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Quantum dynamics of charged and neutral magnetic solitons: Spin-charge separation
in the one-dimensional Hubbard model

Mona Berciu and Sajeev John
Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7

~Received 19 November 1999!

We demonstrate that the configuration interaction~CI! approximation recaptures essential features of the
exact ~Bethe-ansatz! solution to the one-dimensional~1D! Hubbard model. As such, it provides a valuable
route for describing effects that go beyond mean-field theory for strongly correlated electron systems in higher
dimensions. The CI method systematically describes fluctuation and quantum tunneling corrections to the
Hartree-Fock approximation~HFA!. HFA predicts that doping a half-filled Hubbard chain leads to the appear-
ance of charged spin polarons or charged domain-wall solitons in the antiferromagnetic background. The CI
method, on the other hand, describes the quantum dynamics of these charged magnetic solitons and quantum
tunneling effects between various mean-field configurations. In this paper, we test the accuracy of the CI
method against the exact solution of the one-dimensional Hubbard model. We find remarkable agreement
between the energy of the mobile charged bosonic domain wall~as given by the CI method! and the exact
energy of the doping hole~as given by the Bethe ansatz! for the entireU/t range. The CI method also leads to
a clear demonstration of the spin-charge separation in one dimension. Addition of one doping hole to the
half-filled antiferromagnetic chain results in the appearance of two different carriers: a charged bosonic domain
wall ~which carries the charge but no spin! and a neutral spin-1/2 domain wall~which carries the spin but no
charge!.
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I. INTRODUCTION

The two-dimensional~2D! Hubbard model~or a modified
version of it! is widely believed to describe the essent
physics of the strongly correlated electrons in high tempe
ture superconducting cuprates.1 Unlike the 1D Hubbard
model, an exact solution of the 2D problem is not know
and one must resort to approximations. The validity of su
approximations can be tested on the 1D Hubbard mo
which is exactly solvable2 using the Bethe ansatz.3 It is
highly desirable to develop an approximation that recaptu
essential physical features of the exact Bethe-ansatz solu
and that, at the same time, can be applied to high
dimensional systems. In this paper, we show that the c
figuration interaction~CI! method4 is such an approximation
We demonstrate that the CI method recaptures esse
quantum tunneling effects that go beyond mean-field the
and that lead to spin-charge separation in 1D. The pre
tions of the CI method in the 2D case as well as a comp
son to cuprate superconductors are described in d
elsewhere.5

We consider the generalized Hubbard Hamiltonian:

H52t(
^ i , j &
ab

~cia
† Tab

i j cj b1H.c.!1U(
i

ci↑
† ci↑ci↓

† ci↓ . ~1!

Here,cia
† is the creation operator for an electron of spina at

site i, and the notation̂i , j & means that the sum is restricte
to nearest-neighbor sitesi andj. The parameters of the prob
lem are the hopping matrixt, the on-site interaction matrix
U, and the SU~2! matricesTab

i j , which describe phase factor
and internal spin rotations acquired by the electron as it h
between sites. For the 1D Hubbard Hamiltonian that we c
PRB 610163-1829/2000/61~15!/10015~14!/$15.00
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i j 5dab . However, for

the 2D system, it has been shown that a nontrivial choice
the matricesTab

i j , which describes a 2p ~internal! spin rota-
tion of the electron as it encircles an elementary plaquett
the square lattice, may be essential to the cuprate physic6,7

For this reason, we develop the CI formalism for the mo
general Hamiltonian~1!.

In addition to providing a test to gauge the accuracy of
configuration interaction method, the 1D results may be
rectly relevant to certain high-Tc cuprate superconductors
YBa2Cu3O7 and its close relatives have quasi-on
dimensional CuO chain structures. Experiments measu
the dc resistivity,8 the infrared and optical conductivity,9 and
the penetration depth in untwinned crystals10 and ceramics11

have revealed large anisotropies between thea direction
~perpendicular to chains! and the b direction ~parallel to
chains!. These results suggest that substantial currents
carried along the chains in both the normal and superc
ducting state. The source of superconducting condensat
the chains has not yet been elucidated.

We begin Sec. II with a brief review of the static Hartre
Fock approximation~HFA!. The HFA leads to a mean-field
ground state with properties which are in disagreement w
those of the exact ground state. For the half-filled~undoped!
chain, HFA predicts a degenerate ground state with lo
range antiferromagnetic~AFM! order and with staggered
magnetic moments aligned along some arbitrary directi
Even in the presence of a weak external interaction, wh
creates an easy axis for spin orientation, the HF ground s
is degenerate with the related mean-field in which all
spins have been flipped (S→2S). On the other hand, the
true ground state of the half-filled system is nondegene
and has no long-range order, despite the presence of st
10 015 ©2000 The American Physical Society
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10 016 PRB 61MONA BERCIU AND SAJEEV JOHN
AFM correlations. When holes are introduced into the cha
the HFA leads to the creation of static magnetic spin pola
and domain-wall solitons that trap the hole. Since these s
tons are motionless in the static HFA, this mean-field so
tion breaks the translational invariance of the original Ham
tonian. The CI method facilitates the restoration of both
the above symmetries in accord with the exact Bethe-an
ground state.

The essence of the CI method is to use a linear comb
tion of HF wave functions in order to restore the vario
broken symmetries of the mean-field theory. In a doped s
tem, for instance, the CI wave function is chosen to b
linear combination of HF wave functions describing t
charged soliton centered at various sites. Besides resto
the translational symmetry, such a wave function also eff
tively takes into account the quantum dynamics of
charged soliton along the chain. This motion represen
large-amplitude tunneling event between a given AFM me
field and the alternative AFM mean field obtained by t
operation (S→2S). Moreover, the propagating soliton low
ers its quantum zero-point energy considerably, relative
the static~HFA! soliton.

In Sec. III we briefly review the exact Bethe-ansatz~BA!
solution and the ground-state energies of the half-filled
doped chains. The comparison between the Bethe-an
Hartree-Fock, and configuration interaction solutions is p
sented in Sec. IV. For both the undoped chain and the c
with one doping hole, we show that through the nucleation
mobile quantum solitons, the CI method provides a mu
better description than the HFA. We identify the charge c
rier of the Hubbard chain to be a charged bosonic dom
wall, and we show that its energy, in the CI method, is
excellent agreement with the BA result. The CI method le
to a simple, physical interpretation of spin-charge separat
Adding a single hole to a chain leads to the creation of t
magnetic solitons. One soliton is the bosonic charged dom
wall ~which carries charge, but no spin!, while the other soli-
ton is the neutral spin-1/2 domain wall~which carries spin,
but no charge!. The energy of these excitations are in go
agreement with the BA results. Finally, Sec. V contains
discussion of the results and conclusions.

II. APPROXIMATIONS: HARTREE-FOCK
AND CONFIGURATION INTERACTION METHOD

A. The static Hartree-Fock approximation

One of the most widely used approximations for t
many-electron problem is the static HFA. In this approxim
tion the many-body problem is reduced to one-electron pr
lems in which each electron moves in a self-consistent m
ner depending on the mean-field potential of the ot
electrons in the system. While this method is insufficient,
itself, to capture all of the physics of low-dimensional ele
tronic systems with strong correlations, it provides a valua
starting point from which essential fluctuation correctio
can be included. In particular, we use the Hartree-F
method to establish the electronic structure and the s
energies of various magnetic soliton structures. In the m
general CI variational wave function, the solitons acqu
quantum dynamics and describe large-amplitude tunne
and fluctuation effects that go beyond mean-field theory.
,
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In the HF approximation, the many-body wave functio
uC& is decomposed into a Slater determinant of effective o
electron orbitals. The one-electron orbitals are found fr
the condition that the total energy of the system is mi
mized:

d
^CuHuC&

^CuC&
50. ~2!

In order to approximate the ground state of the Ham
tonian~1!, we consider a Slater determinant trial wave fun
tion of the form

uC&5 )
p51

Ne

ap
†u0&, ~3!

where u0& is the vacuum state,Ne is the total number of
electrons in the system, and the one-electron states are g
by

an
†5(

is
fn~ i ,s!cis

† . ~4!

Here, the one-particle wave functionsfn( i ,s) form a com-
plete and orthonormal system.

Using the wave function~3! in Eq. ~2!, and minimizing
with respect to the one-particle wave functionsfn( i ,s), we
obtain the Hartree-Fock eigenequations:

Enfn~ i ,a!52t (
j PVi ,b

Tab
i j fn~ j ,b!

1U(
b

S 1

2
dabQ~ i !2sab•S~ i ! Dfn~ i ,b!,

~5!

where (sx ,sy ,sz) are the Pauli spin matrices, and th
charge density,

Q~ i !5^Cucia
† ciauC&5 (

p51

Ne

ufp~ i ,a!u2, ~6!

and the spin density,

S~ i !5 K CUcia
† sab

2
cibUC L 5 (

p51

Ne

fp* ~ i ,a!
sab

2
fp~ i ,b!,

~7!

must be computed self-consistently. The notationj PVi ap-
pearing in~5! means that the sum is performed over the si
j, which are nearest neighbors of the sitei. The self-
consistent Hartree-Fock equations~5!–~7! must be satisfied
by the occupied orbitalsp51, . . . ,Ne , but can also be used
to compute the empty~hole! orbitals. The ground-state en
ergy of the system in the HFA is given by

EGS5^CuHuC&5 (
p51

Ne

Ep2U(
i

S 1

4
Q~ i !22S~ i !2D ~8!

where the single particle energies are obtained from Eq.~5!.
The approximation scheme described so far is called

unrestricted Hartree-Fock approximation, because we did
impose constraints on the wave functionuC& that would re-
quire it to be an eigenfunction of various symmetry ope
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tions that commute with the Hamiltonian~1!. If these sym-
metries are enforced, the method is called the restric
Hartree-Fock approximation. We use the unrestricted H
since it leads to lower energies. The breaking of symmet
in our case implies that electronic correlations are more
fectively taken into account.12 The restoration of these sym
metries is deferred until the CI wave function is introduce

In the undoped ~half-filled! case, the self-consisten
Hartree-Fock equations can be solved analytically for
infinite system, using plane-wave one-particle wave fu
tions. In the unrestricted Hartree-Fock approach, doping
system leads to the appearance of inhomogeneous solut
which break the translational invariance. In this case,
solve the unrestricted self-consistent Hartree-Fock equat
numerically on a finite chain. Starting with an initial spin an
charge distributionS( i ) andQ( i ), we numerically solve the
eigenproblem~5! and find the HF eigenenergiesEn and
wavefunctionsfn( i ,a). These are used in Eqs.~6! and~7! to
calculate the new spin and charge distributions, and the
cedure is repeated until self-consistency is reached. Num
cally, we define self-consistency by the condition that
largest variation of any of the charge or spin components
any of the sites of the lattice is less than 1029 between suc-
cessive iterations.

B. Configuration interaction method

The basic idea of the CI method is that the ground-s
wave function, for a system withNe electrons, is not just a
Ne3Ne Slater determinant~as in the HFA!, but a judiciously
chosen linear combination of such Slater determinan4

Given the fact that the set of all possible Slater determina
~with all possible occupation numbers! generated from a
complete set of one-electron orbitals constitute a comp
basis of theNe-particle Hilbert space, our aim is to pick ou
a subset of Slater determinants that captures the esse
physics of the exact solution.

Consider the CI ground-state wave function given by

uC&5(
i 51

N

a i uC i&, ~9!
d
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where eachuC i& is a distinctNe3Ne Slater determinant and
the coefficientsa i are chosen to satisfy the minimizatio
principle:

d

da i
S ^CuHuC&

^CuC& D50, i 51, . . . ,N. ~10!

This leads to the system of CI equations

(
j 51

N

Hi j a j5E(
j 51

N

Oi j a j , i 51, . . . ,N. ~11!

whereE5^CuHuC&/^CuC& is the energy of the system i
the uC& state,Hi j 5^C i uHuC j& are the matrix elements o
the Hamiltonian in the basis of Slater determinants$uC i&,i
51, . . . ,N%, andOi j 5^C i uC j& are the overlap matrix ele
ments of the Slater determinants~which are not necessarily
orthogonal!. The CI solution is easily found by solving th
linear system of equations~11!, once the basis of Slater de
terminants$uC i&, i 51, . . . ,N% is chosen. If we denote by
fp

(n)( i ,s) thep51, . . . ,Ne one-electron occupied orbitals o
the Slater determinantuCn&, these matrix elements are give
by

Onm5U b1,1
nm . . . b1,Ne

nm

] ]

bNe,1
nm

. . . bNe ,Ne

nm U . ~12!

The matrix elements of the Hamiltonian~1! can be written as

Hnm52tTnm1U(
i

Vnm~ i !, ~13!

where the expectation values of the hopping and on-site
teraction terms are

Tnm5 (
p51

Ne U b1,1
nm . . . t1,p

nm . . . b1,Ne

nm

] ] ]

bNe,1
nm

. . . tNe ,p
nm

. . . bNe ,Ne

nm U
and
Vnm~ i !5 (
p1Þp2

U b1,1
nm . . . u1,p1

nm ~ i ! . . . d1,p2

nm ~ i ! . . . b1,Ne

nm

] ] ] ]

bNe,1
nm

. . . uNe ,p1

nm ~ i ! . . . dNe ,p2

nm ~ i ! . . . bNe ,Ne

nm U .
ter-

the
Here,

bph
nm5(

is
fh

(n)* ~ i ,s!fp
(m)~ i ,s!,

tp1 ,p2

nm 5(
^ i , j &
ab

~fp1

(n)* ~ i ,a!Tab
i j fp2

(m)~ j ,b!1H.c.!,
up1 ,p2

nm ~ i !5fp2

(n)* ~ i↑ !fp1

(m)~ i↑ !,

dp1 ,p2

nm ~ i !5fp2

(n)* ~ i↓ !fp1

(m)~ i↓ !.

We now consider the specific choice of the Slater de
minant basis$uC i&,i 51, . . . ,N%. Strictly speaking, one may
choose an optimized basis of Slater determinants from
general variational principle:
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d

dfp
(n)~ i ,s!

S ^CuHuC&

^CuC& D50,

n51, . . . ,N, p51, . . . ,Ne . ~14!

However, implementation of this full trial-function minimi
zation scheme~also known as a multireference se
consistent mean-field approach12! is numerically cumber-
some even for medium-sized systems. Instead, we selec
Slater determinant basis$uC i&, i 51, . . . ,N% from the set of
broken symmetry, unrestricted Hartree-Fock wave functi
~3!, their symmetry related partners and their excitatio
Clearly, Eq.~3! satisfies Eq.~14! by itself, provided that the
a coefficients corresponding to the other Slater determina
in Eq. ~9! are set to zero@see Eq.~2!#. Since this unrestricted
HF wave function is not translationally invariant~the doping
hole is always localized somewhere along the chain!, we can
restore the translational invariance of the CI ground-s
wave function by also including in the basis of Slater det
minants all the possible lattice translations of this un
stricted HF wave function. In two dimensions, we must a
include all the possible nontrivial rotations.

Clearly, all the translated HF Slater determinants lead
the same HF ground-state energy^CnuHuCn&5EGS as de-
fined by Eq.~8!. The CI method lifts the degeneracy betwe
states with the hole-induced configuration localized at diff
ent sites, thereby restoring translational invariance. We m
identify the lowering in the total energy due to the lifting
this degeneracy as quantum mechanical kinetic energ
deconfinement, which the doping-induced configurat
saves through hopping along the chain. In addition, quan
fluctuations in the internal structure of a magnetic soliton c
be incorporated by including the lowest-order excited-st
configurations of the static Hartree-Fock energy spectr
Such wave functions are given byap

†ahuC&, wherep.Ne

labels an excited particle state andh<Ne labels the hole tha
is left behind@see Eq.~3!#. Once again, all possible transla
tions of this ‘‘excited’’ configuration must be included in th
full CI wave function. These additions can describe chan
in the ‘‘shape’’ of the soliton as it undergoes quantum m
chanical motion through the crystal.

III. EXACT SOLUTION OF THE 1D HUBBARD MODEL:
THE BETHE ANSATZ

Before reporting the results obtained in the HF and
approximation for the 1D Hubbard model, we briefly d
scribe the exact Bethe-ansatz solution of this problem,2 for
comparison purposes. Consider anN-site chain withNe elec-
trons of which M have spin down. Here,Ne<N and M
<Ne/2.2 Any wave function satisfying the many-bod
Schrödinger equationHuC&5EuC& is characterized byNe
quasimomenta2p/a,kj<p/a, describing the motion of
the Ne electrons (a is the lattice constant!, andM rapidities,
La , describing the spin ordering. Using the Bethe ansa3

and imposing periodic boundary conditions, it can be sho
that the quasimomenta and the rapidities satisfy the so-ca
Bethe-ansatz equations2,13
the
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exp~ ik jNa!5 )
a51

M
sin~kja!2La1~U/4t!i

sin~kja!2La2~U/4t!i
, ~15!

)
j 51

Ne La2sin~kja!1~U/4t!i

La2sin~kja!2~U/4t!i
52 )

b51

M
La2Lb1~U/2t!i

La2Lb2~U/2t!i
.

~16!

The total energy and the total crystal momentum are t
given by

E522t(
j 51

Ne

cos~kja!, P5(
j 51

Ne

kj . ~17!

The ground state is always given by realk’s and L ’s. Ex-
cited states are usually described by complex rapidities
so-called ‘‘string’’ structures.2

We solve the Bethe-ansatz equations iteratively, star
with a guess for the set of real rapiditiesLa ~related to the
ground-state solution of the 1D Heisenberg chain, as
scribed in Ref. 13!. Then, we solve Eq.~15! and find the
quasimomentakj , which we use in Eq.~16! to find the new
set of real rapidities. The procedure is repeated until s
consistency is reached.

We can check our numerical procedure in two particu
cases. First, the ground-state energy of a half-filledN5Ne
chain in the thermodynamic limit is known to be given by2,12

E524utuNE
0

` dxJ0~x!J1~x!

x$11exp@xU/~2utu!#%
, ~18!

where theJn(x) are cylindrical Bessel functions. In Fig.
we plot the ground-state energy per site, in units oft, ob-
tained for a half-filled chain of various lengthsN, for U/t
55. While for very low values ofN there are large variation
between the energies of chains with even and odd num
of unit cells, asN increases the energies obtained conve
towards the thermodynamic value of Eq.~18! @shown as the
full line#. We consider chains with an even number of si

FIG. 1. Ground-state energy per site, in units oft, of an undoped
Hubbard chain ofN sites andU/t55. The full circles show the
values found directly from the Bethe-ansatz equations~15!–~17!,
while the full line shows the thermodynamic limit given by E
~18!. In the limit of largeN the two values agree.



d
fo

ne

os
ta
in

e

ar
g

a

e.

io
ld
w
ru
nn

th
te

r-
e

cc
un

o
fa

e

ich
e

ctly
e-

ard
l
ns
i-

en-

the

s,

es

ethe

e

int,
h

k
n

PRB 61 10 019QUANTUM DYNAMICS OF CHARGED AND NEUTRAL . . .
~integer number of unit cells!, since we know that the groun
state has AFM correlations. Similar curves are obtained
other values ofU/t.

Another well-known case is that of a chain with just o
hole, in theU/t→` limit. In this limit, double occupancy is
forbidden by the large on-site interaction, and the only p
sible charge fluctuation is the motion of the hole. The to
energy of the chain reduces to the energy of the hole, s
the single occupied sites give little contribution to energy~in
this limit the contributions from the AFM correlations of th
electron spins, of the order oft2/U, are negligible for finite
chains!. It is straightforward to show14 that the hole’s disper-
sion relation in one dimension is exactly that of a free p
ticle, and therefore the total energy of the chain containin
single hole with momentum\k is E(k)522t cos(ka). In the
following sections, we show that the ground-state energy
proachesE522t as U/t→` for the CI method as well as
for the Bethe ansatz equations of the chain with one hol

IV. COMPARISON BETWEEN THE BA, THE CI,
AND THE HF RESULTS

A. The undoped ground state

1. Hartree-Fock results

For the undoped system, the self-consistent HF equat
~5!–~7! for an infinite system give rise to a mean-fie
ground state with long-range antiferromagnetic order. Ho
ever, the Mermin-Wagner theorem states that the t
ground-state of any one-dimensional isolated system ca
have long-range order~LRO! and that LRO is absent in 2D
systems for nonzero temperatures. In the framework of
CI method, mobile solitons in the AFM background media
the destruction of LRO.

Using the spin and charge distributionsQ( i )51 ~one
electron per site! and S( i )5(21)iSez ~AFM order in the
arbitrary directionez), Eq. ~5! yields two electronic bands
characterized by the dispersion relations

Eks
c/v56Aek

21~US!2, kP~2p/2a,p/2a# ~19!

whereek522t cos(ka) is the dispersion relation of noninte
acting electrons anda is the lattice constant. Each of thes
levels is doubly degenerate~s561!. Given the symmetry of
the spectrum and the fact that only half the states are o
pied, one can easily see that in the Hartree-Fock gro
state, all the states in the valence band (Ek

v,0) are occupied,
while all the states in the conduction band (Ek

c.0) are
empty. The two bands are separated by the usual M
Hubbard charge transfer gap opened at the Fermi sur
(k56p/2a), of magnitude 2US.

Using the valence-band wave functions in Eqs.~6! and
~7!, we obtain15 the self-consistent spin amplitude

S5
US

N (
k

1

Aek
21~US!2

, ~20!

where N is the number of sites and the sum is perform
over the Brillouin zonekP(2p/2a,p/2a#. This equation
has three solutions. One is trivial (S50). ForSÞ0 the equa-
tion depends only onS2. Consequently,the mean-field
ground state is doubly degenerate: both 1S and2S satisfy
r

-
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a
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ns

-
e
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e

u-
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tt-
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d

Eq. ~20! and give rise to self-consistent ground states, wh
differ from each other only through the fact that all th
spins are flipped from one ground state to the other. Stri
speaking, the HF solution gives an infinite number of d
generate ground states, because the directionez is arbitrary
~this is a direct consequence of the fact that the Hubb
model is rotationally invariant!. However, since a rea
chain is embedded in a 3D crystal, crystal field interactio
will lift the rotational degeneracy, and fix one particular d
rection of orientation~easy axis! for the spins~for instance,
along the chains!. Consequently one particular directionez
is favored, and the mean-field ground state is doubly deg
erate.

Since all the states of the valence band are occupied,
energy of the HF ground state is simply given by

EGS52(
k

Ek
v1NUS S21

1

4D , ~21!

whereS is given by the self-consistency condition~20!. The
magnitude of the ground state energy per site, in units oft, is
plotted in Fig. 2 as a function ofU/t ~the full line!. The
following features can be observed: in theU/t→0 limit
~noninteracting electrons!, the energy of the ground state ha
indeed, the expected valueEGS→24Nt/p. In the strong in-
teraction limitU/t→`, the energy of the ground state go
to zero as expected~since in this limit every site is single
occupied and virtual hopping is suppressed!. For compari-
son, the exact ground-state energy obtained from the B
ansatz@Eq. ~18!# is also shown~dashed line!. The asymptotic
value of the HF energy is found to be given byEGS→
22Nt2/U. It is well known that in this limit, the Hubbard
model is equivalent to an AFM Heisenberg model,16 with a
coupling constantJ54t2/U, and that its true ground-stat
energy per site is3 EGS→2NJ ln 2522.77Nt2/U. This sug-
gests that the Hartree-Fock method is a good starting po
from which to incorporate fluctuation corrections whic
lower the energy.

FIG. 2. Energy per site~in units of t) of the AFM undoped
background as a function ofU/t, as obtained from the Hartree-Foc
approximation~full line! and from the exact Bethe-ansatz solutio
~dashed line!.
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10 020 PRB 61MONA BERCIU AND SAJEEV JOHN
2. Configuration interaction treatment of the undoped chain

The HF Slater determinant of the undoped AFM grou
state is invariant to translations by 2a ~AFM order must be
preserved!. While it is possible to include in the CI set o
Slater determinants excited HF states of the undoped c
obtained by exciting electrons from the valence to the c
duction band, it turns out that lower-energy self-consist
HF configurations can be generated by breaking the tran
tional symmetry of the undoped mean-field AFM bac
ground. This is facilitated by considering excited states
the AFM background that can accommodate charge car
in localized states deep within the charge transfer gap ra
than within the Mott-Hubbard bands. The lowest-ener
self-consistent excited state is the undoped~neutral! domain
wall, which describes tunneling from one mean-field grou
state to the other mean-field ground state. Since the A
order rotates byp when crossing the domain wall, we con
sider either one domain wall on an odd-site chain, or a p
of domain walls on an even-site chain, in order to impo
cyclic boundary conditions. Figure 3 depicts a typical se
consistent configuration containing two neutral dom
walls, one centered between sites 10 and 11, and one
tered between sites 30 and 31. The chargeQ( i )51 every-
where. Near the domain wall the self-consistent spin mag
tudesSz( i ) adjust such that each neutral domain wall carr
a spin 1/2~with a projection in the same direction as i
core spins!, suggesting that this excitation is a neutral fe
mion. This is confirmed from the electronic structure sho
in Fig. 4.

We obtain self-consistent configurations containing t
neutral domain walls at all possible distances from e
other, either having opposite orientations~i.e., total chain
spin 0! or same orientations~total chain spin61!. Since the
AFM ground state has total spin 0 and states with differ
total spin do not mix, we need only include in the set of
Slater determinantsuC i& states of total spin zero, i.e., thos
having the neutral domain walls ‘‘paired’’~with opposite
orientations!. Since all the possible configurations with tw
neutral domain walls have very similar energies, they m

FIG. 3. Self-consistent spin and charge distribution for a 40-
chain with two neutral domain walls, forU/t55. The charge
Q( i )51 everywhere. The total spin carried by each neutral dom
wall is 1/2.
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all be included along with the AFM undoped ground state
making up the variational trial wave function. We must al
include both AFM undoped mean-field ground states in
CI set. This can be easily seen from Fig. 3, where half of
chain is in one AFM ground state, and the other half is in
other ~flipped! ground state. Therefore, this state will ha
equal overlap with both AFM ground states, although t
AFM ground states themselves are orthogonal to each ot
For anN-site chain, the CI set contains a total of 21N(N
22)/2 Slater determinants, two being the undoped AF
ground states, and the rest being theN-2 possible states with
paired domain walls at different distances from each oth
each of which can be translatedN/2 times along the chain.

The total ground-state energy found with the HF~circles!,
CI ~squares!, and BA ~diamonds! methods for chains of dif-
ferent lengthsN for U/t55 andU/t550 are shown in Fig.
5. For all three methods the total energy of the chain
proportional to the length of the chain. The addition of t
configurations with a pair of neutral domain walls in the
method improves the ground-state energy considerably.
obvious, however, that as the length of the chain increa
configurations with two, three, four, and more pairs of ne
tral domain walls should be included in the CI set in order
arrive at a perfect agreement with the exact Bethe-an
solution. It is interesting to remark that even if only the co
figurations with one pair of neutral domain walls are i
cluded, the nondegenerate CI ground state is such
^Sz( i )&50 for any sitei of the chain, although the antiferro
magnetic correlations remain very strong. This is a con
quence of the fact that the CI set of Slater determinants c
tains an equal number of states with the spin at the sitei up
and down, so in average each spin expectation value is
ishing. Thus, the CI wave function is much more success
in mimicking the properties of the exact BA ground state

e

in

FIG. 4. Electronic structure of the 40-site chain with the tw
neutral domain walls shown in Fig. 3. Each domain wall has
discrete levels bound in its core. The spins on the two occup
bound levels are oriented in the same direction as the core spin
the domain wall. In the configuration shown in Fig. 3, there is
11/2 and a21/2 domain wall, and therefore all levels are sp
paired and the total spin of the chain is zero. However, for t
11/2 ~21/2! domain walls, all the occupied discrete levels ha
11/2 ~21/2! spins, and the total spin of the chain is11 ~21!.
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B. Charged solitons in the doped ground state:
The spin bag and the charged domain wall

1. Hartree-Fock results

If we numerically solve the HF equations~5!–~7! for an
N-site chain withN21 electrons, we find three types o
charged self-consistent solutions: the spin bag~or spin po-
laron! ~Fig. 6!, the charged domain wall centered on s
~COS domain wall! ~Fig. 7!, and the charged domain wa
centered between sites~CBS domain wall! ~Fig. 8!. The spin
polaron is created by trapping the hole in a small ferrom
netic core, which only affects the LR AFM order locall
The domain walls are topological excitations, since the AF
order is rotated byp as one goes through the domain wa
Therefore, in order to impose cyclic boundary conditions,
must consider an odd-site chain~or we may take an even-sit
chain and add two holes, leading to the appearance

FIG. 5. Ground-state energy~in units of t) of a chain of sizeN,
calculated with the HF~circles!, CI with two neutral domain walls
~squares!, and BA ~diamonds!. The left panel corresponds toU/t
55, while the right one corresponds toU/t550. Although the en-
ergy scale is very different, in both cases the CI method sign
cantly improves the agreement with the exact Bethe-ansatz solu

FIG. 6. Self-consistent charge~upper line! and spin distributions
for a charged spin bag on a 40-site chain forU/t55. The spin bag
is a charged fermion.
-

e

a

domain-wall antidomain-wall pair!. The localization length
of the hole decreases asU/t increases for all three excita
tions. The spin and charge at sites far from the distort
equal the undoped mean-field ground-state values.

The electronic spectra corresponding to the configurati
shown in Figs. 6, 7, and 8 are shown in Figs. 9 and 10. T
first panel in Fig. 9 corresponds to the undoped ground s
of a chain withN540 sites. As discussed before, the ele
tronic spectrum consists of two bands ofN540 states each
The valence band is completely filled, the conduction ban
completely empty, and there is a large charge transfer
between them. Adding one hole on the sameN540 site
chain and keeping the cyclic boundary conditions lead to
appearance of the spin bag shown in Fig. 6. Its electro
structure is shown in the right panel of Fig. 9. There is
localized level (n51) well below the valence band, the va
lence band contains 38 states, there are 3 localized le
deep inside the Mott-Hubbard charge transfer gap, and
nally the conduction band also has 38 levels. Since there

-
n.

FIG. 7. Self-consistent charge~upper line! and spin distributions
for a domain wall centered on site~COS! on a 41-site chain for
U/t55.

FIG. 8. Self-consistent charge~upper line! and spin distributions
for a domain wall centered between sites~CBS! on a 41-site chain
for U/t55. The domain walls are charged bosons.
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10 022 PRB 61MONA BERCIU AND SAJEEV JOHN
N21539 electrons in the system, only the localized lev
below the valence band and the valence-band states ar
cupied. Since the valence band is spin paired~having an even
number of states!, this means that the total spin of this exc
tation is 1/2, associated with the spin of the electron on
localized level. The fact that the spin bag carries a 1/2 spi
also easy to deduce from Fig. 6, because of the small fe
magnetic core. Thus, we conclude that the spin bag
charged fermion.

The charged domain-wall electronic structures are sho
in Fig. 10, with the CBS domain wall in the left panel, an
the COS domain wall in the right panel. In this case,
study a chain withN21540 electrons andN541 sites, so
that we can impose cyclic boundary conditions again.
can see that in both cases there are 4 localized levels in
the Mott-Hubbard gap,N21540 occupied states in the va
lence band, and 38 states in the conduction band. The lo

FIG. 9. Electronic spectra for an undoped AFM chain with
sites ~left panel! and for a 40-site chain with a charged spin b
~right panel!. U/t55.

FIG. 10. Electronic spectra for a 41-site chain with a CBS d
main wall ~left panel! and a COS domain-wall~right panel!. U/t
55.
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ized levels of the COS domain wall are degenerate. The
generacy is lifted for the CBS domain wall, and the upp
discrete level is pushed quite close to the lower edge of
conduction band. However, it is still a localized level~this is
easily checked by plotting its wave function!. In both cases
we have a fully spin-paired valence band, and therefore
total spin of these excitations is zero. Since they carry
charge of the hole, the domain walls are charged boson
analogy to the charged solitons of polyacetylene.17,18

In order to establish the relevance of these differ
charged spin configurations, we compare their excitation
ergies @defined with respect to the undoped~half-filled!
ground state# as a function ofU/t in Fig. 11. As we can see
the domain walls are the low-energy excitations forU/t
,6.5, while the spin polarons become the low-energy ex
tations forU/t.6.5. AsU/t→0, the core size of the domai
walls diverges roughly liket/U. As a result, in this limit the
COS and the CBS domain-walls are very extended obje
that become indistinguishable and degenerate. Howeve
U/t increases the core becomes more and more locali
and the CBS domain wall becomes energetically favora
relative to the COS domain wall.

However, this static HFA does not take into account t
lowering of energy of these excitations due to translatio
along the chain. From the simple inspection of the spin d
tributions of the spin bag and of the domain wall, we c
easily deduce that while a domain wall can move fre
along the chain, the spin bag is rather immobile. Moving
center of the domain wall by one site~by interchanging the
hole with the spin at the right or at the left! necessitates only
some rearrangement of the magnitude of the core sp
while their orientation is automatically correct. Cons
quently, the domain wall lowers its energy by an amount

-

FIG. 11. Excitation energy in units oft of the charged spin
polaron, CBS and COS domain walls, as a function ofU/t. The
excitation energy is defined with respect to the undoped ch
Within the HFA, for U/t,6.5 the charged domain walls are th
low-energy charged excitations, while forU/t.6.5 the spin po-
larons are the low-energy excitations. However, the HFA appro
mation neglects the kinetic energy gained by these charged ex
tions through translation along the chain. When this is taken i
account within the configuration interaction approximation, the m
bile domain wall is found to be the low-energy charged excitat
for all values ofU/t ~see Fig. 15!.
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PRB 61 10 023QUANTUM DYNAMICS OF CHARGED AND NEUTRAL . . .
order t through hopping along the chain. However, if a sp
bag moves only by one site, the translated spin must
flipped ~which would require the the total spin of the sp
bag to likewise flip!. In order to conserve its spin, the sp
bag must tunnel to the second nearest neighbor. This
second-order process, and consequently the spin bag lo
its energy only by an amount of ordert2/U through motion.
As we demonstrate below, using the configuration inter
tion method, these qualitative arguments are valid. W
soliton dynamics is incorporated, it is the charged boso
domain wall that proves to be the relevant charged excita
of the Hubbard model for all values ofU/t.

2. Configuration interaction treatment of the spin polaron

Consider a spin polaron on a chain with 2N sites ~the
number of sites is even so that we can impose cyclic bou
ary conditions!. Using the CI method we evaluate the kine
energy of the mobile, charged spin bag. As suggested ab
we only need to include in the set of Slater determina
uC i& configurations translated by an even number of s
from the initial HF configuration. LetuCeven&,uCodd& be the
HF determinants for the spin polaron centered at an even
odd site, respectively, and letŜz5( i Ŝz( i )5 1

2 ( i ,sscis
† cis be

the total spin operator in thez direction. Then,ŜzuCeven&
5 1

2 uCeven& while ŜzuCodd&52 1
2 uCodd& ~or vice versa!, and

therefore^CodduCeven&50. Since the Hubbard Hamiltonia
commutes withŜz , it follows that^CodduHuCeven&50. From
the CI equation~11! we conclude that there is no mixin
between states with the spin polaron on one sublattice
states with the~opposite spin! spin polaron on the other sub
lattice. Therefore, on a chain with 2N sites we only need to
mix N Slater determinants in order to obtain the spin-pola
ground state within the CI method.

If the initial self-consistent HF spin-polaron configuratio
uC1& is composed of the one-particle occupied orbit
fp

(1)( i ,s), the one-particle orbitals of the stateuCn11& trans-
lated by 2na will simply be chosen asfp

(n11)( i ,s)5fp
(1)( i

22n,s) ~cyclic boundary conditions are assumed!. The
overlap matricesOnm andHnm are then calculated and the C
matrix equation~11! solved. Numerically, the largest amou
of time is spent computing theHnm matrix elements. Due to
various symmetries, there are onlyN/2 distinct matrix ele-
ments.

Given the structure of the CI equation~11!, we can
readily see that its solutions are of the form

uCk&5 (
n51

N

e( ikn2a)uCn&, ~22!

where a is the lattice constant and there areN distinct k
values. These values satisfy the periodicity condit
exp(ikN2a)51 since translating any spin-polaron configur
tion by the total chain length 2Na leaves the configuration
unchanged. Therefore, the distinct wave vectors arek
5mp/Na, m50,1, . . . ,N21. The reduced Brillouin zone
@0,p/a) „or, symmetrically, the (2p/2a,p/2a# interval… is
due to the motion of the spin polaron on only one sublatti
and corresponds to states with spin up~for instance!. The
band corresponding to the spin polaron on the other sub
tice will have the same structure, but corresponds to s
e

a
ers

-
n
ic
n

d-

ve,
s
s

nd

nd

n

s

n
-

,

t-
n-

down states. In the end we recover the typical sp
degenerate band expected for fermions.

Given the general form of the wave function, the disp
sion relation of the spin polaron follows from the expressi

E~k!5
^CkuHuCk&

^CkuCk&
5

(
n51

N

exp@2ika~n21!#H1n

(
n51

N

exp@2ika~n21!#O1n

.

~23!

In deriving the last equation, we used the symmetry prop
ties of the matricesHnm and Onm , namely that the (nm)
matrix element only depends onn2m. Strictly speaking,
E(k) is the energy of the whole chain containing the sp
polaron and will strongly depend on the length of the cha
We extract the dispersion relation of the spin polaron from
fit of the form

E~k!52NeGS1Epol~k!. ~24!

HereeGS is interpreted as the ground-state energy per site
the undoped AFM~for a very long chain, most of the site
are unaffected by the presence of the single spin polar!.
We defineEpol(k) as the dispersion relation of the spin p
laron itself. In other words, the energy of the spin polaron
defined as the difference between the energy of the ch
with the spin polaron, and that of an undoped chain.

We plotEpol(k) versusk in Fig. 12 forU/t55 and chains
of various lengths. The various curves fall on top of ea
other, thus proving that the fit~24! is legitimate. Also shown
is the excitation energy of the static hole-doped spin-pola
Epol

HF ~the full line!, as obtained from the unrestricted HF
~also defined with respect to the energy of the undop
chain!. Clearly, translation lowers the total energy of the sp
polaron, with the most stable state corresponding tok

FIG. 12. Dispersion band for the spin polaron,Epol(k) vs k,
with Epol(k) extracted from Eq.~24! for chains of length 2N
514,16, . . . ,22sites andU/t55. Also shown is the excitation en
ergy of the static hole-doped spin polaronEpol

HF ~the full line!, as
obtained from the unrestricted HFA. Translation lowers the to
energy of the spin polaron, with the most stable state correspon
to k5p/2a. However, the kinetic energy gained through translat
is quite small.
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10 024 PRB 61MONA BERCIU AND SAJEEV JOHN
5p/2a. The total kinetic energy gained is, however, only o
the order oft2/U. This is shown in Fig. 13, where we plo
both the kinetic energy gainedEpol(p/2a)2Epol

HF ~circles!
and the width of the spin-polaron band,Epol(p/2a)
2Epol(0) ~squares!, as a function oft2/U. The log-log graph
is linear with a slope of unity as expected, since the sp
polaron must tunnel two sites~second-order hopping pro-
cess! to the next spin-allowed position. Clearly, this charge
fermionic excitation is relatively immobile.

We conclude that in the large-U/t limit the CI correction
to the spin bag energy is negligible, due to the immobility
this excitation. As a result, the energy of the spin bag var
with U/t as shown in Fig. 11, for largeU/t, and it saturates
above21.5t asU/t→`. As already discussed, it is known
that in theU/t→` limit the energy of the doping hole is
22t. This discrepancy suggests that the spin bag does
provide a good description for the charge carrier.

3. Configuration interaction treatment of the charged
domain wall

To investigate an isolated charged domain wall, we co
sider chains with an odd number (2N11) of sites. As shown
in Figs. 7 and 8, there are two types of self-consiste
charged domain walls, namely the COS~centered on site!
domain wall and the CBS~centered between sites! domain
wall. Since the charged domain walls are bosons (SzuC&
50), there is nonvanishing overlap between states with
domain wall centered on different sublattices. Unlike the fe
mionic spin polarons, we must include all possible trans
tions in the CI Slater determinant setuC i&. For a
(2N11)-site chain, there are 2(2N11) distinct COS
domain-wall configurations, and 2(2N11) distinct CBS
domain-wall configurations. The reason for the factor 2
that translation of a domain wall by 2N11 sites takes it into
a domain wall centered at the same site as in the initial co
figuration, but with all spins flipped, due to thep difference

FIG. 13. The kinetic energy gained by the delocalized spin p
laron Epol(p/2a)2Epol

HF ~circles! and the width of the spin-polaron
band,Epol(p/2a)2Epol(0) ~squares! as a function oft2/U. The
log-log graph is linear with a slope of unity as expected. The sp
polaron must tunnel two sites to the next allowed position, throu
a second-order hopping process. This charged fermion is rather
mobile.
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in the AFM ordering of the spins on the two sides of t
domain wall. A second translation around the whole chain
necessary in order to regain the initial configuration. As
result, there is a fourfold increase in the number of poss
configurations for a domain wall, as compared to a spin
laron on a chain of almost the same length. We generate
translations with an even number 2n of lattice sites in the
same way as for the spin polaron,fp

(2n11)( i ,s)5fp
(1)( i

22n,s) if 0<n<N ~first translation around the chain! and
fp

(2n11)( i ,s)5fp
(1)( i 22n,2s) if N,n<2N ~second

translation around the chain!. Here, we remind the reade
that fp

(m)( i ,s) represents a particular~p! occupied one-
electron orbital of the static Hartree-Fock Slater determin
uCm&, which places a static magnetic soliton at sitem. For
translations with an odd number 2n21 of sites, the wave-
function mapping isfp

(2n)( i ,s)5fp
(1)
„i 2(2n21),2s… if

1<n<N ~first translation around the chain! andfp
(2n)( i ,s)

5fp
(1)
„i 2(2n21),s… if N,n<2N11 ~second translation

around the chain!.
Let us first consider only including one type of doma

wall ~either COS or CBS! in the CI wave function. In this
case, we can again conclude that the solutions of Eq.~11!
must be of the form

uCk&5 (
n51

2(2N11)

eiknauCn&, ~25!

where uCn& is the configuration translated byn21 sites
from the initial HF configurationuC1&. The periodicity con-
dition is noweik2(2N11)a51 and the allowed values ofk are
given by k5mp/(2N11)a, m50,1, . . . ,2(2N21)21.
Clearly, the domain-wall dispersion band is extended o
the full Brillouin zone @0,2p/a! „or the symmetric version
~2p/a,p/a#…. The dispersion relation is given by

E~k!5
^CkuHuCk&

^CkuCk&
5

(
n51

2(2N11)

exp@ ik~n21!a#Hn1

(
n51

2(2N11)

exp@ ik~n21!a#On1

.

~26!

As in the case of the spin polaron, we extract the dispers
relation of the domain wall fromE(k) by subtracting the
energy of the undoped chain

Edw~k!5E~k!2~2N11!eGS. ~27!

In Fig. 14 we show the dispersion relationsEdw(k) versus
k for both CBS~left panel! and COS~right panel! domain
walls on chains of different length 2N11 andU/t55. The
excitation energy of the static configuration~obtained from
the unrestricted HF search! is also shown. Again, various
dispersion curves fall on top of each other, validating the
of Eq. ~27!. Comparing Fig. 14 with Fig. 12, it is immedi
ately apparent that the dispersion band of the domain wal
much wider. In fact, the band of the COS domain wall e
tends up to 4t ~not shown!. Comparing the bottom of the
dispersion band to the static HF excitation energy of dom
wall ~shown as a full line!, we see that translational motio
lowers the energy of the domain wall by aboutt ~as opposed

-

n
h
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to only 0.3t when U/t55 for a spin polaron!. While the
bottom of the dispersion band is basically identical for bo
types of domain walls, the top is very different. Excite
states with energyE(k).0 require the incorporation of th
excited-state configurations of the single Slater determin
~from the static Hartree-Fock approximation! in the CI set.
Clearly these excited-state, static configurations have e
gies comparable to the moving domain wall at high-ene
parts of the dispersion curve. The most likely candidates
those configurations in which electrons from the top of
valence band are excited into the bound discrete levels
only one such excitation takes place, the energy of the s
configuration is raised by'U/2 ~the difference between th
energy of the level at the top of the valence band and tha
the first empty localized level!. By mixing such configura-
tions in the CI Slater determinant set, we obtain modifi
tions to the upper part of the dispersion relation, while
bottom remains unchanged. Since we are interested in
kinetic energy gained by the domain wall through translat
@E(k),0 region#, we will neglect these higher-energy pro
cesses in what follows.

A technical issue that emerges is the effect of mixing b
the COS and the CBS domain-wall configurations when c
culating the CI wave function. While one might hope for
improvement in the overall energy for the mobile, charg
soliton, this is not the case. The reason is that each se
configurations by itself generates basically the same CI w
functions uCk& at the bottom of the dispersion band rath
than linearly independent ones. This can easily be seen
merically if we analyze the eigenvalues of the overlap ma
Onm . Suppose thatl is an eigenvalue of this matrix and th
(a i) i 51,N is the corresponding eigenvector~for simplicity,
we useN as the dimension of the overlap matrix!. With the
definition uC&5( i 51

N a i uC i& it is straightforward to show
that ^CuC&5l. When we mix both sets of configuration
together, we find many vanishing eigenvaluesl50, which
imply uC&50 ~numerically, we use the singular value d
composition technique as a diagnostic for vanishing eig

FIG. 14. The dispersion relationsEdw(k) vs k for both CBS~left
panel! and COS~right panel! domain walls on chains of differen
length 2N11517, . . .,23, andU/t55. The excitation energy o
the static configuration~obtained from the unrestricted HF searc!
is also shown as a full line. The extra kinetic energy gained thro
translation by the domain wall is of the order oft.
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values!. This proves that there are redundant linearly dep
dent combinations in the set of Slater determinantsuC i&. We
remove these linearly dependent states to find the CI gro
state. In particular, by mixing COS and CBS domain-w
configurations, the resulting low-energy spectrum is
same as that found by using only the lower-energy C
domain-wall configurations.

The previous analysis gives us the lowest energy o
single hole~charged domain-wall soliton! on the chain that
can be obtained within the CI approximation. In compari
this energy to the one obtained from the exact Bethe-an
solution, it is not appropriate to directly compare the to
chain energies. The reason, as already proved, is that the
a large contribution to these energies proportional to
number of sites in the chain, the proportionality consta
being the undoped ground-state energy per site@see Eq.
~27!#. The HFA gives a higher undoped energy per site th
the exact BA energy~see Fig. 2!, and the CI approach doe
not improve it unless we also add states with pairs of
charged domain walls. Our aim is to isolate the energy of
doping hole. Therefore, we compareEdw(p/a) ~the lowest
CI energy of the domain wall itself! with the corresponding
doping hole energy extracted from the Bethe ansatz. T
comparison is shown in Fig. 15. In order to find the dopi
hole energy from the Bethe ansatz, we evaluate the e
ground-state energy of a chain with 2N11 sites and 2N
electrons~half M5N of which have spin down!, for various
values ofN. This set of energies is seen to be well fitted
an expression of the formE(N)5(2N11)eGS1E0, where
eGS is in excellent agreement with the BA ground-state va

h

FIG. 15. Excitation energy, in units oft, for a mobile charged
domain wall ~circles! and a mobile charged spin polaron~dia-
monds!, as obtained from the CI approach. The exact excitat
energy given by the Bethe-ansatz method is shown by squares
domain-wall CI energy is in excellent agreement with the exact
results~also see inset!, while the spin-polaron CI energy is signifi
cantly different. For comparison, we also show the excitation en
gies for the COS and CBS domain walls as obtained from the s
HFA ~up and down triangles!, proving again that the extra kineti
energy gained by the moving domain wall is of ordert for mostU/t
values. In contrast, the extra kinetic energy gained by the spin
laron is of ordert2/U→0 asU/t increases, so in the largeU/t limit
there is almost no difference between the HF and CI results for
charged spin polaron. We conclude that the charged domain wa
the relevant excitation for all values ofU/t.
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10 026 PRB 61MONA BERCIU AND SAJEEV JOHN
predicted by Eq.~18!. As in the CI approach, we identifyE0
with the energy of the hole. The BA energies of the hole,
a function of U/t, are shown as squares in Fig. 15. Th
indeed go to22t in the U/t→` limit, as expected. In the
U/t→0 limit, the energy of the doping hole is expected to
to zero, since in thisU50 limit the system is a metal.

The CI domain-wall energiesEdw5Edw(p/a) are shown
as full circles in Fig. 15. The agreement with the Beth
ansatz energy is striking. ForU/t>5, the fit~27! is excellent
and the error bars on the domain-wall energies are extrem
small. However, asU/t→0, the size of the domain wal
increases significantly~it is around 20 sites forU/t52) and
therefore extremely long chains need to be considered f
good fit. The two upper lines correspond to the static
energies obtained for a self-consistent CBS domain wall~tri-
angle down! and a COS domain wall~triangle up!. The dia-
monds show the CI results for the spin polaron. Clearly,
translational motion of the domain wall~included in the CI
approach! drastically lowers its overall energy. The kinet
energy saved is of the ordert over most of theU/t parameter
range.

The agreement between the domain-wall energy as ca
lated in the CI approach and the exact doping-hole energ
given by the Bethe ansatz is quite remarkable, over
whole range ofU/t parameters. The only disagreement a
pears forU/t<2, where the domain walls become extreme
delocalized and the numerical calculations are very diffic
The CI solution is not exact because the HF description
glects the presence of additional neutral domain-wall pair
the AFM background. While the addition of such pairs im
proves the accuracy of the CI method relative to the ex
solution, it makes the calculation more cumbersome, du
the large increase in the number of possible configuratio
When the contribution of this background is removed, the
solution of a single charged domain wall moving around
chain agrees very well with the exact solution. This sugge
that the renormalization of the charged domain-wall ene
by neutral domain-wall pairs is relatively small. The agre
ment with the Bethe ansatz is not limited to the bottom of
charged domain-wall dispersion curve. In the large-U/t limit,
the domain-wall dispersion band is indeed given byEdw(k)
52t cos(ka), as required.14 For example, the dispersion rela
tion for domain-wall corresponding toU/t5100 is shown in
Fig. 16. At such highU/t values, the typical energy of th
configurations containing electrons excited on the midg
levels is of orderU/2. They do not influence the lowes
domain-wall band. AsU/t is decreased, these excited co
figurations simply modify the high-energy part of th
domain-wall dispersion relation.

In conclusion, the mobile charged bosonic domain-w
excitation is the relevant charged excitation of the 1D ch
described by the Hubbard model for all valuesU/t. Although
the static charged spin polaron has lower excitation ene
than the static domain wall forU/t.6.5, when quantum dy
namics is taken into consideration~CI method! the mobile
charged domain wall turns out to be the lowest-energy e
tation.

C. Spin-charge separation

A particularly striking effect can be recaptured in the
method if one adds a hole to an even-site chain. In the H
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this leads to the appearance of one spin polaron, sinc
single charged domain wall is incompatible with the cyc
boundary conditions involving an even number of sites.
the CI method, this charged spin polaron is unstable to
sociation into a pair of more mobile domain-wall solitons.
particular, the charged spin bag dissociates into a char
bosonic domain wall and a neutral fermionic domain wa
The translational kinetic energy saved by the domain-w
motion more than offsets the additional exchange ene
cost in creating a pair of solitons from a single spin polaro

We demonstrate this spin-charge separation effect u
the set of all the possible configurations with a pair of
charged and a neutral domain wall in the CI method. Aga
since states with different spins do not mix, we need o
keep configurations in which the uncharged domain wall
the same spin, either11/2 or21/2. As in the undoped case
configurations with a pair of domain walls connect the tw
possible AFM ground states. This leads to a considera
change in the background energy~see Fig. 5!. As a result, we
define the energy of the doping hole, in this case, with
spect to the CI energy of an undoped chain with a pair
neutral domain walls. This allows us to properly account
the renormalization of the background energy of the chain
the pair of domain walls. Physically, we interpret this in t
following way. The true ground state of the undoped ch
has a certain number of pairs of neutral domain walls. Wh
the chain is doped, the doping hole is bound into one of
already existing neutral domain walls, transforming it into
charged bosonic domain wall. All the other pairs of neut
domain walls remain largely unaffected.

The results of this analysis are plotted in Fig. 17. We u
the Bethe equations to calculate the ground-state energ
even-site chains with one doping hole. The BA excitati
energy for the doping hole added to an even-site chain
shown as circles. The exact chain energy is found to be w
fitted byE(N)5NeGS1E0, with N the even number of site
of the chain andeGS the undoped ground-state energy p
site. SinceNeGS is the total energy of the undoped chain, w
again identifyE0 as the energy of the doping hole. The e

FIG. 16. The dispersion relation for a domain wall on a chain
length 2N11517,19,21 andU/t5100. In the large-U/t limit the
dispersion relation of one single hole is given byEdw(k)
52t cos(ka) ~Ref. 14!. This is indeed in very good agreement wi
the dispersion band of the domain wall, proving again that this
the relevant charged excitation of the Hubbard chain.
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ergy of a charged-domain-wall–neutral-domain-wall pai
obtained using the CI method for even-site chains, is show
as squares. Clearly, the CI method recaptures the physics
well as the energetics of the BA solution to a high degree
accuracy. Even closer agreement can be achieved if confi
rations with more pairs of uncharged domain walls are in
cluded in the CI basis set. This result provides a very cle
illustration of the spin-charge separation phenomenon know
to exist in the 1D Hubbard model. Upon doping, the releva
charge excitation is not the quasiparticle excitation~spin po-
laron!, which carries both the spin and the charge of th
doping hole, but rather a deconfined pair excitation consis
ing of a charged bosonic domain wall~carrying charge but
no spin! and a neutral fermionic domain wall~carrying spin
but no charge!.

Another interesting result of this analysis is that the exc
tation energy needed to add a hole to an even-site chain
different from that needed to add a hole to an odd-site cha
~see Fig. 17, circles and diamonds!. Such a difference would
be irreconcilable if the excitation was a local quasiparticle,
which case different boundary conditions are expected to i
troduce variations of the orderO(1/N). However, in the
presence of the charge-spin separation, there is a simple
terpretation. A doped chain with an oddN number of sites
has an evenN21 number of electrons. Its ground state ha
zero spin~all electrons are paired!. This is well described by
a single charged domain wall. On the other hand, the dop
chain with an evenN number of sites has an oddN21
number of electrons. In order to represent the total spin 1
of the unpaired electron, it is necessary to include both
charged domain wall and a neutral spin-1/2 soliton. We a
sociate the differenceDE between the excitation energy of a
single hole on odd- and even-site chains with the energy

FIG. 17. Excitation energy~in units of t) for a charged-domain-
wall–neutral-domain-wall pair, as obtained from the CI approac
for even-site chains~squares!. The energy of the doping hole added
to an even-site chain, as obtained from the exact Bethe-ansatz
lution, is shown by circles. Again, there is good agreement betwe
the two methods. For comparison, we also show the energy of t
doping hole added to an odd-site chain, as obtained from the Be
ansatz~diamonds! and the energy of an isolated charged domai
wall on odd-site chains~triangles!. These last two sets are the same
as in Fig. 15.
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the additional neutral spin-1/2 soliton. This interpretati
may be verified independently by evaluating the energy o
single neutral spin-1/2 domain wall on an odd-site, undop
chain. The BA ground-state energy of the undoped odd-
chain varies with the odd-N number of sites asE(N)
5NeGS1Edw , whereeGS, the undoped ground-state energ
per site, has the same value as obtained from fits of even
chains. We identifyEdw as the energy of the neutral sp
soliton. The energiesEdw andDE are compared in Fig. 18
The good agreement between these independent measu
energy confirms that the spin soliton is a well-defined co
cept even in the presence of doping. The existence of
spin soliton accounts for the difference in energy betwe
odd- and even-site chains even in the thermodynamic lim
It facilitates our identification of the spin soliton in the Beth
ansatz with the neutral spin-1/2 domain wall of the CI a
proximation.

V. CONCLUSIONS

In this paper we have demonstrated the validity of t
configuration interaction method as a technique for go
beyond mean-field theory in strongly correlated electron s
tems. The method recaptures the essential physical fea
as well as energetics of the exact solution of the 1D Hubb
chain. The CI method provides a systematic way to impro
and go beyond the Hartree-Fock approximation, by incor
rating essential quantum dynamics and tunneling effects
are excluded from the mean-field theory.

We showed that a charged bosonic domain wall can lo
its kinetic energy by aboutt for all U/t values, while the
immobile charged spin polaron can only lower its kine
energy by an energy of the order oft2/U. As a result, the
mobile charged bosonic domain wall is the low-ener
charged excitation of the Hubbard chain for all values
U/t, and its excitation energy and dispersion band are
good agreement with the predictions of the exact Bet
ansatz solution. We also showed that it is energetically

h

so-
n

he
he

FIG. 18. The excitation energy of a neutral domain wall,
obtained from the Bethe ansatz for undoped odd-site ch
~circles!. This agrees with~diamonds! the difference in the excita-
tion energy of a single hole on an even-site vs odd-site ch
~shown individually as circles and diamonds of Fig. 17!. The dotted
line is the asymptotic fit 6t2/U.
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10 028 PRB 61MONA BERCIU AND SAJEEV JOHN
vorable for the~quasiparticlelike! charged fermionic spin bag
to dissociate into a charged bosonic domain wall~which car-
ries the charge but no spin! and a neutral spin-1/2 domai
wall ~which carries the spin but no charge!. Clearly the CI
method recaptures the physics of spin-charge separa
known to exist in the 1D Hubbard model. It may be fruitf
to perform a more detailed study of the interaction betwe
various types of domain walls, both charged and uncharg
Various correlation functions and response functions
also be calculated for detailed comparison with exact resu

Given the validity and accuracy of the configuration i
teraction method for the 1D problem, we believe that it p
hy

nd

i,
Ti

.

on

n
d.
n
s.

-

vides a natural route to describe effects beyond mean-fi
theory in the doped ground state of the 2D Hubbard mo
and other models of strongly correlated electrons in hig
dimensions. We present this study elsewhere.5
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