorder and
possible “interferences”. For instance, it is possible that
in the right circumstances, inhomogeneities of different
origin may cancel out each others effects. Such studies are
already under way [30]. Generalizations to other bare qp
dispersions, to multiple phonon modes or to el-ph coupling
dependent on the phonon momentum, where the bulk MA
solutions are already known [18], are also straightforward.
In conclusion, IMA is an accurate, controllable and effi-

cient method to study the effects of disorder on polarons.
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