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We investigate the effect of single and multiple impurities on the Zeeman-localized, spin-polarized
bound states in dilute magnetic semiconductor hybrid system. Such bound states appear whenever
a dilute magnetic semiconductor showing giant Zeeman effect is exposed to an external magnetic
field showing nanoscale inhomogeneity. We consider the specific example of a super-
conductor-dilute magnetic semiconductor hybrid, calculate the energy spectrum and the wave
functions of the bound states in the presence of a single impurity, and monitor the evolution of the
bound state as a function of the impurity strength and impurity location with respect to the center
of the Zeeman trapping potential. Our results have important experimental implications as they
predict robust spin textures even for ideal samples. We find that for all realistic impurity strengths
the Zeeman bound state survives the presence of the impurity. We also investigate the effect of a
large number of impurities and perform ensemble averages with respect to the impurity locations.
We find that the spin-polarized Zeeman bound states are very robust, and they remain bound to the
external field inhomogeneity throughout the experimentally relevant region of impurity
concentration and scattering strength. © 2010 American Institute of Physics.
�doi:10.1063/1.3275886�

I. INTRODUCTION

Due to its potential use in spintronics and quantum in-
formation applications, the controlled manipulation of indi-
vidual spins has been a subject of great interest in recent
years. In the search for appropriate materials for device fab-
rication, one possible route is the use of III-V or II-VI diluted
magnetic semiconductors �DMS�.

In II-VI DMSs, the exchange interaction between band
charge carriers and the localized magnetic spins of the mag-
netic dopant �such as Mn� gives rise to a giant splitting be-
tween band states with different spin components. This giant
Zeeman spin splitting has been extensively investigated and
characterized.1,2 Given the linear dependence of this splitting
on the external applied magnetic field for fields lower than
roughly 1 T, it can be described in terms of a very large
effective g-factor for the band carriers. For example, Dietl et
al.3 reported an electron effective g-factor of about 500 at
sub-Kelvin temperatures in a CdMnSe sample, which im-
plies a value of about 2000 for the effective g-factor of a
hole in this material. In previous works,4–8 we proposed to
take advantage of this large effective g-factor by combining
it with a spatially inhomogeneous applied magnetic field, to
create a spatially varying Zeeman potential that acts as a
confining potential for only one spin orientation. In suitable
conditions, this leads to a single charge carrier with a well
defined spin being trapped in the region of large local mag-

netic field. This spin-polarized charged carrier can then be
manipulated through external control on the applied inhomo-
geneous magnetic field.

The needed nanoscale inhomogeneous magnetic field
can be generated in various ways. One possibility is to use
nanoscale magnets placed above a DMS quantum well
�QW�.4–6,9,10 Depending on the shape and orientation of the
nanomagnet, different nonuniform fields are generated, giv-
ing rise to various types of confined states.6

Another possibility is the use of Abrikosov vortices that
appear in type-II superconductors �SCs�. Above the lower
critical field, Bc1

vortices populate the SC, forming a vortex
lattice. Nanoengineering can be used to ensure that the vor-
tices nucleate in well defined positions.11 The field of a
single vortex is nonuniformly distributed around a core of
radius r�� �� is the SC coherence length� and decays away
from its maximum value at the vortex center over a length
scale � �� is the penetration depth�. If a SC layer that hosts
such vortices is placed above a DMS layer �QW�, the inho-
mogeneous magnetic field of the SC vortices creates an in-
homogeneous magnetic field in the DMS layer. According to
our previous calculations,7,8 these fields are sufficiently large
to result in the confinement of band carriers with a given spin
orientation in the small region of the DMS QW that is lo-
cated directly under a SC vortex core. Thus, spin textures are
formed and can be manipulated by moving the source of the
magnetic field, i.e., the SC vortex. In other words, the SC
vortices act as spin and charge tweezers and can be used for
a wide array of applications, from investigation of the Hof-a�Electronic mail: albert.shihsin.lin@gmail.com.
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stadter butterfly and making spin shuttles7 to generating an-
ions of interest for topological quantum computing.12 The
inhomogeneous field can also be generated by non-
Abrikosov vortex structures of SC, for example, a SC layer
with holes, blind holes, or magnetic nanodots on top.4,5,7,13

In our previous work, we assumed that the DMS QW is
perfectly clean and with Mn impurities distributed in a per-
fectly homogeneous fashion �for instance, by digital
doping14�, so that the Zeeman potential is a smooth function
mirroring the applied magnetic field. For such systems, we
obtain typical binding energies of the spin-polarized charge
carrier on the order of a few meV.7,8 As we show in this
paper, such perfect homogeneity is not necessary. This is a
very important result from experimental detection and appli-
cation point of view, since it opens up the possibility of
investigating Zeeman localization effects in samples grown
during standard molecular beam epitaxy �MBE� conditions.
Since the effective g-factor is proportional to the local con-
centration of Mn, inhomogeneities in their distribution will
result in a spatially varying g�r�� which will modify the trap-
ping potential. Even more detrimental are charged impurities
which exist in any sample. Charge dopants are needed to
introduce charge carriers in the II-VI DMS because the Mn is
isovalent with the valence-II element it replaces. The disor-
der due to these charged dopants can be minimized in the
usual way used for two-dimensional �2D� electron systems,
by doping at some distance away from the DMS QW and
using gates to control the concentration of charge carriers in
the DMS QW. However, small concentrations of undesired
charged dopants in the DMS QW cannot be avoided.

In this article, we investigate the role played by charged
scattering centers on the confinement of spin-polarized car-
riers in the DMS QW. We focus on repulsive centers, which
are expected to be most detrimental to the binding of the
spin-polarized carrier in the Zeeman trap, and then briefly
discuss the other types of scattering centers mentioned
above. We show that due to the difference between the length
scale of the confining potential and the repulsive scattering
potentials, the bound-state energy is not significantly
changed even in the presence of a large number of impuri-
ties. This result indicates that the binding of spin-polarized
charge carriers in Zeeman traps created in a DMS QW is
very robust against such defects, with immediate implica-
tions for spintronics applications based on this scenario.

It is important to also emphasize that our conclusions
apply to a much wider range of systems than the one of
interest to us because these conclusions are based on quite
simple physics, as we show below. We argue that in any
system �such as quantum dots and QWs� where localization
occurs on a lenghtscale much larger than that of typical scat-
tering potentials, the effect of such scattering centers is very
small even if their potential is very large.

This paper is organized as follows: In Sec. II, we de-
scribe in more detail the system we study, our theoretical
approach, and the approximations we have made. In order to
build intuition and to help interpret later calculations, in Sec.
III, we analyze the results for a simplified one-dimensional
�1D� model in the presence of a single impurity. This allows
us both to gauge our computational scheme against exact

solutions and to gain some intuition about the effect of the
scattering centers. In Sec. IV, we repeat the analysis for a
single scattering center for the 2D of interest to us and dis-
cuss the influence of the symmetries in our results. Finally, in
Sec. V, we present the results for a random distribution of
impurities and various impurity concentrations. We conclude
in Sec. VI with a summary and discussion.

II. THEORETICAL MODEL

The hybrid structure of interest to us is sketched in Fig.
1�a� and consists of a SC layer in the vortex phase placed
above a DMS QW. The two materials are separated by a thin
insulating layer. The SC can be Pb or Ni, for example, both
these metals can be grown on top of semiconductors using
MBE techniques.15 The QW consists of a weakly p-doped
DMS. An example of such a DMS QW is a p-doped �Cd-
,Mn�Te well, doped with N by a modulation doping tech-
nique that avoids inhomogeneity effects and increases the
mobility of the carriers.16 The carriers of interest to us are
confined in the 2D DMS QW. The giant Zeeman effect in the
DMS is described by a very large g-factor. This combines
with the inhomogeneous magnetic field generated by each
vortex to give rise to an effective potential that binds a spin-
polarized hole under each vortex, in a clean sample. As
stated, we are now interested in the effect of repulsive scat-
tering centers on these spin-polarized bounds states. A typi-
cal potential well in the presence of a single and of several
charged scatterers is illustrated in Figs. 1�b� and 1�c�, respec-
tively.

In a parabolic approximation, the Hamiltonian for a
charge carrier in the 2D DMS QW which interacts with the
magnetic field of the vortex and with scattering centers is

H =
�p� − qA� �r���2

2m
−

1

2
geff�B�� · B� �r�� + �

i

Vi�r�� , �1�

where m and q are the effective mass and charge of the
carrier, B� �r�� is the magnetic field generated by a single vor-
tex, A� �r�� is its vector potential, and Vi�r�� are the repulsive
potentials from the i scattering centers. For simplicity, we
assume that the motion of the carrier in the QW is 2D. In the
calculations shown here, we use m=0.5me and geff=500,

FIG. 1. �Color online� �a� Illustration of the magnetic field generated by a
single vortex in a hybrid system made of a type II SC on top of a DMS QW
which contains impurities. �b� Potential profile of the Zeeman trap plus a
single repulsive impurity and �c� the same, but for a random distribution of
impurities �figures not to scale�.
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these being typical values for holes in II-VI semiconductors.
Because of the large geff, for a single vortex, the effect of the
A� �x ,y� term is negligible compared to that of the Zeeman
interaction and we ignore it from now on.7

The experimental results show that the Zeeman splitting
for holes in a DMS is anisotropic, depending on the direction
of the magnetic field with respect to film plane.17 Using a
Luttinger Hamiltonian,18 one can also show that in a 2D QW,
the geff of heavy holes is highly anisotropic, with an in-plane
component much smaller than that perpendicular to the film
plane.6 With these results in mind, we can further simplify
our problem by considering only the effect of the z compo-
nent of the magnetic field, which is most strongly coupled to
the charge carrier. This approximation allows us to decouple
the Hamiltonian in the spin-up and spin-down sectors, and
consider them separately. We will only focus on the spin
component for which this Zeeman potential acts as a trap.

As discussed extensively in Ref. 7, the size of the con-
fining region defined by the inhomogeneous magnetic field
depends on the SC’s parameters and the distance between the
SC and DMS layers. It is typically several tens of nanom-
eters in size. On the other hand, the impurity potential of the
scattering centers is considerable only in a much smaller
range of a few angstroms in the immediate vicinity of the
impurity. It is the effect of this strong repulsive potential on
the bound state that is of interest to us, since the long-range
Coulomb repulsion is too weak to be relevant �although its
effects can also be studied with our method, if so desired�.
Given the large difference between the characteristic length
scales, we model the scattering potential as a delta function.

After all these approximations, the Schrödinger equation
for the trapped spin component is

� p2

2m
− geff�B

�

2
Bz�r�� + a�

i

��r� − R� i�����r�� = ����r�� ,

�2�

where a characterizes the strength of the impurity potential
and R� i is the location of the ith impurity.

We solve for the eigenvalues in the usual way, by ex-
panding the wave function in a complete basis set and find-
ing the appropriate coefficients from a matrix equation. Our
basis functions are B-spline polynomials on a nonuniform
knot sequence adjusted optimally for each specific arrange-
ment of charged impurities. This method has been widely
used in atomic physics19 and is ideally suited for problems
such as this. Details of the method and its advantages are
discussed in the Appendix.

III. 1D MODEL

We first study a 1D model with a single delta function
impurity inside a square potential well. This provides an in-
tuitive understanding of the physics we want to explore, and
also a numerical test of our B-spline scheme since it permits
the comparison between the numerical results and the exact
solution.

We consider a 1D square well potential

V0�x� = 	− a0 if − L/2 � x � L/2
0 otherwise,


 �3�

where L is the lateral size of the well. To it, we add a single
impurity potential

V1�x� = a��x − x0� , �4�

where x0 is the impurity position. In this case, the
Schrödinger equation is given by

−
	2

2m

d2

dx2��x� + V0�x� + V1�x� = ���x� . �5�

To understand the effects of the impurity on the bound states
for different strengths of the impurity potential, we calcu-
lated the eigenvalues of this Hamiltonian. The energy of the
lowest two bound eigenstates is shown in Fig. 2 versus the
strength of the impurity potential expressed as a dimension-
less quantity 
=a / �a0L�. The parameters are L=100 nm and
a0=3.5	2 / �mL2�, and the impurity is located in the center of
the well, x0=0. Figure 2 reveals that the ground-state energy
first increases with 
 and then saturates to the value of the
first excited state. On the other hand, the energy of the first
excited state is independent of 
. The reason for this behav-
ior is straightforward to understand. Since the first excited
state has a node at the location of the impurity, its energy and
wave function are naturally unaffected by its presence. On
the other hand, the original ground-state wave function has a
maximum at the impurity location, so its energy increases
with 
. However, for large enough 
, the ground-state wave
function also develops a dip precisely at the location of the
impurity and becomes insensitive to its strength. This is dem-
onstrated by the insets of Fig. 3, which show the ground-
state wave function at 
=0 and 
=100. In essence, when

�1, the impurity potential splits the original well into two
isolated wells which are degenerate, given the symmetry of
the problem.

When the impurity is placed off-center, as in Fig. 3, the
system loses this symmetry and the � function separates the
original well into two distinct wells of different sizes. Since
the impurity is now placed in a location where both the origi-
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FIG. 2. �Color online� The ground-state and first excited-state energy vs 
,
a dimensionless quantity related to strength of the impurity potential. The
impurity is located at the center of the well x=0. The left inset shows the
ground-state wave function for 
=0, and the right inset shows it for 

=100.
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nal ground-state and the first excited-state wave function
were finite, both energies now increase with 
 when 
�1.
At higher values of 
 both the ground-state and excited-state
energies saturate. As shown in the insets, the wave functions
develop dips at the location of the impurity and become pro-
gressively more localized on one or the other smaller wells.
The new ground-state wave function becomes confined to
the larger new well. These results agree with those of previ-
ous work20 on a mathematically similar problem arising in a
very different context.

While these results are very easy to understand, they do
provide key insight into the effects of the impurity on the
bound states. First, it is clear that symmetry plays a very
important role. While this influence is maximized by the 1D
character of the model, we expect analogous features in the
2D case.

More importantly, we already see that even if the impu-
rity potential is large, its overall effect on the bound-state
energy and wave function is limited. Because it is extended
over a much larger area, the bound wave function simply
avoids the impurity by developing a dip �or a zero� in its
vicinity, at relatively low energetic cost. In 1D the impurity
effectively “cuts” the wave function. This will not happen in
d=2 or higher dimensions. However, as we demonstrate be-
low, the limited effect on the binding energy is a general
feature observed in higher dimensions.

The results shown so far also illustrate why B-splines are
an ideal basis for such problems. If one tried to use a more
traditional basis of orthonormal polynomials such as har-
monic oscillator eigenstates, one would have to mix in very
many basis states in order to be able to accurately describe
smooth wave-function variations on a short length scale, near
the impurity, as shown in the right inset of Fig. 2. Describing
regions where the wave function essentially vanishes, as
shown in the right inset of Fig. 3, would be even more dif-
ficult. On the other hand, use of B-splines allows one to just
slightly increase the number of basis states by sampling the
vicinity of the impurity on a smaller mesh. As a result, the
calculation with one or more impurities is very comparable,

in terms of numerical computational costs, with the one in
the absence of impurities. A more detailed discussion of
these issues is given in the Appendix.

IV. 2D ZEEMAN POTENTIAL WITH A SINGLE
IMPURITY

We now can consider the 2D system in the presence of a
single charged impurity. As we are not interested in the de-
tails of the Zeeman potential, we take the magnetic field
generated by the vortex to have a Gaussian profile. This ap-
proximation is reasonably close to the vortex core, where the
magnetic field decays exponentially on a length scale set by
�.7,21 We therefore solve Eq. �2� where the magnetic field
profile is taken to be

Bz�r�� = B0 exp�− �r� − r�0�2/�2� , �6�

where r�0 is the location of the vortex core, and B0

=0.206 T and �=50 nm are the strength and the range of
the magnetic field �these are typical values for a dirty Pb film
in a type II regime�. We solve the equation numerically for a
system of finite size 200
200 nm2, with periodic boundary
condition and a grid of 51
51 knots. This large lateral size
is chosen so as to eliminate the finite size effects in our
bound-state energies. For more details about the implemen-
tation of this numerical method and the periodic boundary
conditions, see the Appendix.

We follow a procedure similar to the one in Sec. III and
begin with a single impurity located at the center of the
Gaussian and vary its potential strength. Again, we define a
dimensionless quantity 
=2a / �geff�BB0��2� related to the
strength of the impurity potential. When the impurity is lo-
cated at r�0, as shown in Fig. 4, the ground-state energy in-
creases with the 
 and saturates at a finite value for 

�0.01. In the insets of Fig. 4, we can see that the ground-
state wave function maintains its s-type symmetry as we in-
crease 
 but develops a dip at its center. Similarly to the 1D
case, the first excited state, which is twofold degenerate, is
not affected by the impurity potential, as can be seen in Figs.
5�a� and 5�c�. This is because its eigenfunctions have p-type
symmetry, with a node at the origin where the impurity is
located. These results mirror those of the 1D case but are less
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FIG. 3. �Color online� The ground-state and first excited-state energy vs the
strength of the delta function impurity for x0=L /4. 
=a /a0L. The left inset
shows the ground-state wave function for 
=0, and the right inset shows it
for 
=100.

FIG. 4. �Color online� The two lowest state energies vs the impurity
strength. The left �right� inset is the ground-state wave function for 
=0
�
=1�.
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dramatic: the energy separation �E between the two lowest
eigenstates changes by less than 30% for arbitrarily strong
repulsive impurity potentials even when the charged impu-
rity is placed where it should do the most damage.

Next, we investigate the dependence of the bound ener-
gies and wave functions on the location of the impurity, for a
fixed strength 
. The results are shown in Fig. 6. The
ground-state energy decreases monotonically as the impurity
moves away from the vortex center because it costs less en-
ergy to create a dip at its location �the ground-state wave
function is shown in the inset�. Once the impurity is farther
away than the characteristic length scale of the bound state,
the ground-state energy saturates to its unperturbed value.
Due to the symmetry of the problem, the degeneracy of the
first excites state is lifted. The state which has its nodal line
where the impurity is located is unaffected by it. The other
eigenstate has a finite wave function at the impurity location,
and its energy is increased. However, if the impurity is
placed far enough, its effect vanishes and the two excited
eigenstates become degenerate again. The excited wave
functions are shown in Figs. 5�b� and 5�d�.

Finally, we analyze how the energies of the lowest
eigenstates change when the impurity is off-center at a fixed
distance ri=5 nm and we vary the impurity strength. The
results are shown in Fig. 7. As expected, the ground-state

energy increases but very little, since for large 
 a dip ap-
pears at the location of the impurity and its effect saturates,
irrespective of its strength. The excited state with a nodal
line at the impurity location continues to be unaffected by it,
while the other excited state behaves similarly to the ground
state: its energy increases with 
, but only by a finite amount
until its wave function acquires a zero where the impurity is.

These results clearly demonstrate that a single impurity
is unable to unbind the Zeeman trapped charge carrier, irre-
spective of how large its repulsive potential is. All it can do
is to simply “poke a hole” in the wave function, and this
costs a relatively small energy. Even if the impurity is placed
at the center of the Zeeman potential well, the energetic cost
is little. This suggests that one could have many impurities in
the vortex area without affecting the bound state signifi-
cantly. Our expectations are indeed verified in Sec. V.

Finally, we note that similar results are expected if the
applied magnetic field is weaker. This results in a smaller
binding energy and therefore a more extended wave function
which is even less sensitive to the effect of local impurities.
We have verified explicitly that, indeed, no qualitative
changes are observed even for a B0 as low as 0.08 T.

V. RANDOM DISTRIBUTION OF IMPURITIES

We now address a more realistic situation of a random
distribution of multiple impurities inside the QW. In this
case, as detailed in the Appendix, the use of B-splines is
particularly useful to minimize computational costs.

For a large number of impurities, the energy and wave
function will depend on the distribution of impurities. We
follow the standard procedure and average our results over
various impurity configurations. We performed averages over
1000 configurations at different impurity concentrations. The
digitally doped Cd1−xMnxTe has a zinc-blende structure with
a lattice constant of about 6.5 Å. There are four Cd in a unit
cell, and we take x�1.6. Assuming a single layer of
Cd1−xMnxTe gives a Mn areal concentration of 0.15 nm−2.
As already discussed, the number of charged dopants can be
minimized by the use of codoping techniques. While it is
impossible to eliminate all these scattering centers, we ex-
pect that their concentration is much smaller than the Mn
concentration.

FIG. 5. �Color online� Wave functions of the two excited states with p-type
symmetry when the impurity is located at the center of the vortex, in �a� and
�c�, and for an off-center impurity, in �b� and �d�.

FIG. 6. �Color online� �color online� The lowest eigenenergies vs the dis-
tance of the impurity from the center of the vortex. The solid line is the
ground-state energy, the dashed line is the energy of the excited state whose
wave function is shown in Fig. 5, while the other excited state’s wave
function is shown in Fig. 5�d�. The left �right� inset is the ground-state wave
function for ri=0 �ri=5 nm�.

FIG. 7. �Color online� The ground-, first, and second excited-state energies
vs the impurity strength. The left inset is the wave function for 
=0, and the
right inset is the wave function for 
=0.01.
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Figure 8 shows the central result of this work: the aver-
age ground-state energy of the bound state increases linearly
with the concentration of impurities; however, the slope is
very small. Thus, for any reasonable concentration of impu-
rities we see that their effect on the bound-state energy is
very minimal. This is fully expected, given the analysis pre-
sented in Secs. II–IV. Moreover, those results also imply that
increasing the relative strength 
 of the scattering potentials
will not change this conclusion, since the effect of each scat-
terer saturates at large 
.

Finally, we comment briefly on the effects of other types
of scatterers mentioned in the Introduction. Clearly, attrac-
tive impurities cannot unbind the spin-polarized charge car-
rier; to the contrary, they will bind it more strongly. Weak
scatterers will have small perturbational effects on the bound
state. If the attractive potential is extremely strong, a charge
carrier becomes bound to the impurity itself and will screen
its potential, making the scatterer “invisible” to the spin-
polarized charge carrier trapped by the Zeeman potential. We
conclude that such scatterers cannot damage the bound state.

The other potential source of scattering is due to “noise”
in the values of geff reflecting the variations in the local den-
sity of Mn. One expects the typical scale for such variations
�especially in digitally doped layers� to be very short com-
pared to the tens of nanometer length scale of the bound
wave function. If we model it in terms of a sum of short-
range �delta function� noise, the conclusions will be as
above, especially since the typical variation must be a small
fraction of the average geff, i.e., we expect this to be in a
weak-scatterer regime.

VI. CONCLUSIONS

In this article, we studied the effect of single and mul-
tiple impurities on the spin-polarized state bound by a trap-
ping potential generated by an inhomogeneous magnetic
field in a DMS QW. We demonstrated that this effect is very
limited because of the large difference in length scales be-
tween the size of the wave function and the typical size of a
strong scattering potential. For very large scattering poten-
tials, each impurity pokes a hole in the bound wave function,

at a very small energetic cost. As a result, even for large
concentrations of very strong scatterers, the overall effect on
the bound state is very limited.

This result has obvious positive implications for any ap-
plications based on such trapped states, since they show that
it is not necessary to worry about the effects of impurities or
to use expensive methods to eliminate them. Samples grown
in reasonably clean conditions should suffice for devices
based on these spin-polarized, Zeeman-trapped states. Also
we notice that for systems with arrays of holes on the SC
layer, the critical current can be enhanced, which opens more
possibilities toward application.22
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APPENDIX: B-SPLINES

B-splines have long been employed successfully in
atomic and molecular physics19 but are not as frequently
used in condensed matter physics.23 The aim of this appendix
is to give a brief intuitive picture of the B-splines and their
usefulness for solving Schrödinger equations with compli-
cated potentials. Many more details on B-splines and their
uses are available in the literature.19

B-splines are piecewise polynomials and therefore are
well suited for interpolation, having been extensively used in
fitting tools, including many commercial software
applications.24 In the context of interest to us, they are used
as a basis in which to expand the eigenfunctions. Of course,
there are many possible finite basis sets and finite elements
methods that can be used to solve Schrödinger equations.
The main advantage of using B-splines is the flexibility to
choose the grid points on which the B-splines are defined. If
we need to describe slowly varying functions, a large mesh
suffices, resulting in a small basis set. In regions where there
are fast variations, one can use a finer local mesh, optimized
to give the desired accuracy for the minimum increase in the
number of basis functions. Furthermore, because the
B-splines are piecewise polynomials, matrix elements can be
efficiently evaluated to machine accuracy with Gaussian in-
tegration. Finally, the banded nature and sparsity of the re-
sulting matrices allow for the use of very large basis sets, if
need be.

Suppose that we need to approximate a 1D function in a
given interval x� �a ,b�. We first define a knot sequence of
points in this interval �xi �a=x0�x1�x2� . . . �xN=b
. The
location of the points as well as their number will be chosen
so as to optimize the process. For instance, the knot sequence

FIG. 8. The ground-state energy vs the impurity concentration. The energy
was averaged over 1000 different impurity distributions and we chose 

=0.005.
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can consist of regions of equally spaced knots combined with
regions where the knots are space in an exponential fashion
or any other suitable scheme. On this knot-sequence, we de-
fine the normalized B-splines of rank k by the following
recursion relation:

Bi,1�x� = 	1 if xi � x � xi+1

0 otherwise

 �A1�

and

Bi,k�x� =
x − xi

xi+k−1 − xi
Bi,k−1�x� +

xi+k − x

xi+k − xi+1
Bi+1,k−1�x� , �A2�

where i is the index of a knot point and k is the order of the
spline. Thus, the Bi,k�x� is a polynomial of order k−1 defined
piecewise in the interval �xi ,xi+k� and vanishing outside it.
Moreover, all derivatives up to the order of k−2 are also
continuous. Since we use these functions to expand eigen-
states, which are continuous and have first and second con-
tinuous derivatives, it follows that we should use a cubic
�k=4� or higher order B-splines. Here we use cubic splines,
as they are the simplest splines with the desired properties.
From now on, we simplify our notation and use Bi�x� to
mean the cubic B-spline. The function of interest is then
expanded in terms of these splines:

f�x� = �
i


iBi�x� �A3�

where 
 are the N+3 coefficients of our expansion �for the
N+1-point knot sequence�.

To solve an eigenvalue problem, we expand the wave
function in terms of B-splines and reduce the problem to a
general matrix system:

H − �Sv = 0, �A4�

where H is the Hamiltonian matrix, S is the overlap matrix,
and v is the eigenvector containing the unknown coefficients
for the various B-splines. For a 1D Schrödinger equation
with a potential V�x�, the matrix elements of H and S are
equal to

Hi,j =
1

2m
� dBi�x�

dx

dBj�x�
dx

dx +� Bi�x�V�x�Bj�x�dx ,

Si,j =� Bi�x�Bj�x�dx , �A5�

where we used an integration by parts in the kinetic energy.
The integrals for the kinetic energy and the overlap can be
evaluated analytically, while those of the potential may need
numerical integration, if V�x� is a complicated function.
However, given the finite support of each B-spline, such ma-
trix elements are nonvanishing only if �i− j��k, so the num-
ber of needed integrals scales like the number of basis func-
tions, not like its square, as is the case for most other basis.

The choice of the knot sequence plays an important role
in these solutions. A good choice of knot distribution can
assure a fast convergence to the true eigenenergy with a
small basis set. To illustrate this, we consider a Gaussian
potential and we calculate the ground-state eigenvalue and

eigenfunction using two different knot sequences. As illus-
trated in Fig. 9, one is a uniform distribution of knots, while
the other has an exponential distribution of knots from the
center of the potential. In the inset of Fig. 9, we compare the
convergence of the energy as a function of the number of
knots. It is clear that the nonuniform distribution is much
more efficient in this case, giving a very accurate wave func-
tion and eigenenergy for a sequence with very few knots, i.e.,
a very small basis set.

In the atomic physics, rigid boundaries are normally
used when working with B-splines. Since in solid state phys-
ics we sometimes want to investigate bulk and transport
properties, we opted to generalize the B-spline method to
periodic boundary conditions. The periodic conditions for
B-spline are constructed in the following way �for cubic
splines, although the generalization to higher orders is
straightforward�, suppose we want B-spines on the support
of the knot sequence �xi �a=x0�x1�x2� . . . �xN=b
.

�i� Expand the knot sequence �xi
 to �xi�
 by adding the
knots

x−2� = xN−2 − �b − a� , �A6�

x−1� = xN−1 − �b − a� . �A7�

Note that since x−1� and x−2� �a, they are outside
the interval of interest.

�ii� Construct the B-splines �Bi
0
 with the usual procedure

on the new support �xi�
. Note that the first two
B-splines, which we call B−3

0 ,B−2
0 , have finite support

outside our desired interval.
�iii� Now construct the B-splines �Bi
 by moving the

pieces of Bi
0 defined outside the interval of interest to

inside �a ,b� by a translation of period �b−a�.

Following the above procedure, all �Bi�x�
 are periodic
functions with period �b−a�. Hence the functions in the Hil-
bert space expanded by �Bi�x�
 with coefficients ci�s:
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FIG. 9. �Color online� The dots on the two lower lines illustrate the uniform
�squares� and nonuniform �diamonds� knot sequences. The curves show the
estimated ground-state wave function for these N=11 knot sequences, full
line for the uniform and the dotted line for the nonuniform one. The inset
shows the convergence of the energy to the true value as a function of the
number N of knots used.
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f�x� = �
i

ciBi�x� �A8�

are all periodic, thus ensuring the periodic boundary condi-
tion. Of course, for our problem of interest, we choose b
−a to be large enough that the localized wave function is all
fully contained inside it. In other words, increasing b−a has
no effect on the eigenenergies we calculate.

The generalization to 2D or higher-dimensional systems
is straightforward. The wave function needs to be expanded
in products of B-splines

��x,y� = �
i


i,jBi�x�Bj�y� �A9�

and all the procedures above can be repeated. For our prob-
lem, we simply choose a high-density of knots in the imme-
diate neighborhood of each impurity, where the wave func-
tions change rapidly, and a wide exponential mesh
everywhere else, where the function changes slowly. The
mesh near each scatterer has been optimized until conver-
gence is reached.
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