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We construct a semimicroscopic theory, to describe the optical conductivity of Ga1−xMnxAs in the dilute
limit, x�1%. We construct an effective Hamiltonian that captures inside-impurity-band optical transitions as
well as transitions between the valence band and the impurity band. All parameters of the Hamiltonian are
computed from microscopic variational calculations. We find a metal-insulator transition within the impurity
band in the concentration range, x�0.2–0.3 % for uncompensated and x�1–3 % for compensated samples,
in agreement with the experiments. We find an optical mass mopt�me, which is almost independent of the
impurity concentration except in the vicinity of the metal-insulator transition, where it reaches values as large
as mopt�10 me. We also reproduce a mid-infrared peak at ���200 meV, which redshifts upon doping at a
fixed compensation, in quantitative agreement with the experiments.
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I. INTRODUCTION

The diluted magnetic semiconductor Ga1−xMnxAs has
emerged as one of the most promising materials due to its
potential applications in spin-based technology. This material
is, however, equally interesting from the point of view of
fundamental research for its unique properties and the rich
physics it displays; Ga1−xMnxAs is a strongly disordered fer-
romagnet, where the interplay of ferromagnetism, localiza-
tion, magnetic fluctuations and the presence of strong spin-
orbit coupling lead to many interesting properties such as a
strong magnetoresistance,1,2 resistivity anomalies,2–5 or the
presence of a large anomalous Hall effect.6

Although Ga1−xMnxAs has been the subject of intense the-
oretical and experimental investigation, even its most basic
properties are still debated. One of these fundamental and
unresolved issues is the existence or nonexistence of an im-
purity band in this material. There is a general consensus that
for very small magnetic concentrations Ga1−xMnxAs is de-
scribed in terms of an impurity band. For higher concentra-
tions, however, there is no general consensus yet. On one
hand, essentially all spectroscopic measurements such as
angle-resolved photoemission spectroscopy �ARPES�,7 scan-
ning tunneling spectroscopy,8 optical conductivity data,9–12

and ellipsometry13 seem to favor the presence of impurity
states even up to moderate concentrations �x�3–5 %�, and
even high-quality samples with a high Curie temperature and
a clearly metallic behavior have surprisingly small values of
kFl�1.2,12 On the other hand, many properties of these ma-
terials can be even quantitatively understood in terms of a
disordered valence-band picture, and, in fact, from a theoret-
ical point of view, it is hard to understand how an impurity
band could survive up to concentrations as high as x�5%.14

In the present paper we shall not attempt to resolve this
discussion, rather, we would like to focus on the optical con-
ductivity. Typical optical conductivity measurements in
Ga1−xMnxAs display two rather remarkable features: �i� a
mid-infrared resonance peak at approximately 200 meV that
redshifts with increasing hole concentration, p �more pre-

cisely, as a function of effective optical spectral weight, Neff,
defined later�; �ii� a large optical mass of the order mopt
�0.7–1.5me, implying a mobility which is orders of magni-
tude smaller than the one of GaAs doped with similar con-
centrations of nonmagnetic impurities.15

In this paper we aim at developing a semimicroscopic
theory for the optical conductivity of Ga1−xMnxAs in the very
dilute limit, x�1%. There are several theoretical studies of
the optical conductivity of Ga1−xMnxAs by now.16–20 Maybe
the most realistic calculations have been carried out in Refs.
16 and 17, however, the conclusions of these works are
somewhat conflicting. In Ref. 16 a disordered valence band
described in terms of the Luttinger model has been investi-
gated, and the mid-infrared peak was studied. In these calcu-
lations, rather surprisingly, the mid-infrared peak appeared at
the right location even in a simplified parabolic model,
where a completely isotropic valence-band mass was as-
sumed, and only the amplitude of the mid-infrared signal
was modified when a more complete Luttinger model calcu-
lation was performed. In another, very thorough
calculation,17 realistic tight-binding models have been used,
but the results were conflicting in that features associated
with an impurity band have or have not appeared depending
on the particular tight-binding scheme applied. In the tight-
binding scheme which provided optical conductivity curves
in line with the experimentally observed mid-infrared peak, a
clear impurity-band feature appeared in the density of states
for x�1%.

Unfortunately, none of these previously applied methods
is appropriate to study accurately the dilute limit, x�1%.
This small concentration limit is of particular interest, since
the metal-insulator transition may take place at concentra-
tions as low as x�0.5%,21 and furthermore, it is in this limit
where features associated with the impurity band should be
present.

In the present paper, we shall follow the lines of Ref. 22
and develop a semimicroscopical approach to capture the
physics of this dilute limit. At the microscopic level, we
describe the valence-band holes as spin F=3 /2 carriers,
which interact with the external electromagnetic vector po-
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tential and the Mn ions, as described by the following Hamil-
tonian:

H = �
i

1

2m0
�pi − qA�ri��2 + �

i,m
V�ri − Rm�

+ �
i,m

J��ri − Rm�Fi · Sm. �1�

Here ri and pi �i=1, . . . ,Nh� denote the valence hole coordi-
nates and momenta, and the Mn atoms are located at random
positions, Rm �i=1, . . . ,NMn�. In the first term we assume an
isotropic effective mass m0=0.56me. This approximation,
which corresponds to setting the coefficient of the �F·p�2

term in the spherical approximation of Ref. 23 to zero, is
somewhat uncontrolled. However, according to the results of
Ref. 16, inclusion of a more realistic band structure influ-
ences only slightly the structure of the optical spectrum for
frequencies ���800 meV, we shall therefore ignore it
here. The second term describes the random potential created
by the Mn atoms, and it incorporates the Coulomb attraction
as well as the central-cell correction.23 Finally, the last term
describes the local exchange interaction between the manga-
nese magnetic moments, Sm and the spin of hole i, Fi. The
parameters of the “microscopic” Hamiltonian �Eq. �1�� are
all well known.24

In our work we use Hamiltonian �1� as a starting point,
and derive a microscopic effective Hamiltonian from it that
not only captures the impurity-band physics in the very di-
lute limit, but also accounts for impurity-band to valence-
band transitions �for details see Sec. II�. This effective
Hamiltonian can then be used to compute the optical conduc-
tivity using field theoretical methods, as detailed in Sec. III.
With this “multiscale approach,” we are then able to deter-
mine the optical properties of Ga1−xMnxAs accurately in the
small concentration regime, while keeping Nh�200.

One of the key elements of our approach is the assump-
tion that, for these small concentrations, the Fermi level lies
inside the impurity band. This is indeed supported by trans-
port measurements,21 which clearly show that the activation
energy �associated with localized impurity states to valence-
band transitions� remains finite as one approaches the metal-
insulator transition.21 Based on these activation-energy data,
Woodbury and Blakemore21 concluded that the metal-
insulator transition takes place within the impurity band, al-
though they observed that their samples were inhomoge-
neous and exhibited filamentary conduction. We remark that
such filamentary conduction would appear quite naturally in
case the metal-insulator transition in Ga1−xMnxAs has a
percolation-like structure.

If the metal-insulator transition indeed takes place within
the impurity band then one must be able to capture the prop-
erties of small concentration metallic Ga1−xMnxAs samples
using our impurity-band-based method. Indeed, our results
also support this picture; a detailed analysis of the hole states
reveals a metal-insulator transition at about x�0.2–0.3 %,
where delocalized states appear in the middle of the impurity
band. Details of the computation are described in later sec-
tions. As shown in Fig. 1, this is approximately the critical
concentration for uncompensated samples. The Anderson

transition thus takes place inside the impurity band, in agree-
ment with the conclusions of Ref. 22, and also in good agree-
ment with activation energy values observed for samples
grown at high temperature �“equilibrium conditions”�.21,25

Typically, Ga1−xMnxAs samples grown under nonequilibrium
conditions are compensated even after annealing: in addition
to the substitutional Mn ions �of concentration xS� there is
also a finite concentration xI of interstitial Mn ions, which
behave as double donors, and are also believed to make a
fraction of the Mn ions inactive by simply binding to them.26

As a result, the effective concentration of “active” Mn ions is
reduced to x�xeff�xS−xI and the concentration of holes is
also suppressed compared to xeff by the hole fraction f
��xS−2xI� / �xS−xI�. Remarkably, even if only 20% of the
Mn ions goes to interstitial positions, that reduces the effec-
tive concentration to 60% percent of the total Mn concentra-
tion and amounts in a hole fraction f �0.66. Unannealed
samples tend to have even larger interstitial Mn concentra-
tions and thus much smaller hole fractions.24,26,27 As a result,
depending on the precise annealing protocol, ferromagnetic
Ga1−xMnxAs samples �grown under nonequilibrium condi-
tions� tend to show the phase transition at higher concentra-
tions. According to our calculations, for xI /xtotal=30% �f
=0.3� the metal-insulator transition takes place at about xS
�3.2%, while for xI /xtotal=23% �f =0.55� the transition oc-
curs at xS�0.7%. These values are only indicative but con-
sistent with the experimental data.21,28–31 In the rest of the
paper, we shall consider only active substitutional Mn ions,
and the concentration x shall refer to these. The effect of
interstitional Mn ions only appears through the reduction in
the hole fraction parameter, f �1.

We also find that the optical mass increases to very large
values mopt�10me at the critical concentration, where the dc
conductance vanishes. However, apart from this, the optical
spectrum changes rather continuously. For larger Mn concen-
trations, x�2–3 %, we obtain an optical mass mopt�me,

FIG. 1. �Color online� Density of states for x=0.2% and 0.3%.
Both the impurity-band and valence-band contributions are shown.
At these concentrations the impurity band is clearly separated from
the valence band. The gray area indicates the region of localized
states, while delocalized states are shown as white regions. For
these calculations we used a hole fraction f =0.5. The arrow indi-
cates the position of the mobility edge corresponding to f = fc=0.8.

MOCA, ZARÁND, AND BERCIU PHYSICAL REVIEW B 80, 165202 �2009�

165202-2



which is almost independent of the hole concentration p, and
is in surprisingly good agreement with the experimental
values.11

Our approach is designed to work in the limit of small
concentrations, and it should break down for large concen-
trations. Where exactly this breakdown takes place, is not
quite clear. Our calculations show that the impurity band is
not completely merged with the valence band even for con-
centrations as large as x�3%.32 The impurity-band picture
may make sense for even larger concentrations if the Fermi
level is inside the gap �as indicated by ARPES
measurements�,7 where states are expected to exhibit a stron-
ger impurity state character. We are not able to convincingly
determine the upper limit of our approach. However, if
we blindly extend it to the regime x�3%, without justifying
their applicability, rather surprisingly, our calculations quali-
tatively as well as quantitatively reproduce all important fea-
tures of the experiments.

One of the typical optical conductivity results is displayed
in Fig. 2, where, for comparison, we also show some typical
experimental data.11 In our calculations the Drude contribu-
tion originates entirely from carriers residing within the im-
purity band, and the “Drude peak” appears as a plateau at
smaller frequencies, just as in the optical conductivity ex-
periments. The mid-infrared peak, on the other hand, is due
to transitions from the impurity to the valence band. Notice
that the position as well as the overall size of the signal are
quantitatively reproduced. This latter may just be a coinci-
dence, since we assumed a simplified band structure in this
work.

Having the Fermi level within the impurity band naturally
explains the redshift of this resonance with increasing hole
concentration. In Fig. 3 we show the computed peak position
as a function of the effective optical spectral weight, Neff
�defined later through Eq. �28�� for a variety of concentra-
tions x and hole fractions, f =Nh /NMn. Our calculations show
surprising agreement with the experimental results of
Ref. 11.

The paper is organized as follows. First, in Sec. II we
outline the calculations that lead from the microscopic
Hamiltonian �Eq. �1�� to the effective Hamiltonians used.

Some of the details of these rather technical variational cal-
culations are given in Appendices A and B. Section III pro-
vides the basic expressions for the optical conductivity
within a mean-field approach, while the results of our nu-
merical calculations are given in Sec. IV. In Sec. V we show
how to incorporate the effects of magnetic fluctuations. Fi-
nally, we conclude in Sec. VI.

II. THEORETICAL FRAMEWORK

With current day computer technology, it is essentially
impossible to treat the Hamiltonian of Eq. �1� accurately for
small Mn concentrations, x�1%. We therefore describe this
regime in terms of an effective Hamiltonian, which we de-
rive from Eq. �1�, and which consists of an impurity-band
part and a valence-band part. The first part of the present
section focuses on this mapping. However, to compute the
optical conductivity, we also need to determine how the elec-
tromagnetic field in Eq. �1� couples to impurity states within
the effective Hamiltonian. This is discussed in the Sec. II B.
In the main body of the text we only outline and summarize
the most important steps. Details on these simple but rather
lengthy calculations are given in Appendices A and B.

A. Effective Hamiltonian

1. Impurity-band Hamiltonian

Since for very small concentrations the Fermi energy is in
the impurity band, we first need to describe the impurity
states. In the small concentration limit, hole wave functions
are localized at the Mn sites, providing a strong and attrac-
tive potential for them. Therefore the impurity band can be
described using a tight-binding Hamiltonian of the form,22,33

Himp = − �
i,j,�

tijci�
† cj� + �

i,�
Eici�

† ci� + G �
i,�,�

Si · ci�
† F��ci�.

�2�

Here ci�
† creates a bound hole at Mn position Ri in a spin

state 	F=3 /2,Fz=�
, and tij denotes the hopping between
Mn sites Ri and R j. Since the hole mass is isotropic in our
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FIG. 2. Comparison between our theory and experimental data.
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microscopic Hamiltonian, the hopping is independent of the
hole spin �.34 The on-site energy Ei contains the binding
energy of the hole, E0=−110 meV, but it also accounts for
the Coulomb and kinetic-energy shifts generated by neigh-
boring Mn ions. Finally, the last term describes the local
antiferromagnetic exchange with the core Mn spin Si.

The parameters appearing in Eq. �2� can be determined
from experiments and from the microscopic Hamiltonian,
Eq. �1�. The coupling G is known from electron paramag-
netic resonance experiments to be G�5 meV for a single
Mn impurity.35,36 However, the hopping parameters and the
on-site energy, Ei need to be computed from Eq. �1�. Similar
to Ref. 22, we determined them from a variational calcula-
tion of the molecular orbitals for an Mn2 “molecule,”
described by the Hamiltonian

H2site = −
	

2
�2 −

1


r1
−

1


r2
+ Vcc�r1� + Vcc�r2� , �3�

where we used atomic units, r1,2= 	r−R1,2	, 
=12.65 is the
dielectric constant of GaAs, and 	=me /m0=1.782. The so-
called central-cell correction Vcc accounts for the local inter-
action at the Mn core, and is given by23

V�r� = Vcc�r� = − V0e−r/r0. �4�

The parameters V0 and r0 must be chosen to reproduce the
experimentally observed impurity state at E0�110 meV. In
our calculations we have used V0=1.6 eV and r0=2 Å, but
our results do not depend on this particular choice as long as
r0 is sufficiently small. Details of this calculation are pre-
sented in Appendix B�. In these calculations we neglected
the coupling G, since it is much smaller than the binding
energy of the holes. The final result is that �for G=0� the
low-lying spectrum of two Mn ions at a separation R can be
described by the following simple effective Hamiltonian:

H = − t�R��
�

�c1�
† c2� + H.c.� + E�R� �

i=1,2
ci�

† ci�. �5�

The parameters t�R� and �E�R��E�R�−E0 are shown in
Fig. 4. As the inset of the lower panel of Fig. 4 shows, much
of the energy shift �E�R� originates from a simple long-
ranged Coulomb shift due to the Coulomb potential of the
neighboring Mn site, �ECoulomb�R�=−1 /
R. The remaining

kinetic shift, �Ẽ�R���E�R�+1 /
R is relatively large for
small separations, but vanishes exponentially for large values
of R.

Having determined the spectrum and the effective Hamil-
tonian of the two-Mn ion complex, we can now express the
parameters of the effective Hamiltonian, Eq. �2�. The hop-
ping parameter between sites i and j depends just on their
separation, Rij �	Ri−R j	, and is simply tij = t�Rij�, the hop-
ping obtained from the two-Mn problem, while the on-site
energies in Eq. �2� are given as

Ei = E0 + �Ei,

�Ei = �
j�i

�E�Rij� . �6�

The sum in this equation should be evaluated carefully: as
we discussed above, for large separations, the shifts �E
�Ri−R j� are dominated by the long-range Coulomb contri-
butions, and therefore the sum in Eq. �6� formally diverges.
This Coulomb potential is, however, screened by the bound
valence holes and other charged impurities in the system,
with a screening length of the order of the typical Mn-Mn
distance. Therefore we shall compute the sum in Eq. �6� with
an exponential cutoff, �E�Rij�→�E�Rij�e−Rij/RSC, RSC=2rMn,
with 4�rMn

3 /3=nMn the Mn concentration.
Also, our calculation for the hopping matrix elements

makes sense only for nearest-neighbor sites. Correspond-
ingly, in the hopping part of the Hamiltonian we introduce a
rigid cutoff, R0=2rMn, to keep only hopping to the first
“shell” of atoms. Our results do not depend too much on
these cut-off parameters; changing the Coulomb energy cut-
off results in an overall shift of the impurity and valence-
band energies, and does not influence the optical spectrum.
Similarly, the results are almost independent of R0 as long as
it is in the range of R0=2rMn.

2. Valence band

In the tight-binding approach of the Sec. II A 1 only the
bound hole states appear. However, to describe optical tran-
sitions, we also need to account for extended states within
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the valence band. These states are involved in local optical
transitions, where a hole localized at site m absorbs a rela-
tively high-energy photon �E�200 meV� to make a transi-
tion relatively deep into the valence band.

To account quantitatively for these transitions, we make
the following crucial observations. �i� The transitions involve
hole states of relatively high energy, and correspondingly,
states of a relatively short wavelength. �ii� Since the initial
hole states are localized at the Mn site, the created valence-
band hole will also be localized close to it. There the major
effect of neighboring Mn sites is to create a Coulomb poten-
tial, which is smooth at the scale of the wavelength of the
created hole. As a result, we can describe the final hole state
in terms of the following simplified “semiclassical” Hamil-
tonian:

Hval
�i� � −

	

2
�2 −

1


ri
+ Vcc�ri� + �Ei,val, �7�

where ri= 	r−Ri	 is the electron coordinate measured from
impurity i, and the shift �Ei,val is given by

�Ei,val = − �
j

1


Rij
. �8�

Notice that �Ei,val��Ei since most of the shift �Ei comes
from the Coulomb shift in Eq. �6� �see Fig. 4�. However,
these two energies are not exactly the same, �Ei,val��Ei,

since �Ei also contains the kinetic shift �Ẽi, shown in the
inset in Fig. 4. It is precisely this kinetic shift, which is
responsible for the redshift of the mid-infrared optical peak
with increasing Mn concentrations, x.

Furthermore, we observe that local optical transitions only
involve scattering states in the l=1 �p� angular momentum
channel. These states vanish at the origin, and do not really
feel the central-cell correction. Therefore, to describe the lo-
cal optical transitions, it is reasonable to include locally these
l=1 states only, and describe the valence band in a second-
quantized formalism as

Hval
band = �

m,i,�
�

0


 dk

�
� k2

2m0
+ �E�Ri�
akm�,i

† akm�,i, �9�

where akm�,i
† creates a scattering state in the p channel around

impurity site i in angular momentum channel m=x ,y ,z, with
band index Fz=� ��=−3 /2, . . . ,3 /2�, and radial momentum
k. The operators akm�,i

† are normalized to satisfy the anticom-
mutation relation

�akm�,i
† ak�m��,j� = �����mm��ij��k − k�� . �10�

As mentioned above, scattering states in the p channel do not
feel the central-cell correction, therefore the akm�,i

† ’s create to
a very good approximation Coulomb scattering states. Notice
that in Eq. �9� an independent local band is associated with
each impurity site, i.e., propagation between various impu-
rity sites within the valence band is ignored. This is a rea-
sonable approximation for the high-energy, fast processes
considered in this work.

B. Coupling to the electromagnetic field

At the microscopic level, the vector potential couples di-
rectly to the momenta of the valence holes. However, within
the impurity band, these valence holes reside on specific or-
bitals localized at the Mn sites, and therefore, as a first step,
we need to determine how the vector potential A couples to
these impurity-band states. To this end, we determined the
matrix elements of the momentum operator p between the
lowest lying states of our Mn2 molecule �see Appendix B�.
We find that the effective coupling of a homogeneous vector
potential to the impurity band is given by

Hext
imp = �

i,j,�
	p�Rij�	

e	

m0c
A · nij�ici�

† cj� + H.c.� , �11�

where the unit vector nij = �Ri−R j� /Rij specifies the direction
of the bond, and p�R� is the momentum matrix element ex-
tracted from the variational calculation. This matrix element
is plotted in Fig. 5. As we also verified, for R�8 Å, this
tediously obtained matrix element is quite well approximated
by the simple Peierls substitution,

p�R� �
1

i
R t�R�m0/	 . �12�

The term �11� describes intraband transitions between states
inside the impurity band. It is this term that generates the
Drude peak and which is responsible for the dc conductance.

However, we also need to account for interband transi-
tions, i.e., transitions from the impurity band to extended
states in the valence band. In our approach, these transitions
are local, and are described by the Hamiltonian,

Hext
tr = �

i,�,m
�

0


 dk

�
	p�k�	

e	

m0c
Am�iakm�,i

† ci� + H.c.� . �13�

Here Am denote the m=x ,y ,z components of the vector po-
tential A, and the on-site optical matrix elements 	p�k�	 can
be computed from the variational wave function of a single
Mn site. We determined 	p�k�	 for Coulomb scattering states
as well as for free-electron states �details of this calculation
are presented in Appendix A�. The final results are shown in
Fig. 6.
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FIG. 5. �Color online� Momentum matrix element �in units �
=1� as a function of the separation R between the two Mn sites. For
R�8 Å the matrix elements are very well approximated by the
Peierls substitution �dashed line�.
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For free-electron scattering states the single-parameter
matrix element takes on a particularly simple form,

	�k	p	�
	 =
25/2

�3

�5/2k2

��2 + k2�2 , �14�

where �=0.091 Å−1. The momentum matrix elements van-
ish for k→0 since p states have a node at the origin, but they
also vanish for very large momenta, where the valence hole
wave functions oscillate much faster than the characteristic
scale of the bound state. This results in a maximum optical
transition rate for valence states at about 100 meV below the
valence-band edge. It is this momentum dependence of the
optical matrix element that is ultimately responsible for the
mid-infrared peak in the optical spectrum at frequencies
���200 meV. The Coulomb and free-electron matrix ele-
ments behave qualitatively the same way and are in both
cases well approximated by the expression obtained for a
single hydrogenlike variational wave function, 	�
. How-
ever, the more realistic Coulomb matrix elements have a
somewhat smaller amplitude and the maximum transition
rate occurs at slightly higher energies. In the rest of this
paper we shall use these more realistic Coulomb matrix ele-
ments to compute the optical conductivity.

III. OPTICAL CONDUCTIVITY AT T=0: MEAN-FIELD
APPROXIMATION

In the rest of the paper we shall focus on the calculation
of the optical properties of Ga1−xMnxAs at low temperatures.
First, we shall discuss the case of T=0 temperature and treat
the Mn spins within the mean-field approximation, justified
by the relatively large value of the Mn spins, SMn=5 /2. Later
in Sec. V we shall discuss how one can go beyond this ap-
proximation and compute spin-wave corrections. These cor-
rections, however, turn out to be small, and the mean-field
description turns out to be quite accurate. This is related to
the fact that, in the concentration range studied here, the
coupling G is much smaller than the binding energy of the
holes G�E0 as well as the width of the impurity band, and
therefore it hardly influences the optical spectrum at these
energies.

A. Mean-field Hamiltonian

In our model Hamiltonian, Mn spins couple directly only
to states in the impurity band. Therefore, as a first step, we
only need to treat the coupled Mn spin-impurity-band sys-
tem, described by Eq. �2�. At the mean-field level, the inter-
action part is rewritten as

GSici
†Fci = G��Si
ci

†Fci + Si�ci
†Fci
 − �Si
�ci

†Fci
� + Hfluct�i� ,

�15�

Hfluct�i� = G�Si − �Si
��ci
†Fci − �ci

†Fci
� , �16�

and the fluctuating part, Hfluct is neglected. With this approxi-
mation, Eq. �2� becomes exactly solvable at any temperature.
For given values of �Si
, the hole part of the Hamiltonian is
diagonalized by the unitary transformation

a�
† = �

i,�
���i��ci�

† , ci�
† = �

�

��
� �i��an

†, �17�

where wave functions �n
��i�� can be found by solving a rela-

tively simple eigenvalue equation. The mean-field Hamil-
tonian can then be rewritten in terms of the operators a�

† and
the corresponding eigenenergies, E�, as

Himp
MF = �

�

E�a�
† a� − �

i

Sihi + �
i

�Si
hi, �18�

where the local fields hi=−G�ci
†Fci
 can be expressed in

terms of the new basis as

hi = − G�
�

F���i� f�E�� , �19�

F���i� � �
��

��
� �i��F�����i�� , �20�

with f the Fermi function. Trivially, hi determines the expec-
tation value �Si
, that enters the eigenvalue equation of
���i��. This field must therefore be determined self-
consistently. At T=0 temperature the self-consistency equa-
tions become rather simple, since then the spins are com-
pletely polarized in the direction hi, �Si
=SMnhi / 	hi	, and the
Fermi function simply becomes a step function. However,
for small concentrations and/or finite temperature the Mn
spins are not fully polarized, and the numerical solution of
the mean-field equations becomes time consuming.

B. Optical conductivity

The mean-field solution of the Hamiltonian provides us
the equilibrium state of the coupled spin-impurity-band sys-
tem. To compute the optical spectrum, however, we also
need to transform the coupling to the electromagnetic field to
the “canonical” basis, Eq. �17�.

We can express the coupling of the impurity band to a
time-dependent vector potential A�t� in terms of the canoni-
cal operators, a� as Hext

imp=��,�A ·a�
† j��a�, where the current

operator’s matrix element is defined as
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FIG. 6. �Color online� Wave-vector dependence of the on-site
optical matrix element computed for free and Coulomb scattering
states ��=1�. We also compare this with the result obtained for a
simple Hydrogenlike variational wave function and free scattering
states.
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j�� = �
i,j,�

	p�Rij�	
e	

mc
· nij�i��

��i�����j�� − i��
��j�����i��� .

�21�

Similarly, we rewrite the term �13� in the Hamiltonian in this
canonical basis as

Hext
tr = �

k,m,�,i,�
Am�t��Jk,�i,�akm�,i

† a� + H.c.� , �22�

with Jk,�i,�= 	p�k�	 e	
mc i���i��.

The optical conductivity ���� can be computed by means
of the Kubo formula, which expresses it in terms of the re-
tarded current-current correlation function,

���� = −
1

�
Im �JJ

ret��� . �23�

Since, corresponding to Eqs. �21� and �22�, our current op-
erator consists of an interband and an intraband part, the
current-current correlation function can also be expressed in
terms of two contributions: an intraband contribution, �intra,
corresponding to transitions within the impurity band, and an
interband contribution, �inter, describing transitions from the
impurity band to the valence band. In our approach the low-
frequency behavior arises from impurity-band scattering
alone, while the valence band plays practically no role there.
The high-frequency conductivity, on the other hand, is typi-
cally dominated by interband transitions to the valence band.
In the present, impurity-band approach, these transitions give
rise to a mid-infrared peak close to 2000 cm−1.

The previously mentioned two contributions can be easily
computed within the mean-field approach, using the dia-
grammatic formalism presented in Sec. V, and the interband
contribution can be simply expressed as

�inter��� = −
1

�
�
k,�

�
i,�

	Jk,�i,�	2 Im� f�E�� − f��k�i��
� − �k�i� + E� + i�

� .

�24�

Notice that the transition being local, it is also the local en-
ergy of a valence-band hole, that appears in the denominator
of this expression, �k�i�= k2

2m0
+�Ei.

The intraband contribution can be written in a similar way
as

�intra��� = −
1

�
�
�,�

	j��e0	2 Im� f�E�� − f�E��
� + E� − E� + i�

� , �25�

with e0 the polarization of the external light.
Clearly, both the energy and the precise structure �i.e.,

localized or extended character� of the impurity-band states
enter the matrix elements in the above expressions. However,
apart from the value of the dc conductance, which clearly
must vanish as one approaches the localization transition, the
gross high-frequency features will turn out to not be very
sensitive to the localization transition itself. This is not very
surprising, since the localization transition involves mostly
states at the Fermi energy, while optical transitions are domi-
nated by states deep below or high above the Fermi energy.

IV. MEAN-FIELD RESULTS

A. Density of states

Let us start first by discussing some details of the numeri-
cal solution of the mean-field equations described in the pre-
vious section, and the structure of the hole states obtained.
To start the numerical calculation, we first generate an initial
distribution for the substitutional Mn impurities on an fcc
lattice with lattice constant a0�5.6 Å. Nearest-neighbor Mn
sites are, however, not favored during the growth process,
since Mn ions act as charged impurities. To simulate this
effect, we let the Mn ions relax through a simple classical
Monte Carlo diffusion process while assuming a screened
Coulomb interactions between them.22 Typical values of this
Monte Carlo time used are in the range of tMC�1 step/atom.
In all our calculations we use periodic boundary conditions
to suppress surface effects.

Once the configuration of the ions is determined, we can
construct the effective Hamiltonians Eqs. �2� and �9� as de-
scribed in Sec. II A. Having constructed the Hamiltonian, we
then solve the mean-field equations iteratively and determine
the equilibrium spin configuration. Here we only focus on
T=0 temperature, where �Si
=S�i, with �i acting simply as
a classical variable. In the end of the mean-field self-
consistency loop the states in the impurity and valence band
are fully characterized, i.e., the corresponding eigen energies
E� and �k�i� as well as the wave functions are available. We
can then compute the necessary matrix elements of the cur-
rent operator using Eq. �11�, and apply Eqs. �23� and �38�
immediately to compute the contributions to the optical
conductivity.

For a good accuracy, we consider system sizes L as large
as possible, and we average over many configurations. Usu-
ally for a given Mn concentration and hole fraction, we av-
erage over 100 different impurity configurations, and we
consider systems with the number of impurities in the range
of 200.

In Fig. 7 we present results for the impurity-band density
of states �DOS� for different Mn concentrations but for a
fixed hole fraction, f =0.5. We also indicate the average DOS
for the valence band. Shaded regions, denoting localized
states, were determined by analyzing the finite-size scaling
of the participation ratio �PR�

PR��� = ��
i
��

�

	���i��	2
�−1
. �26�

For extended states PR scales with the system size, while for
the localized states remains finite for L→
. Figure 8 shows
the details of such a finite-size scaling analysis.

As we expect, increasing the Mn concentration, the impu-
rity band gets broader and starts to overlap with the valence
band for Mn concentration as low as 0.5% �see also Fig. 7�.
However, at the same time increasing Coulomb disorder
shifts the tail of the impurity band deeper inside the gap �the
top of the valence band is fixed at EV

top=0�. States inside this
tail are strongly localized and have an overwhelming local-
ized impurity state character.

We clearly observe a metal-insulator transition �MIT� at a
critical concentration x�0.2%, which corresponds to a hole
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concentration p�4.5�1019 cm−3 for f �1. In our approach
this metal-insulator transition is simply an Anderson local-
ization transition, since electron-electron interaction effects
are neglected: for x�0.2% all the states in the impurity band
are localized by disorder and the system is an insulator, while
for x�0.2% the metallicity of the system still depends on the
position of the Fermi level inside the impurity band. As an
example �see Fig. 8, right panel� for x=0.3% and hole frac-
tions less than f =0.8 the system is still an insulator, while for

a hole fraction f �1.0, the Fermi level is already inside the
delocalized region and we find a metallic state. Increasing
the Mn concentration to larger values, the extended region
grows and the system has a metallic behavior for typical
values of the hole fraction, f �0.5–1, �see also Fig. 7�. For
hole fractions f �0.6, e.g., we find that the ground state is
metallic for x�0.5%. These numbers are in good agreement
with experimental results, where the MIT has been reported
to occur in a concentration range x�0.2–0.3 %.14,25

At this point we must make two remarks. First, we com-
pletely neglected electron-electron interactions. Electron-
electron interactions can obviously modify many of the
physical properties close to the MIT and lead to the appear-
ance of a Coulomb gap as well as Altshuler-Aronov-type
anomalies.37 On the other hand, even annealed Ga1−xMnxAs
samples are typically compensated, and the electron-electron
interactions have been found to be less relevant for such
systems. Also, we can argue that our results are in a way
self-consistent, and probably not very sensitive to Coulomb
interaction; for typical concentrations x�3% and hole frac-
tions in the range f �0.3–1, we find that approximately
60–80 % of the sites have less then one electrons on them,
and less then �5% of sites are more then doubly occupied.
Furthermore, even for the most localized orbitals, the partici-
pation ratio is rather large �6–10. Therefore, a typical site is
occupied by a single electron and the Coulomb correlations
are not too relevant.22 Treating the Coulomb interaction ap-
propriately is, however, a real theoretical challenge even for
much simpler model systems, and is beyond the scope of the
present work.

Second, we also need to discuss the issue of conserving
the total number of states within our approach. In reality,
impurity-band states are formed from valence-band states
and therefore, formation of the impurity band also depletes
the valence band. In contrast, in our scheme, the total num-
ber of states is not conserved by construction, and the mixing
of valence-band states and impurity-band states is ignored.
However, a careful spectral analysis shows that the bound
acceptor states are formed from high-energy valence-band
states: about 90% of the bound state is composed from
valence-band states of energy 
�150 meV below the

FIG. 7. �Color online� Ground-state density of states for differ-
ent Mn concentrations and a fixed hole fraction, f =0.5. The solid
lines represent the DOS for the impurity band while dashed lines
denote the valence-band DOS. The Monte Carlo relaxation time is
fixed to tMC=1 per Mn ion. Shaded areas indicate localized states,
while unshaded regions correspond to extended states. For these
concentrations we find two mobility edges in the impurity band: one
separating states in the tail of the impurity band, while the other
separating localized states in the impurity-band—valence-band gap.

(b)(a)

FIG. 8. �Color online� Ground-state density of states and participation ratios for different Mn concentrations but a fixed hole fraction,
f =0.5. The Monte Carlo relaxation time is fixed to tMC=1. The shaded regions indicate the position of the mobility edge for each
concentration.
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valence-band edge. As a result, in the concentration range
considered here depletion of the valence-band states by
forming the impurity band is not essential. From this spectral
analysis of the acceptor state we estimate that for x
�1–2 % the valence-band density of states at 

�100 meV �and thus the optical signal at ��200 meV�
should be reduced only by about 10–20 % at maximum.
Possible matrix element effects and incorporation of a more
realistic band structure probably have a more serious effect
on the overall amplitude of the signal.

Let us close this section by presenting a rather curious
quantity that we termed “shifted local density of states”
�shifted LDOS�, where at every site we computed the local
density of states by subtracting the binding energy of a hole,
E0, as well as the value of the average Coulomb shift �Fig.
9�. While the unshifted LDOS is rather featureless, this quan-
tity displays a sharp peak around zero energy. A more de-
tailed analysis reveals that this sharp peak is associated with
localized states having a small participation ratio, i.e., states
in the tail of the impurity band. To show this, we also plotted
the contribution of states with PRs smaller than a given value
to the shifted DOS. Clearly, the peak observed at zero energy
is entirely due to localized states deep inside the gap. The
physical interpretation of this peak is thus plausible. States in
the tail of the impurity band are generated by random and
large fluctuations of the Coulomb disorder. These states are
simply localized impurity states deep inside the gap that are
being mostly occupied, and they give rise to local optical
transitions which have a strong impurity state transition
character.

B. Optical conductivity

Having diagonalized the mean-field Hamiltonian, it is
straightforward to compute the optical conductivity. As we
shall see, our theory, which incorporates interimpurity-band
transitions as well as intraband transitions, accounts qualita-
tively as well as quantitatively for all major features of the
experimentally observed optical spectrum. We shall also

present a scaling analysis of the optical conductivity close to
the metal-insulator transition and compute the dynamical
critical exponent.

The “Drude” contribution, i.e., the �→0 feature is con-
trolled by excitations close to the Fermi level. Since in
this small concentration limit the Fermi level resides in the
impurity band, the Drude peak and also the dc conductivity
are expected to be dominated by the intraimpurity-band
contribution. The contribution of extended valence-band
states is negligible for ��E0, since these states are too far
from the Fermi level to be of any relevance for the Drude
contribution.38

The interband contribution, on the other hand, is gener-
ated by transitions between the impurity and valence bands.
As can be seen in Fig. 1, the two bands start to overlap for
Mn concentrations x�0.5%. However, although it also de-
pends on the hole fraction f , the distance between the Fermi
level and the top of the valence band is always in the range
�=0.1 eV. We therefore expect to see a broad mid-infrared
feature in the energy range ����2�.

These expectations are indeed met by our numerical re-
sults shown in Fig. 10. In panel �d� we also display the
intraband and interband contributions separately for a typical
Ga1−xMnxAs sample in the metallic regime, with x=1% and
a hole fraction f =0.5. The intraband contribution has a
Drude-type behavior, while the interband signal presents a
peak at the energy 2500 cm−1. However, the Drude contri-
bution is rather broad, and in fact, already for this relatively
small concentration, it almost completely merges with the
interband contribution. The overall behavior is in good
agreement with the experimental data presented in Refs.
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FIG. 10. �Color online� The real part of the optical conductivity
for different Mn concentrations and hole fractions. In �a� and �c� the
Mn concentrations is 0.03%, while in �b� and �d� it is x=1%. In
�c� and �d� the intraband and interband contributions are presented
for a hole fraction f =0.5. The sample in panel �a� is insulating
while the one in panel �b� is metallic. The peak observed at
�2000–2500 cm−1 for the metallic sample is due to the valence to
impurity-band transitions while the broad Drude feature at smaller
energies is generated by the intraimpurity-band contributions.
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9–12. Remarkably, not only the peak position but also the
overall magnitude work out to have values in the experimen-
tal range.

As already shown in Fig. 3, increasing the number of
carriers leads to a redshift of the mid-infrared peak in agree-
ment with the experimental observations; more metallic
samples tend to have a strongly redshifted mid-infrared peak
at a frequency �1500 cm−1 rather than at �2500 cm−1. We
find that in the concentration range considered here, to a
good approximation, the redshift only depends on the effec-
tive optical spectral weight, Neff, defined through Eq. �28�.
Surprisingly, there is an almost perfect match between our
theoretical results and the experimental values for intermedi-
ate concentrations. The decreasing trend observed in the po-
sition of the mid-infrared peak as function of hole fraction
can be understood simply from Fig. 3: for a given Mn con-
centration, increasing the carrier numbers shifts the Fermi
level closer to the top of the valence band. As a consequence,
the optical gap decreases and the mid-infrared peak moves
toward lower energies.

A first look at the results presented in panels �c� and �d� of
Fig. 10 can drive us to the conclusion that there is not much
difference between the overall optical response of the metal-
lic and insulating samples. However, the effective-mass
analysis and spectral weight analysis presented in Sec. IV C
clearly shows the difference between these phases.

However, before turning to the effective-mass analysis, let
us discuss the low-frequency properties of the optical re-
sponse close to the MIT transition. The scaling theory of
Abrahams et al.39 has been extended to the dynamical con-
ductivity by Shapiro et al.,40 who showed that at the mobility
edge the ac conductivity of a d-dimensional system obeys a
power law, �������d−2�/d. They also found that on the me-
tallic side the conductivity goes as ����−��0����d−2�/2

while in the insulating phase ������2.
To our knowledge, the first numerical evaluation of the

optical conductivity close to the localization transition based
on the Kubo formula was done in Ref. 41, where indeed it
was shown that the dynamical exponent for the optical con-
ductivity of a three-dimensional Anderson model at the criti-
cal point is 1/3. More recently, the analysis was extended to
unitary and symplectic systems42 where the same exponent
was found. In the lower panel in Fig. 11 we present the
low-frequency limit of the intraband optical conductivity
close to the MIT transition for a fixed hole fraction f =0.8,
where the critical carrier concentration is found to be pc
�4�1019 cm−3 �x=0.2� by a participation ratio analysis.
For p� pC the low-energy optical data can be nicely de-
scribed by a power law, ����=��0�+A��. Since we use pe-
riodic boundary conditions, we observe a continuous metal-
insulator transition similar to the case of the Anderson
model.43 For an infinite system, the dc conductivity ��0�
approaches zero at the transition point and vanishes in the
insulating phase. Of course, for a system of a finite size such
as ours, ��0� is not strictly zero even in the insulating phase,
and only a crossover is observed between these two regimes
�see the upper left panel of Fig. 11�.

The most relevant quantity is the exponent �. In the me-
tallic state a best fit gives ��0.5 in good agreement with the
analytical predictions. Although the error bars are rather

large, � seems to slightly decrease down to 0.35 at the MIT
where it starts to increase again in the insulating regime. The
two approaches, the participation ratio and the scaling analy-
sis of the dynamical conductivity based on which we have
identified the MIT point are in good agreement. In both cases
the critical point is associated with approximately the same
hole carrier concentration.

C. Effective-mass analysis

Experimentally, optical conductivity data are often used to
extract important information on the charge carriers such as
their concentration or effective mass, or the value of kFl.
From the analysis of the experimental data, two types of
effective masses can be extracted: �i� the effective mass m�

that enters the Drude formula for the resistivity, i.e., the dc
limit of the optical conductivity and �ii� the optical mass mopt
that is related to the spectral sum rule. These two masses are
often quite different. Also, they are typically extracted based
on some assumptions �isotropical mass and the quadratic
Hamiltonian, etc.�, which are violated in the real system.
Nevertheless, they both contain important information, and it
is therefore interesting to determine them from our theoreti-
cal results and compare to the experimental data.

The effective mass m� can only be roughly estimated from
the data. Following the procedure of Ref. 11, we typically
find it to be in the rage of m��10–30me. The mass m� is
also related to the metallicity parameter, kFl, with kF the
Fermi momentum and l the mean free path. In fact, this
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FIG. 11. �Color online� Upper panels: �a� the dc limit of the
intraband optical conductivity for concentrations between 0.02%
and 1%. �b� The scaling exponent � for the conductivity in the
low-energy limit as function of the carrier concentration. The MIT
transition is indicated by a drop of the critical coefficient � down to
0.35. Bottom panel: frequency dependence of the intraband optical
conductivity in the small frequency limit presented for different Mn
concentrations. In all three figures the hole fraction was fixed to f
=0.8.
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dimensionless parameter can be extracted much more reli-
ably from the experimental data than m�, and it has a much
more obvious interpretation. Small values of kFl correspond
to samples in the insulating phase or close to the metal-
insulator transition, while good metals are characterized by
large values of kFl. We shall therefore focus on this param-
eter.

The value of kFl can be estimated from the hole concen-
tration and the dc conductivity using the Drude formula, re-
written as

kFl = � h

e2
��0�
3

2s
�F. �27�

Here s is the spin degeneracy of the band. In an s=4 four
band model we found that for carrier concentrations between
p=2.0�1020–9.0�1020 cm−1 our optical conductivity
would correspond to values 0.3�kFl�3.0. In other words,
for these high resistances the mean free path is already less
than the Fermi wavelength �F=2� /kF. Thus the Drude
analysis clearly leads to a inconsistency, and shows that the
optical conductivity does not originate from a weakly per-
turbed valence band. While in the present work, where we
use an impurity-band approach, this is obvious, the same
analysis can also be performed for the experimental data to
show, that a weakly perturbed valence-band picture is inap-
propriate to describe most Ga1−xMnxAs samples.2 The dc
conductivity values obtained within our impurity-band pic-
ture are, on the other hand, perfectly consistent with the ex-
perimentally extracted values of kFl.

The optical mass, mopt, can be defined through the effec-
tive optical spectral weight, Neff, defined by the integral

p

mopt
� Neff �

2

�e2�
0

�c

�intra���d� , �28�

with �c a somewhat arbitrary energy cutoff, which has been
set to 800 meV in Ref. 11. The optical mass mopt defined
through this formula can be quite different from the micro-
scopic mass of the carriers, m0, and it provides a useful mea-
sure of the “heaviness” of the charge carriers. To compare
with the experiments, we extracted mopt from our data, and in
Fig. 12 we plotted it as a function of carrier concentration.
Deep in the metallic regime, we have obtained an optical
mass that remains approximately constant, mopt /me�1, for
carrier concentrations larger than p�2�1020, i.e., for Mn
concentrations larger than about x�1%. Our kFl values as
well as our optical mass results are in good agreement with
the experimental data,11 where the optical mass was found to
be in the range 0.7�mopt /me�1.4. Notice that these values
are about twice as large as the bare valence-band mass, m0
=0.56me. As we approach the MIT transition, mopt increases
rapidly, and can reach values as large as mopt�10me. This
large optical mass renormalization is characteristic of the vi-
cinity of the critical concentration, �see Fig. 12�. In this re-
gime we find a metallicity parameter kFl that is always less
than 0.5.

V. SPIN FLUCTUATIONS

So far we have treated Mn spins at the mean-field level. In
the present section we shall discuss how one can go beyond
mean field by systematically including spin fluctuations. To
do that, we shall make a 1 /S expansion around the classical
limit, and represent spin fluctuations using Holstein-
Primakoff bosons.44 The ground state is, however, generally
noncollinear,45,46 leading to some computational complica-
tions.

Here we shall consider again only the T=0 temperature
limit. There the mean-field equations imply that �Si
=SMnei

z,
with the unit vector ei

z=hi / 	hi	 being parallel to the effective
field created by the valence holes. We shall use this direction
as a quantization axis of the Mn spin at site i, and introduce
two additional unit vectors, ei

x,y perpendicular to ei
z. Using

Holstein-Primakoff bosons, we can then represent the Mn
spin operators at site i as follows:

ei
z · S�i� = S − bi

†bi

ei
x · S�i� =�S

2
�bi + bi

†� + ¯ ,

ei
y · S�i� = i�S

2
�bi

† − bi� + ¯ , �29�

where we have neglected terms that are subleading in 1 /S.
In this language, the mean-field Hamiltonian, Eq. �18�

simply becomes

Himp
MF = �

�

E�a�
† a� + �

i

	hi	bi
†bi, �30�

while corrections to the mean field the arise from the fluc-
tuation part of the interaction, Eq. �16�, neglected so far

Hfluct�i� � − Gbi
†bi:ci

†ei
zFci:+ G�S

2
�bi

†:ci
†ei

+Fci:

+ bi:ci
†ei

−Fci:� , �31�

where we defined ei
��ei

x� iei
y, and :¯ : denotes normal or-
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FIG. 12. �Color online� The optical mass as function of number
of carriers. Only the impurity-band contribution was used to com-
pute mopt. Deep in the metallic regime, for carrier concentrations
larger than 2�1020 cm−3 the effective mass remains practically
constant, while in the critical regime as approaching the MIT tran-
sition �p�1019–1020 cm3� a powerlike increase in the effective
mass is observed.
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dering with respect to the mean-field ground state. Thus the
neglected fluctuation terms just describe the interaction of
spin waves with spin excitations of the impurity band.

We can also rewrite the interaction part of the Hamil-
tonian using the proper eigenstates of the mean-field Hamil-
tonian and the corresponding creation and annihilation op-
erators as

Hfluct = �
i

�
�,�

	��
z �i�bi

†bi:a�
† a�:+ �

i
�
�,�

�	��
+ �i�a�

† a�bi
†

+ 	��
− �i�a�

† a�bi� �32�

with the couplings 	��
m defined from Eq. �20� as

	��
z = G�S

2
ei

zF���i� ,

	��
� = G�S

2
ei

�F���i� . �33�

Having introduced a bosonic representation for the spins, we
can now use standard diagrammatic methods to compute
spin-fluctation corrections to the optical conductivity pertur-
batively in the small coupling, G. In the noninteracting
theory, defined by Eqs. �9� and �30�, we have three fields,
and, correspondingly, we have three Green’s functions. The
noninteracting Green’s functions

Gimp
�0� ��,�n� =

1

i�n − E�

�34�

Gval
�0��k, j,�n� =

1

i�n − �k�i�
�35�

describe single-particle excitations in the impurity and va-
lence bands. We shall denote them by dashed and continuous
lines, respectively. Spin waves are described by the noninter-
acting bosonic propagator,

D�0��j,�n� =
1

i�n − hj
. �36�

This propagator is site diagonal, and accounts for the spin
precession created by the local exchange field of the
impurity-band holes. The interaction part, Eq. �32�, intro-
duces then three types of vertices between these Green’s
functions, which we depicted in Table I.

To compute the current-current response function, we
shall use a random-phase approximation-type �RPA-type� ap-
proximation in the bosonic line, which mediates the interac-
tion between the valence-band holes: in the diagrammatic
language this means that one neglects self-energy correc-
tions, and sums up only the diagrams shown in Fig. 13 �top
layer�. Notice that at T=0 the vertex 	z does not give a
contribution to the series in leading order in G. The RPA
series can be converted into an integral equation �Bethe-
Salpeter equation�, as shown in Fig. 13 �bottom layer�, where
one formally defines a renormalized current vertex function,
���. Expressed analytically, the vertex equation reads

�
�̃�̃

����̃���̃ − �
i

	��
+ D�− i�n,Hi���̃,�̃

0 �i�n�

− �
i

	��
− D�i�n,Hi���̃�̃

0 �i�n���̃�̃�̃ = j�� �37�

Here �̃���i�n� stands for �̃���i�n�=����i�n�e0 with e0 the
polarization of the electric field, and similarly, j��= j��e0.
The intraband polarization bubble is then expressed in terms
of the bare j�� and full vertex ��� as

�JJ
intra�i�n� = �

�,�
j������i�n���,�

0 �i�n� , �38�

with the bare polarization bubble defined as

��,�
0 �i�n� = �

i�n

Gimp
�0� ��,i�n�Gimp

�0� ��,i�n + i�n� �39�

Immediately, this gives for the intraband optical conductivity
the expression

�intra��� =
i

2�
�
�,�

�j��e0��������e0��f�E�� − f�E���

� � 1

� + E� − E� + i�
−

1

� − E� + E� + i�
� .

�40�

The mean-field limit is recovered if one sets 	→0 in the
Bethe-Salpeter equations, Eq. �37�. Then Eq. �40� reduces to
Eq. �25�.

We have solved the Bethe-Salpeter equations Eq. �37� nu-
merically, and computed the resulting corrections to the op-
tical conductivity. However, we found that, at typical optical
frequencies, they do not give an important correction to the
optical conductivity as compared to the previously presented
mean-field results. This is not very surprising: magnetic ex-
citations have energies in the range of TC, i.e., in the 5–6
meV range, which is very small compared to the optical
frequencies studied here. In the frequency range �

TABLE I. Vertices functions within the interacting field theory.
Dashed lines represent impurity hole propagators, while wavy lines
denote bosonic propagators.

ν

µ j

	�,�
+ �j�

ν

µ j

	�,�
− �j�

ν

µ j
	�,�

z �j�
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�5 meV they are, however, expected to result in interesting
effects, and they may lead to some additional features in the
optical spectrum.

The present calculation has been carried out at T=0 tem-
perature. In this case the diagrammatic derivation of Eqs.
�37� and �40� is very transparent and straightforward. How-
ever, we also derived these equations using the much more
tedious equation of motion method of Ref. 47, which holds
also at finite temperatures. It turns out that Eqs. �37� and �40�
are very general, and in the same form, they carry over to
finite temperatures too. The only modification is that the
original mean-field Hamiltonian must be diagonalized using
finite temperature expectation values. Our formalism thus
provides a way to study the effects of finite temperature on
the optical conductivity and the interplay of ferromagnetism.
The study of these finite temperature small frequency effects
is, however, beyond the scope of the present work.

VI. CONCLUSIONS

In this paper, we presented a calculation of the optical
properties of Ga1−xMnxAs in the very dilute limit, where it
can be described in terms of an impurity-band picture. Our
approach consisted of constructing an effective Hamiltonian
with parameters determined from microscopic variational
calculations. The effective Hamiltonian obtained this way
not only accounts for the impurity band, but it also describes
transitions from the impurity band to the valence band.

Our mixed approach captures correctly the most essential
features of the experiments. It predicts a rather wide Drude
peak, originating from interimpurity-band transitions, which
is partly merged with a mid-infrared peak at �200 meV.
The overall conductivity values as well as the positions of
these features are well reproduced by our theory. Remark-
ably, our calculations give a quantitative description of the
concentration-induced shift of the mid-infrared peak, and

give optical mass and residual resistivity values that agree
well with the experimentally observed values. The redshift
for a fixed x and increasing hole fraction is an obvious con-
sequence of the shift of the Fermi energy within the impurity
band. The redshift of the peak for increasing x and fixed hole
fraction is less obvious: it is related to the shift of “kinetic
contribution” �see Fig. 4� under decreasing Mn-Mn separa-
tion. We think that the peak position is not very sensitive to
the assumption of local transitions �Eq. �9��. Incorporating
more realistic band structure may, on the other hand, modify
the precise value of the peak position.

Furthermore, we are also able to capture the metal-
insulator transition, which, depending on the level of com-
pensation, occurs in the range of x=0.1–0.3 % for uncom-
pensated samples while it is in the range of x=1–2 % for
moderate compensations. This is in good agreement with the
experiments. Our results thus promote the theoretical picture
that the metal-insulator transition takes place within the im-
purity band, well before it completely merges with the va-
lence band.22,48 This picture is indeed supported by the ob-
servation of a finite activation energy as one approaches the
metal-insulator transition.21 Further indirect evidence for this
scenario is given by Fig. 8 of Ref. 14: at very small concen-
trations, where the impurity band is expected to be insulat-
ing, and the conduction is due to activated behavior to the
valence band, the mobility of holes agrees with that of many
other alloys, that are known to have valence-band conduc-
tion. However, right after the metal-insulator transition
�x�xC�0.2%�, the mobility clearly drops to a much smaller
value. The strong deviation from other “valence-band” com-
pounds could naturally be explained by the fact that conduc-
tion is due to holes within the impurity band, and that the
metal-insulator transition also occurs there, in agreement
with our calculations.

We have also investigated the scaling of the conductivity
and the optical mass close to the metal-insulator transition.
We find that the intraband optical conductivity scales as

i Ω n + + ...

� �
� �
� �
� �
� �
� �

i ωn + i Ω n

i

ω

i
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FIG. 13. Top: RPA series giving the leading correction to the optical conductivity. The dot represents the current vertex. Middle: �a�
interband contribution to the optical conductivity and characterize excitations, �b� intraband contribution. Bottom: Bethe-Salpeter equation

for the renormalized current vertex �̃��, indicated as a filled triangle.
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����=��0�+A�1/2 on the metallic side, close to the
transition.40 Close to the transition point the optical mass is
strongly renormalized and takes values mopt�10me, while
far from the metal-insulator transition we find a mass in the
range mopt�me.

Although our calculations were performed at the mean-
field level, we extended it to incorporate spin-wave fluctua-
tions too. While the formalism discussed here is only appli-
cable at T=0 temperature, we can also derive the same
integral equations using an equation of motion method �not
discussed here� that carries over to finite temperatures. The
final equations presented here thus apply for finite tempera-
tures too. Nevertheless, we find that for typical optical fre-
quencies spin waves do not give a substantial contribution.
They may, however, influence the low-frequency optical
properties ����20 meV�.

Our approach is designed to work in the limit of small
concentrations, and it should break down for large concen-
trations. Where exactly this breakdown occurs, is not quite
clear. In Ref. 14 it was argued that the breakdown should
appear at some active Mn concentration in the range of x
�1%.49 However, surprisingly, all spectroscopic data seem
to favor a picture in terms of impurity-band physics even at
intermediate concentrations.7–11,35

Also, our results are in very good agreement with the
experimental optical data, if we just blindly extrapolate them
to x�3–4 %. Theoretically, this is rather mysterious: one
possible explanation would be that Ga1−xMnxAs is rather in-
homogeneous, and some spectroscopic data are dominated
by regions of small Mn concentration. The other possibility
is that although the impurity-band density of states may al-
ready completely merge with the valence band at larger con-
centrations, most of the occupied states are in the tail of the
valence band, which has a strong impurity-band character.
This scenario is sketched in Fig. 14. Since optical transitions
are local for these states, and since the valence band and the
deep acceptor states are Coulomb shifted by approximately
the same amount, these levels deep in the gap give rise to an
impurity state transition at a frequency close to �200 meV.
This is indeed supported by our calculations, where we find
that the shifted local density of states has a large peak com-
ing from localized states in the tail of the impurity band. A
third possibility would be that the properties of Ga1−xMnxAs
on its surface, tested by essentially all spectroscopical
probes, differ from those of the bulk, and thus the effective
concentration of Mn ions is somehow reduced there.
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APPENDIX A: GROUND-STATE WAVE FUNCTION OF A
SINGLE Mn ION

In this appendix we present some details on the varia-
tional calculation of the bound acceptor state of the Mn im-
purities and the computation of the corresponding optical
matrix elements.

1. Acceptor wave function

We describe the Mn acceptor by the following Hamil-
tonian ��=me=e=1�:

H = −
	

2
�2 −

1


r
+ Vcc�r� . �A1�

Here the factor 	=1.782 describes the mass renormalization
term, and 
=12.65 is the dielectric function for GaAs. The
explicit form of the central-cell correction, Vcc�r� was given
in Eq. �4�.

To compute the ground-state wave function of Eq. �A1�,
we used the following variational Ansatz:

��r� = �
i=1

n

Ai���i,r� , �A2�

���,r� = �r	�
 =
1

��
�3/2e−�r, �A3�

In this expression we fixed the coefficients �i and used only
the Ai’s as variational parameters. The variational equation
for the latter is simply a linear equation of the form

�
j=1

n

H�i�j
A�j

= E�
j=1

n

S�i�j
A�j

. �A4�

For the Hydrogenic wave functions used, the matrix ele-
ments H��= ��	H	�
 as well as the overlap parameters S��

= �� 	�
 can be computed analytically.
The full variational solution computed using 50 param-

eters �i is plotted in Fig. 15, where it is also compared to a
single-parameter variational solution. The single-parameter
solution with �=0.091 gives a remarkably accurate approxi-
mation for the wave function, excepting the regime r�r0,
where small deviations appear due to the central-cell correc-
tion.

2. Calculation of on-site optical matrix elements

Once the variational wave function �A3� is known �at
hand�, we can compute the optical matrix elements to
valence-band states. We have two obvious choices: the sim-
plest way to estimate these matrix elements is to neglect the

Valence band

FIG. 14. Deep, strongly localized occupied levels in the tail of
the valence band move together with the valence-band edge, and
can give rise to impurity transitions at about 200 meV, indicated by
the wavy line. Empty circles denote holes.
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1 /r term as well as the central-cell correction �which does
not interact too much with scattering states in the 1=1 chan-
nel�, and to use free-electron states

�lmk
free�r� = �2k2jl�kr�Ylm��,�� , �A5�

with jl�kr� the spherical Bessel functions and Ylm�� ,��
spherical functions. Alternatively, we can neglect only the
central-cell correction and use Coulomb scattering states,

�lmk
Coul�r� =

�2

r
Fl�kr�Ylm��,�� , �A6�

where Fl is related to the confluent hypergeometric function,

1F1�a	b	x�, as

Fl�kr� = cl���eikr�kr�l+1
1F1�l + 1 + i�	2l + 2	 − 2ikr� ,

�A7�

with �=1 /	
k, the constant cl���=2le−��/2 	��l+1+i��	
��2l+2� , and

��z� the gamma function. Both scattering states are normal-
ized to satisfy �l ,m ;k 	 l ,m ;k
=��ll��mm���k−k��.

The matrix elements of pz can be computed analytically in
both cases. For free valence electrons we obtain

�1,0;k	pz	�
free =
i

�3
25/2�

i=1

n

Ai

�i
5/2k2

��i
2 + k2�2 , �A8�

while for Coulomb scattering states we have

�1,0;k	pz	�
Coul =
i

�3
25/2e−��/2	��l + 1 + i��	

�
j=1

n

Aj

� j
5/2k2

�� j
2 + k2�2�� j − ik

� j + ik

i�

.

The matrix elements obtained this way were presented in
Fig. 6. The single-parameter ground-state wave function
gives a very good approximation in both cases. The overall
energy dependence of the transition matrix elements is quali-
tatively similar in Coulomb and the free scattering-state ap-
proximations. However, the height of the peak is about a
factor of two larger in the free-electron approximation.

APPENDIX B: TWO-SITE PROBLEM

In this appendix we determine the energies of the molecu-
lar orbitals of an Mn2 system and use them to calculate the

parameters of an effective second-quantized Hamiltonian.
We consider two Mn ions, located at positions r=R1,2
= �R /2, and described by the Hamiltonian of Eq. �3�. Simi-
lar to the Mn ion case, we first construct the lowest lying
“molecular states” using variational wave functions of the
form,

��r� = �
�=s,p

�
i=1,2

�
j=1

N

Ai,�,j�i
����� j,r� , �B1�

constructed from Hydrogenlike s- and p-type wave functions
centered at the Mn sites, R1,2

�i
�s���,r� � �r	i,s,�
 =

1
��

�3/2e−�ri, �B2�

�i
�p���,r� � �r	i,p,�
 =

1

4�2�
�5/2xie

−�ri/2. �B3�

Here x̂ is the direction connecting the two sites, and ri=r
−Ri denote the position of the valence hole relative to R1,2.
We considered only states that do not have a mirror plane
that contains x̂, and therefore included only px orbitals. Simi-
lar to Appendix A, we fix the parameters � j in Eq. �B1�, and
consider only the Ai,�,j as variational parameters.

As in case of the single Mn ion problem, the coefficients
Ai,�,j satisfy a set of linear equations,
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FIG. 15. �Color online� Normalized ground-state wave function:
comparison between the single parameter and the full calculations.
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FIG. 16. The lowest few energy levels of the Mn2 molecule as a
function of distance. The left figure presents the case where only s
waves were considered �18 parameters were used�. The right panel
shows the results when both s and p waves are considered
�14 parameters were used�.
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�
�=s,p

�
j=1,2

�
l=1

N

�Hi,j
��,����k,�l� − E Si,j

��,����k,�l��Aj,�,l = 0,

�B4�

with the overlap matrix elements and the Hamiltonian matrix
elements defined as

Si,j
��,����,�� = �i,�,�	j,�,�
 ,

Hi,j
��,����,�� = �i,�,�	H	j,�,�
 .

The above integrals can be performed analytically using el-
liptic coordinates.

We remark here that Eq. �B4� not only provides an accu-
rate estimate for the ground-state energy, but it also accounts
for the first few excited states. In Fig. 16 we show the first
few lowest energy states obtained in this way as a function of
Mn separation, R. As demonstrated in the figure, the inclu-
sion of p orbitals does not result in a major improvement for
the first five states, though it introduces a level crossing be-
tween the first and the second excited states at a distance R
�6 Å where the tight-binding approximation fails.

The hopping t and the energy E appearing in Eq. �5� and
shown in Fig. 4 can be extracted from this spectrum as

t�R� =
1

2
�Eodd�R� − Eeven�R�� ,

E�R� =
1

2
�Eeven�R� + Eodd�R�� ,

where Eeven and Eodd represent the lowest lying �even� state
of the Mn2 molecule and that of the first �odd� excited state.

The electric field induces transitions between the previ-
ously mentioned even and odd states, and thereby generates
a coupling of the form, Eq. �11�. To determine the parameters
appearing in this equation, one simply needs to compute the
momentum matrix elements ��odd�r�	p	�even�r�
 that enter the
coupling to the external electromagnetic field. Since we
aligned the two Mn ions along the x direction the only non-
vanishing component of the momentum matrix elements is
��odd�r�	px	�even�r�
. It is possible to express this matrix ele-
ment analytically for our variational wave functions, though
the final expressions are rather cumbersome. The final results
were plotted in Fig. 5.
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