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We demonstrate that the configuration interacti®h) approximation recaptures essential features of the
exact (Bethe-ansajzsolution to the one-dimension&lD) Hubbard model. As such, it provides a valuable
route for describing effects that go beyond mean-field theory for strongly correlated electron systems in higher
dimensions. The Cl method systematically describes fluctuation and quantum tunneling corrections to the
Hartree-Fock approximatiofHFA). HFA predicts that doping a half-filled Hubbard chain leads to the appear-
ance of charged spin polarons or charged domain-wall solitons in the antiferromagnetic background. The CI
method, on the other hand, describes the quantum dynamics of these charged magnetic solitons and quantum
tunneling effects between various mean-field configurations. In this paper, we test the accuracy of the ClI
method against the exact solution of the one-dimensional Hubbard model. We find remarkable agreement
between the energy of the mobile charged bosonic domain (aslgiven by the ClI methgdand the exact
energy of the doping hol@s given by the Bethe ansafor the entireU/t range. The Cl method also leads to
a clear demonstration of the spin-charge separation in one dimension. Addition of one doping hole to the
half-filled antiferromagnetic chain results in the appearance of two different carriers: a charged bosonic domain
wall (which carries the charge but no spand a neutral spin-1/2 domain walhich carries the spin but no
charge.

. INTRODUCTION sider in this paper we simply s@t),=3,,. However, for
the 2D system, it has been shown that a nontrivial choice of
The two-dimensional2D) Hubbard modelor a modified ~ the matricesT!);, which describes a2 (interna) spin rota-
version of if is widely believed to describe the essential tjon of the electron as it encircles an elementary plaquette of
physics of the strongly correlated electrons in high temperag,e square lattice, may be essential to the cuprate pH¥Sics.

ture superconducting cupratesUnlike the 1D Hubbard o this reason, we develop the CI formalism for the more
model, an exact solution of the 2D problem is not known, eneral Hamiltoniar1)

gndrggﬁn rgtlijg‘;sresg;t {:)Oeat% F;ftcéﬁlﬁc‘)?]tl?;\:- ISeHvlil)'gg?' dOInsé)lijCel In addition to providing a test to gauge the accuracy of the
bp configuration interaction method, the 1D results may be di-

which is exactly solvabfeusing the Bethe ansatzlt is ctly relevant to certain high; cuprate superconductors.

highly desirable to develop an approximation that recapture e CLO d it | lati h .
essential physical features of the exact Bethe-ansatz solutio LUgly ~and IS close relalives have quasi-one-

and that, at the same time, can be applied to higher_lmension.al'c'?uo ch.ain structures. Experimentg measuring
dimensional systems. In this paper, we show that the corthe dc reS|st_|V|t3F, the m_frared z_;md optical conductm%@nd
figuration interactioCl) method is such an approximation. the penetration depth in untwinned crystaland ceramics
We demonstrate that the Cl method recaptures essentiffve revealed large anisotropies between ahdirection
quantum tunneling effects that go beyond mean-field theoryPerpendicular to chainsand theb direction (parallel to
and that lead to spin-charge separation in 1D. The predicchaing. These results suggest that substantial currents are
tions of the Cl method in the 2D case as well as a comparicarried along the chains in both the normal and supercon-
son to cuprate superconductors are described in detailucting state. The source of superconducting condensate on
elsewheré. the chains has not yet been elucidated.
We consider the generalized Hubbard Hamiltonian: We begin Sec. Il with a brief review of the static Hartree-
Fock approximatiofHFA). The HFA leads to a mean-field
- ground state with properties which are in disagreement with
H=—t, (] Thscip+H.c)+ UX clciclici. (1 those of the exact ground state. For the half-fileddopedl
Wy ' chain, HFA predicts a degenerate ground state with long-
range antiferromagnetiCAFM) order and with staggered
Here,c/  is the creation operator for an electron of spimt magnetic moments aligned along some arbitrary direction.
sitei, and the notatiodi, ) means that the sum is restricted Even in the presence of a weak external interaction, which
to nearest-neighbor sitésindj. The parameters of the prob- creates an easy axis for spin orientation, the HF ground state
lem are the hopping matrik the on-site interaction matrix is degenerate with the related mean-field in which all the
U, and the SI2) matricesT'C{ﬁ,which describe phase factors spins have been flippedS{~—3S). On the other hand, the
and internal spin rotations acquired by the electron as it hopsue ground state of the half-filled system is nondegenerate
between sites. For the 1D Hubbard Hamiltonian that we conand has no long-range order, despite the presence of strong
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AFM correlations. When holes are introduced into the chain, In the HF approximation, the many-body wave function
the HFA leads to the creation of static magnetic spin polarof¥) is decomposed into a Slater determinant of effective one-
and domain-wall solitons that trap the hole. Since these solielectron orbitals. The one-electron orbitals are found from
tons are motionless in the static HFA, this mean-field soluthe condition that the total energy of the system is mini-
tion breaks the translational invariance of the original Hamil-mized:

tonian. The CI method facilitates the restoration of both of

the above symmetries in accord with the exact Bethe-ansatz (W[H|W¥) _ )
ground state. (V|¥)

The essence of the Cl method is to use a linear combina- . .
tion of HF wave functions in order to restore the various I_n order to approximate the ground_ state .Of the Hamil-
broken symmetries of the mean-field theory. In a doped Syst_.onlan(l), we consider a Slater determinant trial wave func-
tem, for instance, the CI wave function is chosen to be gon of the form
linear combination of HF wave functions describing the Ne
charged soliton centered at various sites. Besides restoring | W)= H a,§|0>, (3)
the translational symmetry, such a wave function also effec- p=1

tively takes into account the quantum dynamics of theyhere 0) is the vacuum statel\, is the total number of

charged soliton along the chain. This motion represents @jectrons in the system, and the one-electron states are given
large-amplitude tunneling event between a given AFM meary,

field and the alternative AFM mean field obtained by the

operation §— —S). Moreover, the propagating soliton low- T_E . T

ers its quantum zero-point energy considerably, relative to an= - dn(i,o)Ci,. (4)
the static(HFA) soliton. ] . ]

In Sec. lll we briefly review the exact Bethe-anséBa)  Here, the one-particle wave functiogs(i,o) form a com-
solution and the ground-state energies of the half-filled an@'ete and orthonormal system. S
doped chains. The comparison between the Bethe-ansatz, Using the wave function3) in Eq. (2), and minimizing
Hartree-Fock, and configuration interaction solutions is preWith respect to the one-particle wave functiop(i, o), we
sented in Sec. IV. For both the undoped chain and the chaifbtain the Hartree-Fock eigenequations:
with one doping hole, we show that through the nucleation of
mobile quantum solitons, the Cl method provides a much E.¢(i,a)=—t > T‘C{Eqﬁn(j,lg)
better description than the HFA. We identify the charge car- 1eVi.B
rier of the Hubbard chain to be a charged bosonic domain 1
wall, and we show tha_t its energy, in the CI method, is in +U2 §5aﬁQ(i)—0'aﬁ'S(i) dn(i,B),
excellent agreement with the BA result. The Cl method leads B
to a.simpleZ physical interpreta_\tion of spin-charge spparation. (5)
Adding a single hole to a chain leads to the creation of two . .
magnetic solitons. One soliton is the bosonic charged domai¥Nere ©x.,oy,0,) are the Pauli spin matrices, and the
wall (which carries charge, but no spimvhile the other soli- charge density,
ton is the neutral spin-1/2 domain walivhich carries spin, Ng
but no charg); The energy of thesg excitations are in good Q(i):<\P|CiTaCia|\I,>: > |¢>p(i,a)|2, (6)
agreement with the BA results. Finally, Sec. V contains a p=1

discussion of the results and conclusions. and the spin density,

g
T ZaB
Cia 2 Ciﬁ

II. APPROXIMATIONS: HARTREE-FOCK Si)=(w
AND CONFIGURATION INTERACTION METHOD

Ne
- * Gap ;
\P> =2 .05 hli.h),
)
must be computed self-consistently. The notatienV; ap-
pearing in(5) means that the sum is performed over the sites

A. The static Hartree-Fock approximation

One of the most widely used approximations for the
many-electron problem is the static HFA. In this approxima-; which are nearest neighbors of the site The self-

tion the many-body problem is reduced to one-electron proby icient Hartree-Fock equatiof®—(7) must be satisfied
lems in which each electron moves in a self-consistent marBy the occupied orbitalp= 1 N.. but can also be used
I e

ner depending on the mean-field potential of the othe . ) )
electrons in the system. While this method is insufficient, bylio compute the emptyhole) orbitals. The ground-state en

itself, to capture all of the physics of low-dimensional elec-o' %Y of the system in the HFA is given by
tronic systems with strong correlations, it provides a valuable Ne

starting point from which essential fluctuation corrections Eos=(V|H| V)= 2 Ep—UZ
can be included. In particular, we use the Hartree-Fock p=1 !
method to establish the electronic structure and the statiwhere the single particle energies are obtained from(&)q.
energies of various magnetic soliton structures. In the more The approximation scheme described so far is called the
general Cl variational wave function, the solitons acquireunrestricted Hartree-Fock approximation, because we did not
quantum dynamics and describe large-amplitude tunnelingmpose constraints on the wave functiphy that would re-

and fluctuation effects that go beyond mean-field theory. quire it to be an eigenfunction of various symmetry opera-

1
ZQ(i)Z—S(i)Z) ®
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tions that commute with the Hamiltonigd). If these sym-  where each¥;) is a distinctN,x N, Slater determinant and
metries are enforced, the method is called the restrictethe coefficientse; are chosen to satisfy the minimization
Hartree-Fock approximation. We use the unrestricted HFAprinciple:
since it leads to lower energies. The breaking of symmetries 5 [(W|HW)
in our case implies that electronic correlations are more ef- _(—)
fectively taken into accourt The restoration of these sym- Sai\ (W|W)
metries is deferred until the Cl wave function is introduced.This leads to the system of Cl equations

In the undoped (half-filled) case, the self-consistent N N
Hartree-Fock equations can be solved analytically for the )
infinite system, using plane-wave one-particle wave func- le Hii“j:EjZl Oijaj, i=1,...N. (1D
tions. In the unrestricted Hartree-Fock approach, doping the . )
system leads to the appearance of inhomogeneous solutiofé1ere E=(¥|H|W)/(¥| W) is the energy of the system in
which break the translational invariance. In this case, wahe |¥) state, i, =(Wi|H|¥;) are the matrix elements of
solve the unrestricted self-consistent Hartree-Fock equatiorl§€ Hamiltonian in the basis of Slater determinafjté;),i

numerically on a finite chain. Starting with an initial spin and _ 1’tl ' fl\:% agld ?iiz<;lri|\[_rj> :gh.thﬁ overla[t) matrix el.?'
charge distributiors(i) andQ(i), we numerically solve the ments of the Slater determina Ich aré not necessartly

eigenproblem(5) and find the HE eigenenergies, and orthogonal. The CI solution is easily found by solving the

waveuncionsh(1a). These areused n Eg and 710 (1% SAUET, of SUatotel, once e e or S o
calculatg the new spln.and chargg dlstr|b_ut|ons, and the proéén)(i o) thep=1, . . . N, one-electron occupied orbitals of
cedure is repeated until self-consistency is reached. Numerey giater determinaf¥,,), these matrix elements are given
cally, we define self-consistency by the condition that the, e
largest variation of any of the charge or spin components on

any of the sites of the lattice is less than 2(etween suc- nmoo ’me

. . . 11
cessive Iterations.

=0, i=1,...N. (10

Onm= : : . (12
B. Configuration interaction method ﬁw:l ce ﬁRj?,Ne

The basic idea of the Cl method is that the ground-state
wave function, for a system witN, electrons, is not just a The matrix elements of the Hamiltonid&h) can be written as
NeX N, Slater determinarfias in the HFA, but a judiciously
chosen linear combination of such Slater determinants. Hom= —tTnm+UE Vam(i), (13
Given the fact that the set of all possible Slater determinants [
(with all possible occupation numbgrgenerated from a \here the expectation values of the hopping and on-site in-
complete set of one-electron orbitals constitute a completgsraction terms are
basis of theNg-particle Hilbert space, our aim is to pick out

a subset of Slater determinants that captures the essential i ...ty T,,’I}e
physics of the exact solution. N .
Consider the CI ground-state wave function given by Tom= 2
p=1 nm thm nm
N Ne’l - Ne,p - Ne'Ne
V)= ai|Vi), 9
[W)=2, ail¥) ©
|
BT ... uip() ... dipd) ... BN
Vnm(i): Z rim nm: H nm: H nm
P17 P2 Nei --- Ung.p,(1) Ny Ng N,
|
Here, upr o (D)= (IN) (i 1),
Bom=2 ¢V (i,0) ¢ 0), dppp, () =5, (1) A5 (1).

io
We now consider the specific choice of the Slater deter-
] N ) minant basig|¥;),i=1, ... N}. Strictly speaking, one may
tET,pf(iZ) (B (1, )Tt (j,B)+H.c), choose an optimized basis of Slater determinants from the
a'}; general variational principle:
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g ((‘I’|H|‘I’>) _ -0.46 = 1 : :
sp(i o)\ (Y[¥) ’ =
n=1,...N, p=1,... N.. (14) 0d .
B -
However, implementation of this full trial-function minimi- = f‘“o’”
zation scheme(also known as a multireference self- | b |

consistent mean-field approaéhis numerically cumber-
some even for medium-sized systems. Instead, we select the
Slater determinant bas{$¥;), i=1, ... N} from the set of
broken symmetry, unrestricted Hartree-Fock wave functions | . , ‘
(3), their symmetry related partners and their excitations. 052 ' 10 20 30
Clearly, Eq.(3) satisfies Eq(14) by itself, provided that the N
« coefficients corresponding to the other Slater determinants
in Eq. (9) are set to zerfsee Eq(2)]. Since this unrestricted FIG. 1. Ground-state energy per site, in units,aff an undoped
HF wave function is not translationally invariafthe doping Hubbard chain ofN sites andU/t=5. The full circles show the
hole is always localized somewhere along the chaie can ~ values found directly from the Bethe-ansatz equatiti®—(17),
restore the translational invariance of the Cl ground-statd/nile the full line shows the thermodynamic limit given by Eq.
wave function by also including in the basis of Slater deter{18- In the limit of largeN the two values agree.
minants all the possible lattice translations of this unre-
stricted HF wave function. In two dimensions, we must also ) sin(kja)— A ,+(U/4b)i
include all the possible nontrivial rotations. equija)=£[1 sin(k;a) — A, — (U/40)i 1
Clearly, all the translated HF Slater determinants lead to
the same HF ground-state ene H|V,)=Egs as de- N . . M .
fined by Eq.(8)9The Cl method Iirii?sytane lje5>energcszy between T1 Ma—Sinkja)+(U/AYI o A= Ap+ (U720
states with the hole-induced configuration localized at differ- j=1 A,—sin(kja)—(U/4t)i  g=1 A ,—Ag—(U/2)i"
ent sites, thereby restoring translational invariance. We may (16)
identify the lowering in the total energy due to the lifting of
this degeneracy as quantum mechanical kinetic energy
deconfinement, which the doping-induced configurationg'ven by

M

Jhe total energy and the total crystal momentum are then

saves through hopping along the chain. In addition, quantum Ne Ne
fk:lécf[uanons in the mt_ernal _structure of a magnetic 5(_)I|ton can E=— ZtZ cogka), P= Z K; . (17)
incorporated by including the lowest-order excited-state j=1 j=1

configurations of the static Hartree-Fock energy spectrum,.

Such wave functions are given W;ahm,), where p>N, T_he ground state is always gi\_/en by réés and A’s. .E_x.— _
labels an excited particle state ame N, labels the hole that cited states are usually described by complex rapidities in

is left behind[see Eq.(3)]. Once again, all possible transla- so-\;:valled I“strmg”;tmcturegt i iteratively. starti
tions of this “excited” configuration must be included in the € solve the bethe-ansalz equations fteratively, starting

full Cl wave function. These additions can describe ch::1nge¥‘”th a guess for the set of real rapld_mAs, (related.to the
in the “shape” of the soliton as it undergoes quantum me_gro.und-s_,tate solution of the 1D Heisenberg chgm, as de-
chanical motion through the crystal. scnbgd in Ref. 1B Then, we sqlve Eq(15 a_nd find the
quasimoment; , which we use in Eq(16) to find the new
set of real rapidities. The procedure is repeated until self-
consistency is reached.
We can check our numerical procedure in two particular
cases. First, the ground-state energy of a half-filed N,
Before reporting the results obtained in the HF and Clchain in the thermodynamic limit is known to be giverfy
approximation for the 1D Hubbard model, we briefly de-
scribe the exact Bethe-ansatz solution of this probiehor, < dxJp(x)J1(x)
comparison purposes. ConsiderNusite chain withN, elec- E= _4|t|Nfo x{1+exd xU/(2|t) ]}’
trons of whichM have spin down. HereN.<N and M
<NJ/22 Any wave function satisfying the many-body where theJ,(x) are cylindrical Bessel functions. In Fig. 1
Schralinger equatiorf{|W)=E|W¥) is characterized bN,  we plot the ground-state energy per site, in unitst,obb-
quasimomenta— w/a<kj</a, describing the motion of tained for a half-filled chain of various lengtité for U/t
the N, electrons & is the lattice constantandM rapidities, =5. While for very low values oN there are large variations
A, describing the spin ordering. Using the Bethe arisatzbetween the energies of chains with even and odd numbers
and imposing periodic boundary conditions, it can be showrof unit cells, asN increases the energies obtained converge
that the quasimomenta and the rapidities satisfy the so-calledwards the thermodynamic value of E48) [shown as the
Bethe-ansatz equatios full line]. We consider chains with an even number of sites

Ill. EXACT SOLUTION OF THE 1D HUBBARD MODEL:
THE BETHE ANSATZ

(18
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(integer number of unit cellssince we know that the ground 0.0 ' , - |
state has AFM correlations. Similar curves are obtained for
other values oUJ/t.

Another well-known case is that of a chain with just one
hole, in theU/t— o limit. In this limit, double occupancy is 05
forbidden by the large on-site interaction, and the only pos-_
sible charge fluctuation is the motion of the hole. The total %,
energy of the chain reduces to the energy of the hole, sincet”
the single occupied sites give little contribution to enefigy
this limit the contributions from the AFM correlations of the
electron spins, of the order of/U, are negligible for finite
chaing. It is straightforward to sholff that the hole’s disper-
sion relation in one dimension is exactly that of a free par- ‘ | . | . ! .
ticle, and therefore the total energy of the chain containing a ~13g 5 10 15 20
single hole with momenturiik is E(k) = — 2t coska). In the Ut
following sections, we show that the ground-state energy ap-
proachesE= —2t asU/t—c for the Cl method as well as FIG. 2. Energy per sitéin units oft) of the AFM undoped
for the Bethe ansatz equations of the chain with one hole. background as a function af/t, as obtained from the Hartree-Fock

approximation(full line) and from the exact Bethe-ansatz solution

IV. COMPARISON BETWEEN THE BA, THE Cl, (dashed ling
AND THE HF RESULTS
A. The undoped ground state Eqg. (20) and give rise to self-consistent ground states, which
differ from each other only through the fact that all the
1. Hartree-Fock results spins are flipped from one ground state to the other. Strictly

For the undoped system, the self-consistent HF equatior&P€aking, the HF solution gives an infinite number of de-
(5)—(7) for an infinite system give rise to a mean-field generate ground states, because the dire@jds arbitrary
ground state with long-range antiferromagnetic order. How{this is a direct consequence of the fact that the Hubbard
ever, the Mermin-Wagner theorem states that the truénodel is rotationally invariant However, since a real
ground-state of any one-dimensional isolated system cannéhain is embedded in a 3D crystal, crystal field interactions
have |ong-range OrddLRO) and that LRO is absent in 2D will lift the rotational degeneracy, and fix one particular di-
systems for nonzero temperatures. In the framework of théection of orientationeasy axis for the spins(for instance,

Cl method, mobile solitons in the AFM background mediate@long the chains Consequently one particular directien

the destruction of LRO. is favored, and the mean-field ground state is doubly degen-
Using the spin and charge distributio¥i)=1 (one  €rate. _
electron per siteand S(i)=(—1)'Se, (AFM order in the Since all the states of the valence band are occupied, the

arbitrary directione,), Eq. (5) yields two electronic bands energy of the HF ground state is simply given by
characterized by the dispersion relations

ECY =+ /et +(US)?, ke (—m/2a,m/2a] (19 Eee=23 EV+NU
k

wheree,= — 2t coska) is the dispersion relation of noninter-
acting electrons and is the lattice constant. Each of these
levels is doubly degenerate=+1). Given the symmetry of whereSis given by the self-consistency conditi¢20). The
the spectrum and the fact that only half the states are occynagnitude of the ground state energy per site, in unitsisf
pied, one can easily see that in the Hartree-Fock groungiotted in Fig. 2 as a function o)/t (the full line). The
state, all the states in the valence baBfl<0) are occupied, following features can be observed: in th&'t—0 limit
while all the states in the conduction ban8i0) are (noninteracting electrofsthe energy of the ground state has,
empty. The two bands are separated by the usual Motindeed, the expected vallig;s— —4Nt/7. In the strong in-
Hubbard charge transfer gap opened at the Fermi surfaderaction limitU/t—o, the energy of the ground state goes

1
2,
S+4

: (21)

(k= = 7r/2a), of magnitude 2JS. to zero as expectetkince in this limit every site is single
Using the valence-band wave functions in E¢®. and  occupied and virtual hopping is suppressefior compari-
(7), we obtair® the self-consistent spin amplitude son, the exact ground-state energy obtained from the Bethe
ansatZEg. (18)] is also showr{dashed ling The asymptotic
us 1 value of the HF energy is found to be given Bgs—
SN X s (200 _5Nt/U. It is well known that in this limit, the Hubbard

N Je? 2’
< Vet (U9 model is equivalent to an AFM Heisenberg motfelyith a
whereN is the number of sites and the sum is performedcoupling constantl=4t?/U, and that its true ground-state
over the Brillouin zonek e (—m/2a,/2a]. This equation energy per site SEgs— —NJIn2=—2.7MNt?/U. This sug-
has three solutions. One is trivigh€ 0). ForS#0 the equa-  gests that the Hartree-Fock method is a good starting point,
tion depends only onS?. Consequentlythe mean-field from which to incorporate fluctuation corrections which
ground state is doubly degenerateth + S and — S satisfy  lower the energy.
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. . L . FIG. 4. Electronic structure of the 40-site chain with the two
FIG. 3. Self-consistent spin and charge distribution for a40-5|teneutral domain walls shown in Eia. 3. Each domain wall has 4
chain with two neutral domain walls, fod/t=5. The charge 9. o

N . . . discrete levels bound in its core. The spins on the two occupied
Q(i)=1 everywhere. The total spin carried by each neutral domai . . S A
. ound levels are oriented in the same direction as the core spins of
wall is 1/2. . ) ) - .
the domain wall. In the configuration shown in Fig. 3, there is a
2. Configuration interaction treatment of the undoped chain ~ t1/2 and a—1/2 domain wall, and therefore all levels are spin

) paired and the total spin of the chain is zero. However, for two
The HF Slater determinant of the undoped AFM ground.;1/2 (—1/2) domain walls, all the occupied discrete levels have

state is invariant to translations byaZAFM order must be  +1/2 (—1/2) spins, and the total spin of the chain+sl (—1).
preservegl While it is possible to include in the CI set of
Slater determinants excited HF states of the undoped chai

obtained by exciting electrons from the valence to the confmI be included along with the AFM undoped ground state in

duction band, it turns out that lower-energy self—consistenfnak'ng up the variational trial wave function. We must_ also
HF configurations can be generated by breaking the transld?clude both AFM undoped mean-field ground states in the
tional symmetry of the undoped mean-field AFM back-Cl set. Thls can be easily seen from Fig. 3, where ha_llf pf the
ground. This is facilitated by considering excited states ofchain is in one AFM ground state, and the other half is in the
the AFM background that can accommodate charge carriei@ther (flipped ground state. Therefore, this state will have
in localized states deep within the charge transfer gap rath&qual overlap with both AFM ground states, although the
than within the Mott-Hubbard bands. The lowest-energyAFM ground states themselves are orthogonal to each other.
self-consistent excited state is the undogeeutra) domain  For anN-site chain, the CI set contains a total of-R(N
wall, which describes tunneling from one mean-field ground—2)/2 Slater determinants, two being the undoped AFM
state to the other mean-field ground state. Since the AFMround states, and the rest being M possible states with
order rotates byr when crossing the domain wall, we con- paired domain walls at different distances from each other,
sider either one domain wall on an odd-site chain, or a paieach of which can be translat®éd2 times along the chain.
of domain walls on an even-site chain, in order to impose The total ground-state energy found with the ttfcles,
cyclic boundary conditions. Figure 3 depicts a typical self-Cl (squares and BA (diamond$ methods for chains of dif-
consistent configuration containing two neutral domainferent lengthaN for U/t=5 andU/t=50 are shown in Fig.
walls, one centered between sites 10 and 11, and one ceb- For all three methods the total energy of the chain is
tered between sites 30 and 31. The chagé)=1 every-  proportional to the length of the chain. The addition of the
where. Near the domain wall the self-consistent spin magnieonfigurations with a pair of neutral domain walls in the CI
tudesS,(i) adjust such that each neutral domain wall carriesmethod improves the ground-state energy considerably. It is
a spin 1/2(with a projection in the same direction as its obvious, however, that as the length of the chain increases,
core sping suggesting that this excitation is a neutral fer- configurations with two, three, four, and more pairs of neu-
mion. This is confirmed from the electronic structure showntral domain walls should be included in the CI set in order to
in Fig. 4. arrive at a perfect agreement with the exact Bethe-ansatz
We obtain self-consistent configurations containing twosolution. It is interesting to remark that even if only the con-
neutral domain walls at all possible distances from eacHigurations with one pair of neutral domain walls are in-
other, either having opposite orientatiofi®., total chain cluded, the nondegenerate Cl ground state is such that
spin O or same orientationgotal chain spint1). Since the (S,(i))=0 for any sitei of the chain, although the antiferro-
AFM ground state has total spin 0 and states with differenimagnetic correlations remain very strong. This is a conse-
total spin do not mix, we need only include in the set of Clquence of the fact that the ClI set of Slater determinants con-
Slater determinantgV’;) states of total spin zero, i.e., those tains an equal number of states with the spin at thei sife
having the neutral domain walls “paired({with opposite and down, so in average each spin expectation value is van-
orientation$. Since all the possible configurations with two ishing. Thus, the CI wave function is much more successful
neutral domain walls have very similar energies, they musin mimicking the properties of the exact BA ground state.
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FIG. 5. Ground-state enerdin units oft) of a chain of sizeN, ) ) o
calculated with the HFcircles, CI with two neutral domain walls FIG. 7. Self-consistent chargepper ling and spin distributions
(squarel and BA (diamonds. The left panel corresponds to/t for a domain wall centered on sit€0OS on a 41-site chain for
=5, while the right one corresponds tb't="50. Although the en- U/t=5.
ergy scale is very different, in both cases the Cl method signifi-
cantly improves the agreement with the exact Bethe-ansatz solutioflomain-wall antidomain-wall pair The localization length
of the hole decreases &'t increases for all three excita-
B. Charged solitons in the doped ground state: tions. The spin and charge at sites far from the distortion
The spin bag and the charged domain wall equal the undoped mean-field ground-state values.
The electronic spectra corresponding to the configurations
shown in Figs. 6, 7, and 8 are shown in Figs. 9 and 10. The
If we numerically solve the HF equatior$s)—(7) for an  first panel in Fig. 9 corresponds to the undoped ground state
N-site chain withN—1 electrons, we find three types of of a chain withN=40 sites. As discussed before, the elec-
charged self-consistent solutions: the spin le@agspin po-  tronic spectrum consists of two bandsMf 40 states each.
laron) (Fig. 6), the charged domain wall centered on site The valence band is completely filled, the conduction band is
(COS domain wal)l (Fig. 7), and the charged domain wall completely empty, and there is a large charge transfer gap
centered between sité€BS domain wal)l (Fig. 8). The spin  between them. Adding one hole on the saMe40 site
polaron is created by trapping the hole in a small ferromagehain and keeping the cyclic boundary conditions lead to the
netic core, which only affects the LR AFM order locally. appearance of the spin bag shown in Fig. 6. Its electronic
The domain walls are topological excitations, since the AFMstructure is shown in the right panel of Fig. 9. There is a
order is rotated byr as one goes through the domain wall. localized level 6=1) well below the valence band, the va-
Therefore, in order to impose cyclic boundary conditions, welence band contains 38 states, there are 3 localized levels
must consider an odd-site chdior we may take an even-site deep inside the Mott-Hubbard charge transfer gap, and fi-
chain and add two holes, leading to the appearance of mally the conduction band also has 38 levels. Since there are

1. Hartree-Fock results

1.5 T T T T 1.5

Qa3 14 QG 14

v
O 1

—-0.5 T —-0.5

o 10 20 30 40 0 10 20 30 40
1 1
FIG. 6. Self-consistent chardaepper ling and spin distributions FIG. 8. Self-consistent chargapper ling and spin distributions

for a charged spin bag on a 40-site chainfot=5. The spin bag for a domain wall centered between sit€BS) on a 41-site chain
is a charged fermion. for U/t=5. The domain walls are charged bosons.
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FIG. 11. Excitation energy in units df of the charged spin
polaron, CBS and COS domain walls, as a functionsf. The
. ) Lo . excitation energy is defined with respect to the undoped chain.
S|_tes(|eft pane) and for a 40-site chain with a charged spin bag Within the HFA, for U/t<6.5 the charged domain walls are the
(right pane). U/t=>5. low-energy charged excitations, while fat/t>6.5 the spin po-

larons are the low-energy excitations. However, the HFA approxi-

N—1=39 electrons in the system, only the localized levelmation neglects the kinetic energy gained by these charged excita-
below the valence band and the valence-band states are daions through translation along the chain. When this is taken into
cupied. Since the valence band is spin paifeaing an even account within the configuration interaction approximation, the mo-
number of statgs this means that the total spin of this exci- bile domain wall is found to be the low-energy charged excitation
tation is 1/2, associated with the spin of the electron on théor all values ofU/t (see Fig. 15
localized level. The fact that the spin bag carries a 1/2 spin is )
also easy to deduce from Fig. 6, because of the small ferrgzed levels of the COS domain wall are degenerate. The de-
magnetic core. Thus, we conclude that the spin bag is 8eneracy is lifted for the CBS domain wall, and the upper
charged fermion. discrete level is pushed quite close to the lower edge of the

The charged domain-wall electronic structures are showonduction band. However, it is still a localized levtis is
in Fig. 10, with the CBS domain wall in the left panel, and €asily checked by plotting its wave functiorin both cases
the COS domain wall in the right panel. In this case, wewe have a fully spin-paired valence band, and therefore the
study a chain withN—1=40 electrons andN=41 sites, so total spin of these excitations is zero. Since they carry the
that we can impose cyclic boundary conditions again. wecharge of the hole, the domain walls are charged bosons, in
can see that in both cases there are 4 localized levels insi@2logy to the charged solitons of polyacetyleht’.
the Mott-Hubbard gapl— 1=40 occupied states in the va- N order to establish the relevance of these different

lence band, and 38 states in the conduction band. The locatharged spin configurations, we compare their excitation en-
ergies [defined with respect to the undopdtalf-filled)

4 . . . ‘ , , , ground statgas a function otJ/t in Fig. 11. As we can see,
] the domain walls are the low-energy excitations fdft
< 6.5, while the spin polarons become the low-energy exci-
/ / tations forU/t>6.5. AsU/t—0, the core size of the domain
2+ 10r ] walls diverges roughly like/U. As a result, in this limit the
COS and the CBS domain-walls are very extended objects
that become indistinguishable and degenerate. However, as
U/t increases the core becomes more and more localized,
and the CBS domain wall becomes energetically favorable
- relative to the COS domain wall.
However, this static HFA does not take into account the
ol 1L i lowering of energy of these excitations due to translations
/ along the chain. From the simple inspection of the spin dis-
/ tributions of the spin bag and of the domain wall, we can
easily deduce that while a domain wall can move freely
-4 ; w —— : ' : : along the chain, the spin bag is rather immaobile. Moving the
center of the domain wall by one sitby interchanging the
hole with the spin at the right or at the leftecessitates only
FIG. 10. Electronic spectra for a 41-site chain with a CBS do-Some rearrangement of the magnitude of the core spins,
main wall (left pane) and a COS domain-walright pane). U/t ~ while their orientation is automatically correct. Conse-
=5, quently, the domain wall lowers its energy by an amount of

FIG. 9. Electronic spectra for an undoped AFM chain with 40
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ordert through hopping along the chain. However, if a spin

bag moves only by one site, the translated spin must be ozl ' ' '
flipped (which would require the the total spin of the spin ' I
bag to likewise flip. In order to conserve its spin, the spin ~04r . o —
bag must tunnel to the second nearest neighbor. This is i L Y. J
second-order process, and consequently the spin bag lowe o6k . . |
its energy only by an amount of ord&7U through motion. = " ' v'
As we demonstrate below, using the configuration interac- g . 2
tion method, these qualitative arguments are valid. Wherf" -os- . . —
soliton dynamics is incorporated, it is the charged bosonic L v v . N:g
domain wall that proves to be the relevant charged excitatior "a a * N=9
of the Hubbard model for all values af/t. -or v » N
2. Configuration interaction treatment of the spin polaron ) | . ! . | . { .
0.0 0.2 0.4 0.6 0.8 1.0
Consider a spin polaron on a chain witiN Zsites (the Ka/T

number of sites is even so that we can impose cyclic bound
ary conditions. Using the Cl method we evaluate the kinetic FIG. 12. Dispersion band for the spin polardyq(k) vs k

. . . . o 1
energy of the mOb,'Ie’ charged spin bag. As SqueSted,abov\?/ith Epoi(k) extracted from Eq.24) for chains of length Rl
we only need to include in the set of Slater determinants_ 14 14 22sites andJ/t=5. Also shown is the excitation en-
|W;) configurations translated by an even number of siteggy of the static hole-doped spin polar&tjg, (the full line), as
from the initial HF configuration. LefW eyeq,|Woqq) be the  optained from the unrestricted HFA. Translation lowers the total
HF determinants for the spin polaron centered at an even anhergy of the spin polaron, with the most stable state corresponding
odd site, respectively, and I8,=3,;S,(i) = %Ei,oU'CiToCio be to k= 7/2a. However, the kinetic energy gained through translation

the total spin operator in the direction. Then,S,[ W) 'S duite small
1 H c 1 H
=3[ Weved While S[W o4 =—3|Wouq (Or vice versg and o0 states. In the end we recover the typi in-
_ ; e . ypical spin
therefore(V yqd Veven = 0. Since the Hubbard Hamiltonian degenerate band expected for fermions.

commutes witf, , it follows that(W oqd M| W eved = 0. From Given the general form of the wave function, the disper-

the CI equation(11) we conclude that there is no mixing sion relation of the spin polaron follows from the expression
between states with the spin polaron on one sublattice and

states with théopposite spipspin polaron on the other sub- N .
lattice. Therefore, on a chain with\2sites we only need to (WMWY nz'l exg 2ika(n—1)]H1,
mix N Slater determinants in order to obtain the spin-polaron E(k)= K Ko N
ground state within the Cl method. (Wil W) E :
If the initial self-consistent HF spin-polaron configuration =4 exp 2ika(n—=1)]Oun
|¥,) is composed of the one-particle occupied orbitals (23)

¢{M(i,0), the one-particle orbitals of the staM,, 1) trans-
lated by Zha will simply be chosen ag{"* Y(i,o) = ¢{(i
—2n,0) (cyclic boundary conditions are assumedhe
overlap matrice®),,,, and’H,,,, are then calculated and the ClI
matrix equatior(11) solved. Numerically, the largest amount
of time is spent computing th#,,,, matrix elements. Due to
various symmetries, there are ori/2 distinct matrix ele-
ments.

Given the structure of the Cl equatiofil), we can E(k)=2Negs+Epoi(K). (24)
readily see that its solutions are of the form

In deriving the last equation, we used the symmetry proper-
ties of the matricesH,,,, and O,,,, namely that the r{m)
matrix element only depends am—m. Strictly speaking,
E(k) is the energy of the whole chain containing the spin
polaron and will strongly depend on the length of the chain.
We extract the dispersion relation of the spin polaron from a
fit of the form

Hereeggis interpreted as the ground-state energy per site of
, the undoped AFMfor a very long chain, most of the sites
W)= etk ), (220 are unaffected by the presence of the single spin pojaron
-t We defineE,, (k) as the dispersion relation of the spin po-
where a is the lattice constant and there axedistinct k  laron itself. In other words, the energy of the spin polaron is
values. These values satisfy the periodicity conditiondefined as the difference between the energy of the chain
exp{kN2a)=1 since translating any spin-polaron configura-with the spin polaron, and that of an undoped chain.
tion by the total chain lengtha leaves the configuration We plotE, (k) versuskin Fig. 12 forU/t=5 and chains
unchanged. Therefore, the distinct wave vectors kre of various lengths. The various curves fall on top of each
=mn/Na, m=0,1,... N—1. The reduced Brillouin zone other, thus proving that the f{24) is legitimate. Also shown
[0,m/a) (or, symmetrically, the € 7/2a,/2a] interva) is  is the excitation energy of the static hole-doped spin-polaron
due to the motion of the spin polaron on only one sublatticeEE'Oﬁ (the full line), as obtained from the unrestricted HFA
and corresponds to states with spin (ipr instancé. The (also defined with respect to the energy of the undoped
band corresponding to the spin polaron on the other sublathain. Clearly, translation lowers the total energy of the spin
tice will have the same structure, but corresponds to spinpolaron, with the most stable state correspondingkto

N
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1 , ——— ; . in the AFM ordering of the spins on the two sides of the
r ] domain wall. A second translation around the whole chain is
necessary in order to regain the initial configuration. As a
result, there is a fourfold increase in the number of possible
configurations for a domain wall, as compared to a spin po-
laron on a chain of almost the same length. We generate the
] translations with an even numben 2f lattice sites in the
3 Ol ] same way as for the spin polaros{?"*1)(i,0) = ¢{"(i
C 1 —2n,0) if 0=<n=<N (first translation around the chaiand
" V(i,0)=pV(i—2n,—0) if N<n<2N (second
translation around the chainHere, we remind the reader
that ¢{"(i,o) represents a particulafp) occupied one-
L . electron orbital of the static Hartree-Fock Slater determinant
003 01 ‘ 0.1 |W,.), which places a static magnetic soliton at site For
YU translations with an odd numben2 1 of sites, the wave-
function mapping is¢{?"(i,0)= ¢tV —(2n—1),— o) if
FIG. 13. The kinetic energy gained by the delocalized spin po-lgr(‘i!\' (first translat_lon around the chaiand ¢f;2n)(| ,U_)
laron E o (m/2a) — Efe, (circles and the width of the spin-polaron = ¢ (i—(2n—1),0) if N<n<2N+1 (second translation
band, E o (7/2a) — Ep/(0) (squarek as a function oft?U. The  around the chain
log-log graph is linear with a slope of unity as expected. The spin Let us first consider only including one type of domain
polaron must tunnel two sites to the next allowed position, throughwall (either COS or CBSin the Cl wave function. In this
a second-order hopping process. This charged fermion is rather ingase, we can again conclude that the solutions of (ER).

mobile. must be of the form
=m/2a. The total kinetic energy gained is, however, only of 2N Kna
the order oft?/U. This is shown in Fig. 13, where we plot (W)= nzl e W), (25

both the kinetic energy gainefl,, (m/2a)—Ef, (circles
and the width of the spin-polaron band,,(w/2a)  where |W,) is the configuration translated by—1 sites
—Epoi(0) (squarek as a function of?/U. The log-log graph ~ from the initial HF configurationW,). The periodicity con-

is linear with a slope of unity as expected, since the spirdition is nowe'*?(2N*1a=1 and the allowed values &fare
polaron must tunnel two sitesecond-order hopping pro- given by k=m#/(2N+1)a, m=0,1,...,2(DN—-1)—-1.
cess to the next spin-allowed position. Clearly, this chargedClearly, the domain-wall dispersion band is extended over
fermionic excitation is relatively immobile. the full Brillouin zone[0,2#/a) (or the symmetric version

We conclude that in the largd/t limit the CI correction  (—m/am/al). The dispersion relation is given by
to the spin bag energy is negligible, due to the immobility of

) . . . 2(2N+1)
this excitation. As a result, the energy of the spin bag varies .
with U/t as shown in Fig. 11, for largg/t, and it saturates (W H P zl exdik(n—1)a]Hn,
above—1.5 asU/t—. As already discussed, it is known E(k)= = 20NTD) .
that in theU/t— limit the energy of the doping hole is (Vw9 S exfik(n—1)a]O
—2t. This discrepancy suggests that the spin bag does not A=1 ni
provide a good description for the charge carrier. (26)

As in the case of the spin polaron, we extract the dispersion
relation of the domain wall fronE(k) by subtracting the

_ ) ) ) energy of the undoped chain
To investigate an isolated charged domain wall, we con-

3. Configuration interaction treatment of the charged
domain wall

sider chains with an odd numberN2-1) of sites. As shown Egqw(K)=E(k)—(2N+1)egs. (27
in Figs. 7 and 8, there are two types of self-consistent
charged domain walls, namely the CQ@Sentered on sife In Fig. 14 we show the dispersion relatiofg, (k) versus

domain wall and the CB%centered between sifedomain  k for both CBS(left pane) and COS(right pane] domain
wall. Since the charged domain walls are boso8g¥) walls on chains of different lengthNe+ 1 andU/t=5. The
=0), there is nonvanishing overlap between states with thexcitation energy of the static configuratiéobtained from
domain wall centered on different sublattices. Unlike the ferthe unrestricted HF searchs also shown. Again, various
mionic spin polarons, we must include all possible transladispersion curves fall on top of each other, validating the fit
tions in the CI Slater determinant sdt¥;). For a of Eq.(27). Comparing Fig. 14 with Fig. 12, it is immedi-
(2N+1)-site chain, there are 2[+1) distinct COS ately apparent that the dispersion band of the domain walls is
domain-wall configurations, and 2{2+1) distinct CBS much wider. In fact, the band of the COS domain wall ex-
domain-wall configurations. The reason for the factor 2 istends up to # (not shown. Comparing the bottom of the
that translation of a domain wall byNe+ 1 sites takes it into  dispersion band to the static HF excitation energy of domain
a domain wall centered at the same site as in the initial conwall (shown as a full ling we see that translational motion
figuration, but with all spins flipped, due to thedifference  lowers the energy of the domain wall by abayas opposed
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2 L SR R 2 “l T l; T -8 Exact BA solution
T T ~1 e~ CL: charged domain-wall
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FIG. 14. The dispersion relatiors,,(k) vsk for both CBS(left FIG. 15. Excitation energy, in units af for a mobile charged

pane) and COS(right pane) domain walls on chains of different domain wall (circle and a mobile charged spin polarddia-
length N+1=17,...,23, andU/t=5. The excitation energy of monds, as obtained from the Cl approach. The exact excitation
the static configuratioriobtained from the unrestricted HF search energy given by the Bethe-ansatz method is shown by squares. The
is also shown as a full line. The extra kinetic energy gained througliomain-wall Cl energy is in excellent agreement with the exact BA
translation by the domain wall is of the order tof results(also see insgtwhile the spin-polaron CI energy is signifi-
cantly different. For comparison, we also show the excitation ener-
to only 0.3 when U/t=5 for a spin polaron While the  gies for the COS and CBS domain walls as obtained from the static

bottom of the dispersion band is basically identical for bothHFA (up and down triangles proving again that the extra kinetic
types of domain walls, the top is very different. Excited €nergy gained by the moving domain wall is of ordéor mostU/t
states with energf (k) >0 require the incorporation of the value_s. In contre;st, the extra k_lnetlc energy gamed by the_ spin po-
excited-state configurations of the single Slater determinarf™o" is of ordet”/U—0 asU/t increases, so in the larg#/t limit
(from the static Hartree-Fock approximatiain the CI set. there is almost no difference between the HF and CI result§ for thg
Clearly these excited-state, static configurations have enifﬁh::gefgvzﬁ'tneiz:zggh\]{\éf ;:?ngmiitgfﬁ the charged domain wall is
gies comparable to the moving domain wall at high-energ ’
parts of the dispersion curve. The most likely candidates ar@alues. This proves that there are redundant linearly depen-
those configurations in which electrons from the top of thegent combinations in the set of Slater determindmits. We
valence band are excited into the bound discrete levels. lfemove these linearly dependent states to find the CI ground
only one such excitation takes place, the energy of the statigtate. In particular, by mixing COS and CBS domain-wall
configuration is raised by-U/2 (the difference between the configurations, the resulting low-energy spectrum is the
energy of the level at the top of the valence band and that odame as that found by using only the lower-energy CBS
the first empty localized level By mixing such configura-  domain-wall configurations.
tions in the CI Slater determinant set, we obtain modifica- The previous analysis gives us the lowest energy of a
tions to the upper part of the dispersion relation, while thesingle hole(charged domain-wall solitgron the chain that
bottom remains unchanged. Since we are interested in thgan be obtained within the CI approximation. In comparing
kinetic energy gained by the domain wall through translatiorthis energy to the one obtained from the exact Bethe-ansatz
[E(k)<0 region, we will neglect these higher-energy pro- solution, it is not appropriate to directly compare the total
cesses in what follows. chain energies. The reason, as already proved, is that there is
A technical issue that emerges is the effect of mixing botha |arge contribution to these energies proportional to the
the COS and the CBS domain-wall configurations when calnumber of sites in the chain, the proportionality constant
culating the CI wave function. While one might hope for anpeing the undoped ground-state energy per e Eq.
improvement in the overall energy for the mobile, charged27)]. The HFA gives a higher undoped energy per site than
soliton, this is not the case. The reason is that each set g@fie exact BA energysee Fig. 2, and the Cl approach does
configurations by itself generates basically the same Cl wavAot improve it unless we also add states with pairs of un-
functions|¥,) at the bottom of the dispersion band rather charged domain walls. Our aim is to isolate the energy of the
than linearly independent ones. This can easily be seen ngoping hole. Therefore, we compakg,,(7/a) (the lowest
merically if we analyze the eigenvalues of the overlap matrixC| energy of the domain wall itselfvith the corresponding
Onm- Suppose that is an eigenvalue of this matrix and that doping hole energy extracted from the Bethe ansatz. This
(a;)i=1n is the corresponding eigenvectdor simplicity,  comparison is shown in Fig. 15. In order to find the doping
we useN as the dimension of the overlap majrixVith the  hole energy from the Bethe ansatz, we evaluate the exact
definition |[W)==N ;| W) it is straightforward to show ground-state energy of a chain witiN2-1 sites and R
that (¥'|¥)=\. When we mix both sets of configurations electrong(half M =N of which have spin down for various
together, we find many vanishing eigenvalues 0, which  values ofN. This set of energies is seen to be well fitted by
imply |W)=0 (numerically, we use the singular value de- an expression of the forrg(N)=(2N+ 1)egs+ E,, where
composition technique as a diagnostic for vanishing eigeneggis in excellent agreement with the BA ground-state value
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predicted by Eq(18). As in the ClI approach, we identify, 2 - ‘ - T - I N
with the energy of the hole. The BA energies of the hole, as
a function ofU/t, are shown as squares in Fig. 15. They
indeed go to—2t in the U/t—o limit, as expected. In the 1= -
U/t—0 limit, the energy of the doping hole is expected to go
to zero, since in thi® =0 limit the system is a metal.
The CI domain-wall energie§,,,= Eq4.(m7/a) are shown

as full circles in Fig. 15. The agreement with the Bethe-

(k)/t
I

dw

ansatz energy is striking. Fat/t=5, the fit(27) is excellent I o N=%
and the error bars on the domain-wall energies are extremel | = N=9 |
small. However, adJ/t—0, the size of the domain wall A )

increases significantlgit is around 20 sites fod/t=2) and
therefore extremely long chains need to be considered for : ' 1 . . | ,
good fit. The two upper lines correspond to the static HF 0 0.5 1.0 1.5 20
energies obtained for a self-consistent CBS domain (tral ) ka/m

angle down and a COS domain waltriangle up. The dia-

monds show the CI results for the spin polaron. Clearly, the FIG. 16. The dispersion relation for a domain wall on a chain of
translational motion of the domain waihcluded in the CI  length N+1=17,19,21 andJ/t=100. In the largdJ/t limit the
approach drastically lowers its overall energy. The kinetic dispersion relation of one single hole is given (k)
energy saved is of the ordeover most of theJ/t parameter =2t coska) (Ref. 14. This is indeed in very good agreement with
range. the dispersion band of the domain wall, proving again that this is

The agreement between the domain-wall energy as Calcﬁhe relevant charged excitation of the Hubbard chain.
lated in the Cl approach and the exact doping-hole energy agjs |eads to the appearance of one spin polaron, since a
given by the Bethe ansatz is quite remarkable, over thgjngie charged domain wall is incompatible with the cyclic
whole range ofU/t parameters. The only disagreement ap-yondary conditions involving an even number of sites. In
pears forl/t<2, where the domain walls become extremely he C| method, this charged spin polaron is unstable to dis-
delocalized and the numerical calculations are very difficultggiation into a pair of more mobile domain-wall solitons. In
The CI solution is not exact because the HF description nesarticular, the charged spin bag dissociates into a charged
glects the presence of additional neutral domain-wall pairs ihosonic domain wall and a neutral fermionic domain wall.
the AFM background. While the addition of such pairs im- the transiational kinetic energy saved by the domain-wall
proves the accuracy of the CI method relative to the exaGhotion more than offsets the additional exchange energy
solution, it makes the calculation more cumbersome, due t@yst in creating a pair of solitons from a single spin polaron.

the large increase in the number of possible configurations. \ye demonstrate this spin-charge separation effect using
When the contribution of this background is removed, the Chhe set of all the possible configurations with a pair of a
solution of a single charged domain wall moving around thecharged and a neutral domain wall in the CI method. Again,
chain agrees very wgll with the exact solution..This suggestsince states with different spins do not mix, we need only
that the renormalization of the charged domain-wall energyeep configurations in which the uncharged domain wall has
by neutral domain-wall pairs is relatively small. The agree-t,a same spin, either 1/2 or — 1/2. As in the undoped case,
ment with the Bethe ansatz is not limited to the bottom of theconfigurations with a pair of domain walls connect the two
charged domain-wall dispersion curve. In the latgg-limit,  gsihle AFM ground states. This leads to a considerable
the domain-wall dispersion band is indeed givenHy,(k) change in the background ener@ge Fig. 5. As a result, we
=2t coska), as required For example, the dispersion rela- gefine the energy of the doping hole, in this case, with re-
tign for domain-wa_ll corresponding ud/tfloo is shown in spect to the CI energy of an undoped chain with a pair of
Fig. 16. At such highu/t values, the typical energy of the pneytral domain walls. This allows us to properly account for
configurations containing electrons excited on the midgagnhe renormalization of the background energy of the chain by
levels is of orderU/2. They do not influence the lowest the pair of domain walls. Physically, we interpret this in the
domain-wall band. AdJ/t is decreased, these excited con-fo|lowing way. The true ground state of the undoped chain
figurations simply modify the high-energy part of the has a certain number of pairs of neutral domain walls. When
domain-wall dispersion relation. _ _ the chain is doped, the doping hole is bound into one of the
In conclusion, the mobile charged bosonic domain-walla|ready existing neutral domain walls, transforming it into a
excitation is the relevant charged excitation of the 1D chaintharged bosonic domain wall. All the other pairs of neutral
described by the Hubbard model for all valug& . Although domain walls remain |arge|y unaffected.
the static charged spin polaron has lower excitation energy The results of this analysis are plotted in Fig. 17. We use
than the static domain wall fdg/t>6.5, when quantum dy- the Bethe equations to calculate the ground-state energy of
namics is taken into considerati¢@l method the mobile  even-site chains with one doping hole. The BA excitation
charged domain wall turns out to be the lowest-energy excienergy for the doping hole added to an even-site chain is
tation. shown as circles. The exact chain energy is found to be well
fitted by E(N) =Negst Eg, with N the even number of sites
of the chain andegg the undoped ground-state energy per
A particularly striking effect can be recaptured in the Cl site. SinceNegsis the total energy of the undoped chain, we
method if one adds a hole to an even-site chain. In the HFAagain identifyE, as the energy of the doping hole. The en-

C. Spin-charge separation
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FIG. 18. The excitation energy of a neutral domain wall, as

FIG. 17. Excitation energgin units oft) for a charged-domain- ot_)tained frpm the Be_the_ ansatz for l_meped _odd-site _chains
wall-neutral-domain-wall pair, as obtained from the CI approach(_c'rdes)' This agrees withdiamonds the d|ffer_ence in the e_xcna- .
for even-site chaingsquares The energy of the doping hole added tion energy .Of a smglg hole on an even-site Vs odd-site chain
to an even-site chain, as obtained from the exact Bethe-ansatz S%s_ho_wn individually gs (_:lrcles and diamonds of Fig).TWhe dotted
lution, is shown by circles. Again, there is good agreement betweeHne is the asymptotic fit §/U.
the two methods. For comparison, we also show the energy of the B ) ) o )
doping hole added to an odd-site chain, as obtained from the Betié€ additional neutral spin-1/2 soliton. This interpretation
ansatz(diamonds and the energy of an isolated charged domainmay be verified independently by evaluating the energy of a
wall on odd-site chainétriangles. These last two sets are the same Single neutral spin-1/2 domain wall on an odd-site, undoped
as in Fig. 15. chain. The BA ground-state energy of the undoped odd-site

chain varies with the odt# number of sites asE(N)

ergy of a charged-domain-wall—neutral-domain-wall pair,=Negs+Egy, Whereegs, the undoped ground-state energy
obtained using the Cl method for even-site chains, is showper site, has the same value as obtained from fits of even-site
as squares. Clearly, the Cl method recaptures the physics abains. We identifyEg,, as the energy of the neutral spin
well as the energetics of the BA solution to a high degree ofoliton. The energiegy,, and AE are compared in Fig. 18.
accuracy. Even closer agreement can be achieved if configd-he good agreement between these independent measures of
rations with more pairs of uncharged domain walls are in-energy confirms that the spin soliton is a well-defined con-
cluded in the CI basis set. This result provides a very cleagept even in the presence of doping. The existence of the
illustration of the spin-charge separation phenomenon knowspin soliton accounts for the difference in energy between
to exist in the 1D Hubbard model. Upon doping, the relevanodd- and even-site chains even in the thermodynamic limit.
charge excitation is not the quasiparticle excitatigpin po- It facilitates our identification of the spin soliton in the Bethe
laron), which carries both the spin and the charge of theansatz with the neutral spin-1/2 domain wall of the CI ap-
doping hole, but rather a deconfined pair excitation consistproximation.
ing of a charged bosonic domain wéflarrying charge but
no spin and a neutral fermionic domain waltarrying spin
but no charge

Another interesting result of this analysis is that the exci- In this paper we have demonstrated the validity of the
tation energy needed to add a hole to an even-site chain nfiguration interaction method as a technique for going
different from that needed to add a hole to an odd-site chaibbeyond mean-field theory in strongly correlated electron sys-
(see Fig. 17, circles and diamondSuch a difference would tems. The method recaptures the essential physical features
be irreconcilable if the excitation was a local quasiparticle, inas well as energetics of the exact solution of the 1D Hubbard
which case different boundary conditions are expected to inehain. The ClI method provides a systematic way to improve
troduce variations of the orde®(1/N). However, in the and go beyond the Hartree-Fock approximation, by incorpo-
presence of the charge-spin separation, there is a simple imating essential quantum dynamics and tunneling effects that
terpretation. A doped chain with an oddlnumber of sites are excluded from the mean-field theory.
has an evemN—1 number of electrons. Its ground state has We showed that a charged bosonic domain wall can lower
zero spin(all electrons are pairedThis is well described by its kinetic energy by about for all U/t values, while the
a single charged domain wall. On the other hand, the dopetinmobile charged spin polaron can only lower its kinetic
chain with an everN number of sites has an odd—1 energy by an energy of the order t¥U. As a result, the
number of electrons. In order to represent the total spin 1/2obile charged bosonic domain wall is the low-energy
of the unpaired electron, it is necessary to include both a@harged excitation of the Hubbard chain for all values of
charged domain wall and a neutral spin-1/2 soliton. We asU/t, and its excitation energy and dispersion band are in
sociate the differencAE between the excitation energy of a good agreement with the predictions of the exact Bethe-
single hole on odd- and even-site chains with the energy oénsatz solution. We also showed that it is energetically fa-

V. CONCLUSIONS
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vorable for thelquasiparticlelik¢ charged fermionic spin bag vides a natural route to describe effects beyond mean-field

to dissociate into a charged bosonic domain Wahich car-  theory in the doped ground state of the 2D Hubbard model

ries the charge but no spiand a neutral spin-1/2 domain and other models of strongly correlated electrons in higher

wall (which carries the spin but no chajg€learly the CI  dimensions. We present this study elsewhere.

method recaptures the physics of spin-charge separation

known to exist in the 1D Hubbard model. It may be fruitful
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