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We introduce a quantum-mechanical model to describe the low-energy scale electronic structure of the
Fe-based pnictides, placing a special importance on the large polarizability of the large anions, such as As3−.
These are modeled in terms of an atomic two-level system coupled strongly to charge fluctuations on the
nearby Fe ions. This strong coupling results in electronic polaron formation, a strong effective reduction in the
Fe on-site Coulomb repulsion, and the appearance of a strong attractive interaction for d electrons on nearest-
neighbor Fe sites, which could be an essential component of the pairing mechanism. This quantum model
allows us to investigate this phenomenology away from the linear regime and to also study the dynamic
properties of these polarons, as well as the binding of polaron pairs and their dynamics.
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I. INTRODUCTION

Superconductivity is a fascinating example of how “more
is different.”1 It is due to electrons binding into bosonic Coo-
per pairs, which exhibit coherent behavior across a macro-
scopic sample. Finding the mechanism responsible for this
binding is one of the more difficult tasks of condensed-
matter physics. For conventional superconductors the solu-
tion was given by the BCS theory2 as being due to exchange
of phonons. For the cuprate high-Tc superconductors3 a
widely accepted pairing mechanism is still missing, despite
intense effort. The recently discovered Fe-based high-Tc su-
perconductors present us now with a new challenge.4–8

At first sight, one may expect the behavior of pnictides to
be related to that of the cuprates, given the somewhat similar
layered structures. However, there is an essential difference
between the CuO2 layer where the important physics takes
place in a cuprate, and its counterpart, the FeAs layer of a
pnictide: while the former is two dimensional �2D�, with all
Cu and O atoms in the same layer, the latter is not. Instead,
the layer hosting the Fe atoms �which are arranged on a
simple square lattice� is sandwiched between two layers
which share equally the As atoms, as sketched in Fig. 1.
Each Fe has four nearest-neighbor �nn� As atoms at a dis-
tance R=2.4 Å, arranged in a somewhat distorted tetrahe-
dron, two in the upper and two in the lower layer.

The different geometry has important consequences. In
the cuprates, the states near the Fermi energy EF consist of
strongly hybridized Cu 3d and O 2p orbitals. In contrast,
hardly any hybridization appears between the Fe 3d and
As 4p orbitals within 1–2 eV of the Fermi energy, with the
former giving essentially all the contribution to the low-
energy states of the pnictide.9 This lack of hybridization is
due not only to the lattice geometry but also to the substan-
tial spread in space of the As 4p orbitals, as compared to the
O 2p orbitals.

As a result, one might assume that the simplest Hamil-
tonian describing the low-energy physics of pnictides is a
Hubbard Hamiltonian for the Fe 3d electrons, namely,

HFe = − �
i,j,�

�tijci,�
† cj,� + h.c.� + UH�

i

n̂i↑n̂i↓, �1�

where ci,�
† creates an electron on the Fe site i with spin � and

n̂i�=ci�
† ci�. For simplicity, in this work we use a single-band

model where we only count “doping” electrons, i.e., charges
on top of the 3d6 configuration of the Fe in the undoped
compound. In reality a multiple-band Hamiltonian should be
used for the proper description of the various 3d orbitals;
however the essential physics we want to discuss is already
captured within this simpler starting point. The hopping to
As sites is neglected because of the small hybridization near
EF.

Hamiltonian �1� is, of course, the most common starting
point for describing cuprate physics. There it does include
the contribution of O anions because in that context ci,�

† are
operators for Zhang-Rice singlets.10 In contrast, using Eq. �1�
or a similar starting point either in the strong-coupling11–16 or
weak-coupling limit17–20 as the low-energy Hamiltonian for
pnictides implies that the As anions play no role in their
physics.

However, the As anions are highly polarizable, big ions
which are strongly influenced by the presence of extra
charges in their vicinity. As pointed out in Ref. 9, one ex-
pects each doping charge to be surrounded by polarized As
ions, giving rise to electronic polarons. This results in a
strong screening of the on-site Coulomb repulsion, suggest-
ing that these materials are not in the large U limit of a
Mott-Hubbard insulator. It also results in a strong nn attrac-
tion, which is certainly a �if not the� key component in the
pairing mechanism. The arguments of Ref. 9 are based on
semiclassical estimates.

In this paper we introduce a quantum-mechanical model
to describe the low-energy scale electronic structure of the
Fe pnictides, based on the physics described in Ref. 9. This
model places special importance on the large polarizability
of the large anions, such as As3−, which we model in terms

FIG. 1. �Color online� Three-dimensional sketch of the FeAs
layer. The small �green� spheres indicate Fe and the large �red� ones
indicate As locations. The lattice constant is a and the angle �
between the Fe-As direction and the z-axis is indicated.
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of an atomic two-level system coupled strongly to charge
fluctuations on the nearby Fe ions. Like in the semiclassical
model of Ref. 9, this strong coupling results in electronic
polaron formation, a strong effective reduction in the Fe on-
site Coulomb repulsion, and the appearance of a strong
nearest-neighbor attractive interaction for d electrons on Fe
sites. The quantum model allows us to investigate this phe-
nomenology away from the linear regime and to also study
the dynamic properties of these polarons, as well as the bind-
ing of polaron pairs and their dynamics.

Our model has similarities with the lattice polaron,21 the
Little,22 and the Allender, Bray, and Bardeen23 �ABB� exci-
tonic models for superconductivity; however there are also
essential differences which circumvent the main objections
raised concerning them. As demonstrated below, our model
results in rather modest mass enhancements for the electronic
polaron and, most importantly, leads to an attractive term in
the nearest-neighbor interactions, strongly reducing the need
for huge retardation effects required to overscreen the on-site
repulsion in all these other models. In addition, we demon-
strate that the bipolaron masses—if they do form bound
states—are rather modest, being only three to four times the
mass of a single polaron. This, again, is very different from
the lattice polaron or the Little or ABB on-site pairing mod-
els. Our model also has superficial similarities with the
theory of hole superconductivity proposed by Hirsch and
co-workers;24–26 however they are based on very different
scenarios. While we believe that the pairing charge carriers
are hosted in Fe 3d orbitals and the anions’ role is encom-
passed through their polarizability, in their scenario the an-
ions are hosting the pairing holes and their polarizability is
irrelevant.27 Moreover, their pairing mechanism is essentially
the same in pnictides as in cuprates.26 As discussed in detail
below, in our model the specific off-plane location of the
anions is essential in giving rise to the large effective nn
attraction. The same mechanism applied to a CuO2-like pla-
nar structure gives rise to strong nn repulsions, instead of
pairing.

The article is organized as follows: in Sec. II we introduce
our model and parameters. In Sec. III we analyze properties
of a single electronic polaron, while in Sec. IV we discuss
properties of bound bipolarons. Section V contains our sum-
mary and discussions.

II. MODEL

The idealized FeAs layer of interest is sketched in Fig. 1,
which shows the cubic lattice �lattice constant a=2.8 Å�
which has the Fe in the center of the cubes, on a simple
square lattice. The real structure has somewhat distorted tet-
rahedra, and can be described by a simple generalization of
our idealized model.

As discussed, we assume that the valence electrons oc-
cupy 3d orbitals of the Fe atoms. We are interested in the
excess charges on the Fe sites and describe them in an effec-
tive single-band model, like in Eq. �1�. We assume that they
can hop between nearest-neighbor Fe atoms, with a hopping
integral t, and also consider separately the effect of second-
nearest-neighbor hopping, with a hopping integral t�. There

is very little hybridization of these 3d orbitals with As 4p or
5s orbitals near the Fermi energy, and we ignore it
altogether.9 On-site Hubbard repulsion for these charges,
characterized by an energy UH, is also included. Thus, the
hopping Hamiltonian for the extra charges on the Fe sites is
taken to be

HFe = T̂ + T̂� + Û

= − t �
�i,j�,�

�ci,�
† cj,� + h.c.� − t� �

��i,j��,�
�ci,�

† cj,� + h.c.�

+ UH�
i

n̂i↑n̂i↓, �2�

where �i , j� , ��i , j�� denote summation over nearest and
second-nearest-neighbor Fe sites, respectively. A more de-
tailed model taking in consideration all relevant 3d orbitals is
of course possible, but not necessary for our purposes. We
avoid this complication in order to make the physics uncov-
ered in our model more transparent.

Ab initio calculations find that the anions are effectively in
the As3− state, with fully occupied 4p bands lying well below
the Fermi energy.9 In reality, these As 4p states are strongly
hybridized with Fe 4s and 4p orbitals �this hybridization is
responsible for the fact that the effective As charge inside the
muffin tin is much less9 than the ionic charge of −3�. Since
this mixing is strongly dependent on the Fe 3d occupation, it
will provide a screening mechanism for the bare Coulomb
repulsion, in particular for the value of UH. In the following
we consider that such screening is already included in UH.
For simplicity, we also refer only to the full As 4p orbitals,
ignoring their hybridization with the Fe 4s and 4p orbitals
�this could also be accounted for in a multiband model, but is
of limited relevance and we ignore it for clarity�.

In our model, the only role of these As anions is that they
become polarized due to the electric field created when an
extra charge is on a nearby Fe atom. This is due to transitions
of As electrons from the filled 4p shell into �primarily� the
empty 5s shell, and results into a dipole moment �polariza-
tion cloud� pointing toward the Fe atom which hosts the
extra charge. For simplicity, we make two approximations
regarding the interactions: �i� only the four As atoms closest
to an Fe hosting a charge are polarized by its electric field,
and �ii� we ignore dipole-dipole interactions between As
clouds. The quantitative importance of these approximations
is discussed below.

Three more observations are in order. First, it is more
convenient to describe the As polarization clouds not in
terms of an electron being excited from the filled 4p orbitals
into the empty 5s orbital but, equivalently, in terms of a hole
being excited from the 5s into the 4p orbitals. Thus, each As
will be described by four operators: s�

† , px,�
† , py,�

† , pz,�
† , which

create a hole of spin � in the respective orbital. The ground
state, then, is s↑

†s↓
†�0� and the p orbitals lie at an energy �

above it. If we measure energies above the s orbital, the
Hamiltonian of the unperturbed As ions is

HAs = � �
i,�,�

pi,�,�
† pi,�,�, �3�

where i runs over the locations of the As atoms �see Fig. 2
for site labeling convention�, �=x, y, z, and � is the spin of
the hole.
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The second observation is that this Hamiltonian ignores
hopping of charges between As atoms. This is a reasonable
approximation given the large distance between neighbor As
atoms, which results in rather narrow As bands, as demon-
strated by ab initio calculations. Physically, we expect hop-
ping of a single charge between As ions to be inhibited be-
cause of Coulomb on-site repulsion. Hopping of the
excitonlike particle-hole pair describing the polarization
cloud is not inhibited; however this is likely a heavy object,
given the rather narrow As bands. As we demonstrate below,
the electronic polarons and bipolarons of interest to us are
very light and highly mobile objects. In comparison, we can
assume the excitonlike polarization clouds to be infinitely
heavy, i.e., not allowed to move between different As sites on
the time scales of interest to us. This is why we model the As
within this rather atomistic picture.

Finally, the lattice illustrated in Fig. 1 suggests that we
should consider a unit cell with �a minimum of� two Fe and
two As atoms, one in the top and one in the bottom layer.
However, given our simplifications, in our model it makes no
difference whether half the As are above and half are below
the Fe layer, or whether they are all in the same plane �for
example, in the layer below the plane of Fe�. Mathematically,
this follows because for the As in the layer above, one can
redefine the pz operators as pz→−pz, which is equivalent to a
local flipping of the direction of the z axis. This is very
convenient because it allows us to use a simple unit cell with
one Fe and one As in the basis, as illustrated schematically in
Fig. 2. However, it is important to point out that if one wants
to include, for example, As dipole-dipole interactions, then
one needs to carefully consider the true orientations of the As
polarization clouds with respect to one another.

Figure 2 also shows how we index the lattice sites, with
Fei and Asi being the unit cell of the simple square lattice. If
the charge is on Fei, the polarization of Asi and the other
three As neighbors is pointing in its direction. It is therefore
more convenient to use for the in-plane directions the 1,2
axes �see Fig. 2�, and 3=z for the out-of-plane direction, in

terms of which p1= 1
�2

�px− py�, p2= 1
�2

�px+ py�, p3= pz, and
HAS remain formally identical to that of Eq. �3�, except that
now �=1,2 ,3.

With these definitions, the cloud of Asi is pointing toward
Fei in the direction e� =−sin �e�2+cos �e�3, where cos �= 1

�3
comes from simple geometry illustrated in Fig. 1. Of course,
Fei also polarizes Asi−x, Asi−x−y, and Asi−y. Their polarization
vectors are obtained by appropriate rotations from the one
just listed.

The interaction Hamiltonian is, then

Hint = g�
i,�

n̂i�si,�
† �− sin �pi,2,� + cos �pi,3,��

+ si−x,�
† �sin �pi−x,1,� + cos �pi−x,3,��

+ si−x−y,�
† �sin �pi−x−y,2,� + cos �pi−x−y,3,��

+ si−y,�
† �− sin �pi−y,1,� + cos �pi−y,3,�� + h.c.	 , �4�

where the sum is over all unit cells i in the lattice. This
interaction describes the s→p transitions and resulting po-
larization of the As clouds �with the appropriate orientations�
if extra charges, counted by n̂i= n̂i↑+ n̂i↓, are on Fei site. We
derive this form explicitly in Appendix A, where we also
calculate the strength of the coupling g. Similar models to
describe such couplings have been used in Ref. 28.

Our model Hamiltonian H=HFe+HAs+Hint is thus char-
acterized by five parameters, t , t� ,UH ,� ,g. We now discuss
the choice of their values.

Ab initio calculations9 find the bandwidth of Fe 3d orbit-
als to be roughly W=2 eV. Our hopping model has a band-
width W=8t irrespective of the value of t�, thus t=0.25 eV
is a typical value. For t�, we will consider both the case t�
=0 and t�=−t /2=−0.125 eV, which is the appropriate value
for hopping between dxy and the like orbitals which contrib-
ute most near the Fermi level. The Hubbard repulsion UH is
certainly a large energy. We will use it as a parameter, and
show that our results are very weakly sensitive to its precise
value once UH�8 eV or so, which is certain to be the case.

The ab initio calculations also suggest a difference from
the top of the As 4p bands to the bottom of the As 5s bands
of about 4 eV. This value provides a lower limit for the split
� between the s and p orbitals. A more appropriate measure
would be the distance between the midpoints of these bands,
but this is harder to estimate. We use �=6 eV as a typical
value, and also study the effects of larger � values on the
results. This is reasonable because higher-energy orbitals of
the As will be polarized as well, so one can think of these s
and p orbitals as modeling effectively the polarization of the
whole atom.

The final parameter needed is g. Since this energy scale
characterizes the s− p hybridization when an As polarization
cloud is created, we should relate it to the As polarizability
�p. Although we do not know its value precisely, the polar-
izability is typically equal to the volume of the atom. Since
As is a big atom, its polarizability is estimated9 to be �p
=10–12 Å3.

In Appendix A we show that g equals the product between
the typical dipole moment that can be induced on the As ion,
eaAs, and the electric field created at the As site by the extra

FIG. 2. �Color online� View from above of the Fe-As structure.
Several sites are indexed. The orientations of the in-plane axes 1,2
and x ,y is also indicated. The Fe and As layers have different
depths in the z direction.
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charge, E=e /R2. Here, aAs characterizes the “size” of the s
and p orbitals involved �see Eq. �A2�	. On the other hand,
aAs can be linked to the polarizability since in the linear limit
the average induced dipole moment is proportional to the
applied field, �p�=�pE. The end result derived in Eq. �A11�
gives

g =��p�e2

4R4 . �5�

Using �p=10 Å3 and �=6 eV gives the estimate g
=2.5 eV and thus g /�=0.4, suggesting that nonlinear ef-
fects described by our model are starting to become impor-
tant; however they are not dominant yet.

To conclude, we use t=0.25 eV, t�=0 or −0.125 eV, �
=6 eV, and g=2.5 eV as typical numbers. We will also al-
low � to vary and we will then choose g according to Eq. �5�
so that the polarizability stays constant. The corresponding
g /� ratio is shown in Fig. 3: for a wide range of values of �,
g /� is roughly 0.4–0.5.

III. SINGLE ELECTRONIC POLARON

We would like to find the eigenstates of the total Hamil-
tonian H=HFe+HAs+Hint when there is a single extra
charge at one of the Fe sites. Of course, it can hop around
and will also polarize the As atoms in its vicinity. We call
this composite object �the charge dressed by the surrounding
polarization clouds� an electronic polaron.

To find its low-energy spectrum, we use perturbation
theory in the hopping Hamiltonian. This is a valid approach
because t is by far the smallest energy scale in this problem.
A more detailed quantitative justification is provided below.

A. Zero-order perturbation

In the absence of hopping the electron will stay at the
same site, say at Fei, and will polarize its four neighbor As,
as sketched in Fig. 4. Since we ignore dipole-dipole interac-

tions, we can consider each As ion independently. Consider
the state of Asi, which is described by

ĥi = ��
�,�

pi,�,�
† pi,�,�

+ g�
�

�si,�
† �− sin �pi,2,� + cos �pi,3,�� + h.c	 .

This quadratic Hamiltonian is trivial to diagonalize. This cal-
culation is detailed in Appendix A, where we find its ground
state Ecloud=�−��2+4g2, etc.

The ground-state energy of the static polaron is then sim-
ply four times larger since it has four polarized As clouds, in
other words,

EP,GS = 4Ecloud = 4�� − ��2 + 4g2� . �6�

The lowest excited state is at 1
2 ��+��2+4g2	 above EP,GS,

and has either the spin-up or spin-down hole of one of the As
atoms polarized in a direction perpendicular to its local elec-
tric field. The other excited states are at even higher energies.

The ground state of the polarized As atoms is described
by �i,�,	,↑

† �i,�,	,↓
† �0�, where the operators

�i,�,	,�
† = cos �si,�

† − sin ��	sin �pi,�,�
† + cos �pi,3,�

† � �7�

are analogs of Eq. �A8� for the specific geometry here. Here
�=1,2 shows if the in-plane component of the polarization
cloud is oriented along axis 1 or axis 2, and the 	 sign
indicates whether the in-plane polarization is parallel or an-
tiparallel to this axis. The angle � is shown in Fig. 1, while �
characterizes the mix of p states in the polarization cloud,
and is given in Eq. �A9�.

Thus, the ground state of the system with the electron at
site Fei is �since there is a single such electron, its spin is
irrelevant and we drop its index here�

�
i� = ci
†�i� , �8�

where �i� describes the state of all As ions,

�i� = 

�

�i,2,−,�
† �i−x,1,+,�

† �i−x−y,2,+,�
† �i−y,1,−,�

† �GS�i, �9�

where

4 5 6 7 8
Ω (eV)

0.30

0.40

0.50

0.60

g/
Ω

α
p

= 10A
3

α
p

= 12A
3

FIG. 3. �Color online� Ratio g /� vs �, for a fixed polarizability
�p=10 Å3 �full line� and 12 Å3 �dashed line�. The dot indicates
our typical choice of parameters.

FIG. 4. �Color online� Pictorial illustration of a static electronic
polaron. The electron residing on the central Fe atom polarizes the
holes on the nn As sites into the 4p orbital pointing toward the Fe.
More distant As are assumed to remain in the 5s ground state.
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�GS�i = 

�j−i��R,�

sj,�
† �0� , �10�

i.e., it describes unpolarized As ions at all sites which are not
nearest neighbor to the site Fei containing the extra charge.
Thus, the product of � operators describes the polarization
clouds on the four neighbor As sites �both spin-up and spin-
down holes are polarized�, and �GS�i describes the remaining
holes on the unpolarized As sites. Of course, this ground-
state �
i� is highly degenerate since the electron can be at
any Fe site. The hopping lifts this degeneracy.

B. First-order perturbation

In the subspace generated by all the ground states �
i�
described in the previous section, we can form eigenstates
which are invariant to translations in the usual fashion,

�
k�� = �
i

eik�·R� i

N
�
i� , �11�

where the lattice has N�N=N2 unit cells and we assume
periodic boundary conditions. As usual, the quasimomenta k�
are defined inside the first Brillouin zone of the simple
square lattice − �

a 
kx ,ky �
�
a .

Since the hopping Hamiltonian is diagonal in this basis,

�
k��T̂tot�
k�����k�,k��, it follows that �
k�� are the eigenstates in
first-order perturbation theory. Their energies are

EP�k�� = EP,GS + �
k��T̂tot�
k�� �12�

with the second term describing the polaron dispersion.
Straightforward calculation reveals that

EP�k�� = EP,GS − 2teff�cos�kxa� + cos�kya�	

− 4teff� cos�kxa�cos�kya� = EP,GS + �eff�k�� , �13�

in other words the dispersion is identical to that of a free
particle, but with renormalized hopping integrals. The renor-
malization is due to the overlap of the corresponding As
clouds as the electron moves from one site to a nearest- or
second-nearest-neighbor site, as illustrated schematically in
Fig. 5 for the former case, i.e., teff= t�i � i+x� and teff� = t��i � i
+x+y�. These overlaps result in

teff

t
= �1

6�1 +
�

��2 + 4g2
�2 +
�

��2 + 4g2
�4

,

teff�

t�
= �1

2�1 +
�

��2 + 4g2
�6�1

3�1 +
2�

��2 + 4g2
�2

,

and are plotted in Fig. 6 vs �, for several values of �p. As
expected, in the limit of large �, which from Eq. �5� implies
g /�→0, the ratios increase toward unity because the polar-
ization clouds become very small. As � decreases, the effec-
tive coupling g /� increases and the ratios �and therefore the
bandwidths� decrease. This is typical polaronic behavior;
however note that even if we are in the strong-coupling limit
g /�→�, the effective hopping is lowered to at most teff / t
=1 /34=0.012, teff� / t�=1 / �2632�=0.0017. While these are, of
course, small values, the renormalized hoppings are not be-
coming exponentially small with increased coupling, as is
the case for polarons with phonon clouds. The reason is that
within this model, the polarization clouds saturate to a maxi-
mum possible value, and therefore the overlap cannot be-
come arbitrarily small.

The effective polaron mass renormalization is inversely
proportional to the teff / t ratio �this statement is exact only if
t�=0. If t� is finite both ratios determine the new effective
mass; however they are roughly equal�. Thus, these polarons
remain rather light objects, with a mass up to a factor less
than 3 larger than the bare band mass. The dots in Fig. 6
indicate our chosen values, for which the polaron mass is
roughly 2.2 times the mass of the free band electron, and
teff=0.45� t�0.11 eV.

While not very large, this renormalization of the effective
hoppings/mass further supports our use of the perturbation
theory. First-order perturbation is reasonable only assuming
that half the effective bandwidth is much smaller than the
distance to the next set of excited states, which were ignored
in this calculation. As already discussed, those excited states
are at 1

2 ��+��2+4g2	�6 eV and higher energies, whereas
4teff�0.45 eV. These numbers suggest that first-order per-
turbation theory should be quite accurate for parameters in
the regime of interest to us �the higher the � value used, the
more accurate the perturbation theory is�. A second-order
calculation, which is possible but rather involved, should

FIG. 5. �Color online� Polaron hopping in the x direction. The
hopping integral is renormalized by the overlap between the polar-
ization clouds in the initial and final positions. More distant As are
assumed to be in the 5s ground state.
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FIG. 6. �Color online� teff / t �left� and teff� / t� �right� vs �, for
different As polarizabilities. The dots indicate the main values used
here.
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only bring in relatively small corrections. Moreover, those
corrections may well be of the same order as other ignored
small terms �like dipole-dipole interactions between the As
clouds�, and therefore one would need to reconsider all these
approximations carefully before going to a higher order in
perturbation theory.

In conclusion, our calculation shows that, to first order,
the only effect of the formation of the electronic polarons is
to scale down the hopping energy scales by a factor of
around 2.5 �with slight differences for nearest vs second
nearest-neighbor hopping�, but otherwise the dispersion is
similar to that predicted by local-density approximation
�LDA� for a free charge. Note that this renormalization by a
factor of about 2 would also arise in a many-orbital model if
the As polarizability is taken into account since the electron’s
electric field would induce similar As clouds on its neigh-
bors, irrespective of which 3d orbital the electron occupies.

Such renormalization of the band structure compared to
that predicted by LDA can be detected by angle-resolved
photoemission spectroscopy �ARPES�. Interestingly, a recent
measurement29 showed reasonable fits to LDA upon rescal-
ing the bandwidth by a factor of 2.2, very similar to our
predicted values �the material studied has P instead of As,
and these smaller anions have a smaller polarizability �p
�7 Å3�. This good agreement is an indication that polaronic
effects are important in these materials since such a renor-
malization is hard to attribute to other physics.

In our model, ARPES would measure a quasiparticle peak
at low energies with an �eff�k�� dispersion, and a quasiparticle
weight

Z = ��
k��ck�
†�GS��2 = �cos �	16 �14�

independent of momentum �second- and higher-order correc-
tions to the wave functions may bring in some small momen-
tum dependence�. For our typical values, this implies Z
=0.38. The remaining spectral weight should be observed at
much high energies typical of the excited states, of the order
1
2 ��+��2+4g2	=6 eV or more.

IV. BIPOLARON

Within the same model and with the same approximations
we now calculate the eigenstates of the system when two
charges are present on the Fe sublattice. In particular, we are
interested to see whether they become bound into a bipo-
laron, or whether a state of two free polarons is energetically
more favorable.

A. Zero-order perturbation: interaction energies

All the eigenstates of the two charges must be either a
singlet or a triplet in the spin space. Since we expect a singlet
to be the ground state �this expectation is verified by our
calculations� we focus on calculations for singlet eigenstates.
The calculations for triplets are very similar; therefore we
will only point out where there are differences between the
two cases.

Within zero-order perturbation theory the charges cannot
move. Depending on the distance between them, different

types of polarization clouds can form with different energies.
We will now calculate these energies.

If the two electrons are third-nearest neighbors or further
apart, �i− j��2a, then their polarization clouds do not over-
lap �there is no As atom that is a nearest neighbor to both
charged Fe sites�. Therefore each charge induces the same
four polarization clouds on its four nn As as described for
single polarons, and the energy of the pair is simply twice the
energy of a polaron,

EBP,� = 2 � EP,GS = 8�� − ��2 + 4g2	 . �15�

If the electrons are second-nearest neighbors, they share
one As atom, as shown in Fig. 7, so only seven polarization
clouds are formed. Six of these are precisely like the ones
discussed previously since each of those As ions is in the
field created by a single charge. The cloud on the shared As
ion, however, is different since it is created by the sum of the
electric fields from the two charges. Given the geometry of
the system, this new cloud is polarized along the z axis. The
only change in calculating the energy and eigenstate of this
cloud is to replace g→2g cos �=2g /�3 in Eq. �A5� to re-
flect the increased applied electric field. As a result, the en-

ergy of this cloud is changed to �−��2+ 16
3 g2, and therefore

the total energy of the second nearest-neighbor static bipo-
laron is

EBP,2 = 6�� − ��2 + 4g2	 + �� −��2 +
16

3
g2� .

This energy is different from the energy of two free polarons
by an amount

U2 = EBP,2 − EBP,� = 2��2 + 4g2 − � −��2 +
16

3
g2.

�16�

This is plotted in Fig. 8�c� vs �, for three values of As
polarizability. It is a slowly varying function of � and posi-
tive, meaning that it is energetically more favorable to have
two free electronic polarons situated far apart than to have
them on second-nearest-neighbor sites. This can be shown to
be true for any value of the �p and � �i.e., any g /� ratio�,
for this lattice structure.

The reason for this repulsion, at least in the linear regime
g /��1, is directly linked to the geometry of the problem. In
this limit, the charge-dipole energy for the As which is neigh-

FIG. 7. �Color online� Polarization clouds for a second-nearest-
neighbor electronic bipolaron. The central “shared” As atom has a
polarization different from that of the usual polaron clouds.
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bor to both charged Fe sites is −�p�E� 1+E� 2�2 /2, where E� 1 ,E� 2
are the electric fields created by the two charges. The energy
difference with respect to two regular clouds is −�pE� 1 ·E� 2.
This implies a repulsive interaction if the Fe-As-Fe angle is
larger than 90°, as is the case here. This also shows that this
term can turn attractive if the lattice is distorted so as to
make this angle sharp. In terms of the angle � shown in Fig.
1, this requires that 2 cos2 ��1→�
45° and can be
achieved by making the lattice tetragonal, i.e., by increasing
the distance between the Fe and As layers by a factor of �2
or more. Of course, this lattice deformation would also have
the added effect of decreasing all the polarization energies
since the electric fields would be smaller due to the increased
Fe-As distances.

This argument demonstrates that if the Fe-As-Fe angle is
less than 90°, the interaction becomes attractive. This is the
case if the two charges are on nearest-neighbor Fe sites, or
on the same Fe, as pointed out in Ref. 9.

Indeed, consider the nearest-neighbor bipolaron. In this
case, as illustrated in Fig. 9, a total of six As atoms are
polarized. Four of them have clouds of the original type,
while two, which are neighbors to both Fe atoms, have yet

another type of polarization cloud which lies in the plane
perpendicular to be bipolaron axis. Straightforward geometry
arguments shows that the electric fields at these sites is �8

3

larger than e2 /R; therefore one has to replace g→g�8
3 to find

the energy of each new cloud.
Thus, the total energy of a static nearest-neighbor bipo-

laron is

EBP,1 = 4�� − ��2 + 4g2	 + 2�� −��2 +
32

3
g2� ,

and the difference to the energy of two free polarons is

U1 = EBP,1 − EBP,inf = 4��2 + 4g2 − 2� − 2��2 +
32

3
g2.

�17�

This effective energy is plotted in Fig. 8�b� as a function of
� for a fixed polarizability and in Fig. 8�d� as a function of
g /� for several values of �.

The first observation is that this effective interaction is
indeed attractive, favoring a bound nearest-neighbor bipo-
laron over two independent polarons. As shown in Fig. 8�d�,
this is only true for small g /�
1 values, however, with the
nonlinear effects making the interaction repulsive at large
g /� values. Remarkably, the strongest binding energy is for
g /��0.45 for reasonable values of �, which is close to the
values we expect for this ratio �see Fig. 3�. From this point of
view, we can say that these lattices are already very close to
being fully optimized. As for the case of the second nn bi-
polaron, it is possible to further change this interaction by
changing the lattice geometry: a smaller � angle will increase
this binding energy, but this is balanced by a loss if the
Fe-As distance is increased.

The analysis so far would be identical if the bipolarons
were in a triplet state. The last case—the onsite
bipolaron—is only possible for a singlet state. In this con-
figuration there are again four polarization clouds, like for a
single polaron. However, because the charge is doubled so
are the electric fields, and we replace g→2g. As a result, the
energy of the on-site bipolaron is

EBP,0 = 4�� − ��2 + 16g2	 ,

and the effective on-site interaction is

U0 = UH + EBP,0 − EBP,�

= UH − 4���2 + 16g2 + � − 2��2 + 4g2	 
 UH.

�18�

Clearly, the polarization of neighboring As atoms always acts
to screen out the on-site repulsion, and this effect can be very
significant. Indeed, in Fig. 8�a� we plot this renormalization
energy, which is several eV for typical parameters of interest
to us. In the linear regime, this renormalization energy would
be �−16g2 /��−16 eV, which is similar to the values
found in Ref. 9. The smaller values we find here are a direct
consequence of the nonlinear effects, which are accounted
for in our model.
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FIG. 8. �Color online� �a� Renormalization of on-site interac-
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FIG. 9. �Color online� Polarization clouds for a nearest-neighbor
electronic bipolaron. The two central “shared” As atoms have a
polarization different from that of the usual polaron clouds.

ELECTRONIC POLARONS AND BIPOLARONS IN IRON-… PHYSICAL REVIEW B 79, 214507 �2009�

214507-7



Such on-site screening is well known to arise in polaron
models.21,22,32 For pnictides, it could well be the main reason
why they are not in the strongly coupled U0� t regime.
However, the nearest-neighbor attraction is not typical po-
laron physics. On a 2D lattice like in cuprates, the nn inter-
action between electronic polarons is repulsive because the
Cu-O-Cu angle is 180° �the same holds true for polarons
coupled to a breathing-mode phonon of the O atoms�. For a
Holstein bipolaron, there is a weak nn attraction, but it is due
to spin exchange and is O�t2�, not O�t0� like here.21,31 Its
particular non-2D geometry is the essential ingredient in
bringing about this strong nn attraction, for the pnictides.
This mechanism is impossible in cuprates.

To summarize, this calculation reveals that for the param-
eters of interest to us, we can have a stable on-site bipolaron
if the Hubbard repulsion is not too large. The nearest-
neighbor bipolaron is bound, whereas the second nearest-
neighbor bipolaron is unstable to dissociation into two free
polarons.

B. First-order perturbation

We continue the discussion for singlet bipolarons, and
analyze how the hopping Hamiltonian mixes together
the low-energy bipolaron states si,i+��

† �i , i+���, where si,i+��
†

= 1
�2

�ci↑
† ci+��↓

† −ci↓
† ci+��↑

† � if ��0, and sii
† =ci↑

† ci↓
† describes the

singlet. Here, �� measures the distance between the two
charges, and �i , i+��� describes the As atoms when there are
charges at Fe sites i and i+�� . Similar to the states �i� defined
for single polarons, the states �i , i+��� have all As atoms
which are not nearest neighbors to either Fei or Fei+�� in their
unpolarized ground state, while the As atoms nn to the
charged Fe atoms are described by the appropriate �†, �̃†, �̃̃†,

or �̃̃̃† operator, as detailed in Appendix B. We do not list
these expressions explicitly here, as they are rather long and
tedious but otherwise straightforward.

From these states, we can define a basis of bipolaron
states invariant to translations on the N�N unit cells lattice,

�k�,��� = �
i

eik�·�R� i+��/2�

N
si,i+��

† �i,i + ��� . �19�

Here k� is the center-of-mass momentum of the pair. It can
take the usual values inside the Brillouin zone allowed by the
periodic boundary conditions. Care needs to be taken in
choosing the set of �� values since if we take all its possible
values, we double count �e.g., �k� ,e�x�= �k� ,−e�x�, etc�. This is
due to the fact that �� is like a nematic vector, with a size and
orientation but without a pointing arrow. Let �� =�xe�x+�ye�y,
and for simplicity assume that the lattice size is an odd num-
ber, N=2n+1. Then, double counting is avoided provided
that when �x=0, we allow �y =0,1 , . . . ,n �because of the
periodic boundary conditions, the distance between charges
cannot be more than half the dimension of the system�. If
�x=1,2 , . . . ,n, then �y =−n , . . . ,n. Both positive and nega-
tive values are needed in this case because, for example, the
�k� ,e�x+e�y� state is distinct from the �k� ,e�x−e�y� state; however

these are the only two distinct states of the second nearest-
neighbor bipolarons. In conclusion, for a N�N lattice with
N=2n+1, there are �n+1��2n+1�−n distinct singlet eigen-
states corresponding to a given total momentum k�. The re-
maining states are triplet states. Similar accounting can be
done for lattices with even number of sites N.

Because our total Hamiltonian is also invariant to transla-
tions, it will not mix states with different total momenta.
Therefore, we can solve the problem separately in each
k� subspace, and only need to calculate the various
�k� ,����H�k� ,��� matrix elements. There are three sets of contri-
butions. First, there are diagonal matrix elements, already
discussed in the previous section. Specifically, �k� ,�� �H�k� ,���
= �k� ,�� �Û+HAs+Hint�k� ,���=U��, where U0, U1, and U2 of Eqs.
�18� and �19� correspond to �� , indicating, respectively, an
on-site, a nearest-neighbor, or a second-nearest-neighbor bi-
polaron state. If ��� ��2, then U�� =0 since we measure the
interactions energies with respect to the energy of two un-
bound static polarons.

The nn hopping Hamiltonian links states with the same
momentum but bipolaron distances �� and ��� which are near-
est neighbor, i.e., ��� −����=1. We therefore also need to
calculate these matrix elements �k� ,�� 	e�x/y�H�k� ,���
= �k� ,�� 	e�x/y�T̂�k� ,���. Similarly, for finite t� there are matrix

elements of T̂� between second-nearest-neighbor states with
��� −����=�2. All these matrix elements and the resulting ef-
fective hoping integrals are calculated in Appendix B. Taken
together, these three sets exhaust all matrix elements which
are finite, and therefore we can diagonalize the resulting ma-
trix and find the energies EBP�k�� and eigenstates correspond-
ing to any desired momentum k� of the bipolaron, within first-
order perturbation theory.

We begin by analyzing results when t�=0. In Fig. 10�a�
we plot k� =0 energies for all bound bipolaron states, i.e.,
those lying below the two-polaron continuum starting at
−8teff. We find three such states. The ground-state energy
first increases linearly with UH and then flattens out. Its wave
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FIG. 10. �Color online� �a� Bound eigenstates measured from
the two-polaron continuum, �EBP=EBP�0�+8teff vs UH. The sym-
metry of the eigenstates is labeled in the inset. �b� Probability for
on-site, first-, second-, and third-nn separations in the ground state,
vs UH. The dashed lines show the same quantities for the d state.
Here t�=0, �p=10 Å3, �=6 eV �similar results are found for all
�p=7–12 Å3, �=4–8 eV�.
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function has s-type symmetry �its sign is unchanged upon
90° rotation�. There is a second weakly bound s state at small
UH, which then joins the continuum. The third bound bipo-
laron state has an energy independent of UH, and is d type
�wave function changes sign upon 90° rotation�.

The nature of these bound states is revealed in Fig. 10�b�.
For low UH values, the ground state primarily consists of an
on-site bipolaron, with hardly any contribution from nn or
more distant configuration. This explains why its energy here
scales with UH �more precisely with U0�. When U0�0 there
is a fast crossover to a state dominated by the nn bipolaron
configurations �a combined total of 90% probability�. This is
expected since U1
0 irrespective of UH, favoring such a
pair when U0 becomes repulsive. The on-site contribution is
now exponentially small. This explains the weak UH depen-
dence here, as coming from virtual hopping to the on-site
configuration. The dashed lines show the contributions for
the d-type state. As expected, it is dominated by nn bipo-
larons. It has a zero on-site probability, consistent with its
symmetry and explaining the lack of dependence on UH. The
second nn contribution is also zero �U2�0 as well�. There
are small third and more distant bipolaron contributions.

The unscreened Hubbard repulsion is very large, UH
�10–20 eV. For such values our results show hardly any
dependence on UH, so its precise value is of little impor-
tance. We use UH=10 eV from now, and ask how mobile are
these bound, predominantly nn, bipolaron pairs. Their disper-
sion in the Brillouin zone in shown in Fig. 11�a�, where we
also show the two-polaron continuum �eigenstates above the
continuum are not shown�. The s pair has a bandwidth
EGS�� ,��−EGS�0,0��0.3 eV, implying a bipolaron mass
about seven times that of a free-carrier mass �the bandwidth
of a free electron is 8t=2 eV�. This is a very small enhance-
ment, since it means that the bipolaron is about 3.5 times
heavier than a single polaron. In Fig. 12�b� we plot the bi-

polaron mass for various �p and � values, showing only
limited variation over a wide parameter range. The higher-
energy d pair is heavier, with a much narrower bandwidth.

If we include second nn hopping t�=−t /2, two effects are
apparent in Fig. 11�b�. First, the two-polaron continuum is
pushed to higher energies, effectively increasing the binding
energies of the bipolarons. �The binding energies for the
ground-state bipolaron are shown in Fig. 12�a� for various
parameters	. Second, the d state becomes the ground state.
This is not surprising since the second nn hopping links di-
rectly the two nn bipolaron configurations which give the
bulk contribution to these eigenstates. For t�
0, this mixing
raises the energy of an s state and lowers that of a d state.
Thus, if the effective t� between the two nn bipolaron con-
figurations is large enough, the d state has to become the
ground state.

Let us now comment briefly on the triplet eigenstates.
Since there is no onsite triplet bipolaron configuration, their
energies are essentially identical to the energies of the singlet
eigenstates in the limit UH→�. This implies that at this level
of approximation and for large enough UH, singlet and triplet
bound bipolarons are almost degenerate. However, it is well
known that second-order perturbation theory produces an ex-
change interaction which strongly favors the singlet eigen-
states �this is the interaction responsible for the weak binding
of the S1 Holstein bipolaron32�. It follows that in reality, the
ground state must be a singlet.

V. DISCUSSION AND SUMMARY

The binding energies shown in Fig. 12�a� are substantial,
even without the addition of this singlet exchange energy. As
discussed in Appendix C, relaxation of our approximations
�that only As ions nn to a charge are polarized and that
dipole-dipole interactions are ignored� further enhances U1,
and therefore these binding energies, to several eV. Yet more
enhancement is expected if we include even higher orbitals
than 5s when describing the As ion polarization. All this
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suggests the appearance of preformed bipolaron pairs well
above room temperature. On the other hand, in our model
Hamiltonian we have ignored a nn repulsion energy which
comes from the bare Coulomb interaction itself �in reality,
this nn Coulomb repulsion will be reduced by other screen-
ing mechanisms, such as the bond polarizabilities involving
the As 4p and Fe 3s and 4p states�. This nn repulsion will
decrease U1 substantially, and may even change its sign,
making nn bipolaron pairs unstable. It is difficult to obtain
accurate quantitative estimates of all these terms, to find out
whether bound bipolaron states exist and what are their bind-
ing energies.

It is important to point out that the presence of this As-
mediated large-nn attractive interaction U1 may be essential
even if preformed bipolaron pairs do not exist. This would
put these materials in a BCS-like framework, with the pho-
non glue replaced by a virtual excitonic glue. Because in our
model U1 is so large and the effective masses are so small
one does not really need much of a retardation effect to over-
screen the bare nn Coulomb repulsion. This is unlike in any
other models, such as the Little and ABB models, which
envision a similar type of glue. In favor of this BCS-like
scenario is experimental data indicating higher Tc in samples
with shorter Fe-As distances and smaller Fe-As-Fe angles,
which is precisely what increases U1. We also note that since
the unbound polarons are fermions, appearance of magnetic
order such as a spin-density wave �SDW� at low concentra-
tions is not inconsistent with our model. In fact, their en-
hanced mass would, if anything, rather favor such an ordered
magnetic state.

However we do not want to rule out the presence of pre-
formed pairs of the kind discussed above. There is ample
evidence that singlet pairs may exist to quite high T in these
systems. For example, the magnetic susceptibility30 shows
the same strong increase with T both above the SDW and the
superconducting phase. This is very difficult to explain start-
ing from a free single-particle picture, but easy to understand
if we assume the presence of preformed singlet pairs well
above Tc, with a binding energy of the order of 100 meV or
more. The magnetic susceptibility of such a system would
increase with increasing T with an activated kind of behav-
ior, in agreement with NMR Knight-shift data.31

We therefore suggest to take the scenario of preformed
singlet bipolarons seriously. We note that a superconducting
state would then behave more like a Bose Einstein conden-
sate. At first glance one might think that its Tc would have to
be very low; however we note that these bipolarons are very
light, with a mass which is about 3–4 times the single po-
laron mass, and thus high condensation temperatures could
be expected. The other rather interesting aspect to consider is
that perhaps this scenario might also explain the low ampli-
tude SDW observed at low dopings, as being a different kind
of condensate of singlet bipolarons due to the rather strong
exchange interactions. The low amplitude would be a result
of the pairwise singlet formation tendency competing with
the pair-pair exchange interactions which would favor the
SDW. We propose to study these issues next.

To conclude, we argue that the polarizability of the anions
plays a very important role in these materials. Excess charges
at Fe sites are “dressed” by polarization clouds on nearby As

anions. As a result, the fermionic quasiparticles are electronic
polarons, with somewhat enhanced effective masses. If this
was all, one could “forget” about this physics in a similar
way to cuprates, where as long as the correct t and U param-
eters are used one generally ignores the fact that quasiparti-
cles are really Zhang-Rice singlets, with significant O anion
contributions. However, because of the large polarizability
and the geometry of the lattice, we find a strong suppression
of the on-site repulsion, which explains �at least partially�
why these materials are not strongly correlated. More impor-
tantly, a significant eV-range nearest-neighbor attraction
arises between these polarons, and must play a role in the
pairing in these materials. Whether it is sufficient on its own
to describe superconductivity or whether additional attrac-
tion mechanisms need to be found remains an open question.
We believe, however, that these effects are too large to be
irrelevant.
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APPENDIX A: THE CHARGE-DIPOLE
INTERACTION TERM

Consider the polarization cloud formed on an As ion due
to a charge q placed at a distance R away, in the direction
characterized by the vector e�. The electric field at the As site
is then E� = q

R2 e�. Note that we use an unscreened value for this
electric field. The reason is that we are interested in behavior
related to the high-frequency dynamic electronic polarizabil-
ity, and not that due to slow vibrational motion of the As
themselves. As we demonstrated here, the effective masses
of the polarons and bipolarons are fairly small, meaning that
they are highly mobile. The As ions are fast to acquire a
polarization cloud, but since they are very heavy, they simply
cannot move quickly enough to follow the fast polaron dy-
namic. This separation of energy scales allows us to ignore
lattice dynamics effects in the following.

The interaction between the As and the electric field is
Hint=−p�̂ ·E� , where p�̂ is the As dipole moment operator. In
the second quantization, and if we restrict ourselves only to s
and p orbitals to describe the relevant As states, its dipole
moment is

p�̂ = �
�,�

�s�er��p���s�
† p�,� + h.c.� , �A1�

where �=x ,y ,z or �=1,2 ,3, and we already took in consid-
eration the fact that there are no matrix elements of the di-
pole moment between orbitals of the same type ��s�r��s�=0,
etc�. Moreover, �s�er��p��=ee��aAs since the operator r� has a
nonvanishing matrix element only in the direction e�� of the
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orbital p� involved. Thus, aAs is a characteristic “size” of the
ion, defined as

aAs = �s�x�px� =� dr��x
��r��x�px

�r�� = �s�y�py� = �s�z�pz� .

�A2�

Therefore, we find

Hint = −
eaAsq

R2 �
�,�

�e� · e��s�
† p�,� + h.c.� . �A3�

This is exactly the form used in Eq. �4�, except there we have
explicitly written the various projections e� ·e�� in terms of the
angle � appropriate for our geometry, and summed over all
As anions. It follows that g=−eaAsq /R2. If the charge pro-
ducing the electric field is a single electron then q=−e, so
that

g =
aAse

2

R2 . �A4�

This shows that g is an energy equal to the typical induced
dipole eaAs times the applied electric field e /R2. We now
connect this quantity to the anion polarizability.

For simplicity, for the rest of this section let us denote
p�=��e� ·e��p�,�, i.e., it is the annihilation operator for the p
orbital oriented in the direction e� of the applied electric field.
Of course, one can form two other linear combinations of the
px , py , pz orbitals which are orthogonal to this direction.
These two do not couple to the electric field and do not
participate in the polarization cloud, thus their energetics is
trivial. The interesting part for the problem of the As cloud in
the presence of the extra charge is therefore described by the
Hamiltonian

ĥ = ��
�

p�
† p� + g�

�

�s�
† p� + h.c.� . �A5�

This Hamiltonian is trivial to diagonalize. Its ground state
has the energy

Ecloud = � − ��2 + 4g2 �A6�

and the eigenstate

�GS� = �↑
†�↓

†�0� , �A7�

where

��
† = cos �s�

† − sin �p�
† �A8�

and

cos � =�1

2�1 +
�

��2 + 4g2
 . �A9�

The angle �
90° characterizes the admixture of excited p
hole states in the ground state in the presence of the electric
field, and thus the degree of polarization of the anion. In-
deed, note that if g=0 �no electric field� this is reduced to the
expected As unpolarized ground state �holes in the s orbitals,
�=0°� whereas for g→�, the � operators describe the maxi-
mally polarized orbital �s− px� /�2, �=45°.

The second eigenstate of ĥ has an energy Eexc=�
+��2+4g2 and corresponds to filling up the orbitals ��

†

=sin �s�
† +cos �p�

† , i.e., of creating a polarization cloud ori-
ented antiparallel to the electric field. As already discussed,
one can also excite the hole in the p orbitals orthogonal to
the direction of the electric field, with energy �. Given that
� is a large energy, all these excited states are well above the
ground state.

Finally, the dipole moment induced on the As atom is

�p� = �GS�e� · p�̂ �GS� =
4eaAsg

��2 + 4g2
. �A10�

Since Eq. �A4� revealed that g is proportional to the applied
electric field E=e /R2, this shows that in the linear limit g
�� we can approximate

�p� �
4eaAsg

�
=

4e2aAs
2

�
E

and thus identify the polarizability from this linear regime
where �p�=�pE. This allows us to extract aAs in terms of �p
and then, through Eq. �A4�, to calculate

g2 =
�p�e2

4R4 . �A11�

Using �p=10 Å3 and �=6 eV gives the estimate g
=2.5 eV and thus g /�=0.4, suggesting that nonlinear ef-
fects described by our model are starting to become impor-
tant; however they are not dominant yet. For example, with
these numbers, the energy of the polarized As cloud from Eq.
�A6� is Ecloud=−1.78 eV, whereas in the linear regime
g /��1 we would have Ecloud�− 2g2

� =−2.05 eV. As a con-
sistency check, also note that the linear expression for the

energy of the cloud can be rewritten as Ecloud�− 2g2

� =−
�pE2

2 ,
as expected to be the case in this linear regime.9

APPENDIX B: BIPOLARON RESULTS

1. Polarization cloud operators

For completeness, we list here the operators which de-
scribe the polarization clouds for the As atoms which are nn
to both charged Fe sites, for second-nn, nn, and on-site bi-
polarons. These are the analogs of Eqs. �A8� and �A9� for the
electric fields appropriate for each case.

For a second-nn configuration, if the As which is nn to
both charged Fe sites is Asi, then its ground state is described
by �̃i↑

† �̃i↓
† �0�, where

�̃i,�
† = cos �si,�

† − sin �pi,3,�
† , �B1�

and

cos � =�
1

2�1 +
�

��
2

+
16

3
g

2� �B2�

with �
90°.
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For a nn bipolaron, the creation operators for the polar-
ization clouds of the central As ions are

�̃̃i,	,�
† = cos �si,�

† − sin �
	pi,�,�

† + pi,3,�
†

�2
, �B3�

where �=x or y is the direction perpendicular to the bipo-
laron axis, and the 	 sign shows whether the cloud is
parallel/antiparallel to the � axis. The new mixing angle is

cos � =�
1

2�1 +
�

��
2

+
32

3
g

2� �B4�

with �
90°.
Finally, the cloud operators for the on-site bipolaron are

similar to the original polaron cloud operators

�̃̃̃i,�,	,�
† = cos �si,�

† − sin ��	sin �pi,�,�
† + cos �pi,3,�

† 	 ,

�B5�

where �=1 or 2 depending on the in-plane alignment of the
cloud, and 	 reflects its orientation. The only difference is
the new mixing angle �
90°, where

cos � =�1

2�1 +
�

��2 + 16g2
 . �B6�

2. Matrix elements of the hoping Hamiltonian

If the separation �� between the two excess charges is large

enough, the hopping Hamiltonian T̂ will hop one of the elec-
trons away from its clouds, while the second one remains
unperturbed. As a result, one expects the matrix element to
be proportional to the teff of the single polaron. Indeed, ex-
plicit calculation shows that if the separation �� is at least that
of a third nearest-neighbor bipolaron, then

�k�,�� + e�x�T̂�k�,��� = − 2teff cos
kxa

2
,

�k�,�� 	 e�y�T̂�k�,��� = − 2teff cos
kya

2
. �B7�

The cosine factors appear because of the phases in the defi-
nitions of the eigenstates �k� ,���, which change when the sin-
glet separation �� changes. Given the restrictions on the al-
lowed values of �� , one needs to be a bit careful near the
boundary of allowed values. For example, based on the defi-
nition of Eq. �21�, it is straightforward to check that

�k�,�xe�x + �n + 1�e�y� = eikya�2n+1�/2�k�,�xe�x − ne�y� .

Given the periodic boundary conditions, the allowed values
for momentum, if N=2n+1, are kya=2�ny / �2n+1�, and the
phase factor linking the two states can only be 	1. This sign
is important because hopping in the y direction links the state

with �y =n to that with �y =n+1; however the later one is not
among the allowed �� values. The identity above links it to an
allowed value, but also introduces a phase shift �the sign�
which is transferred to the corresponding matrix element. A
similar situation arises for hopping in the x direction when
�x=n, �x=0 and hopping in the y direction for �y =−n. Fi-
nally, it is important to note that these phase shifts are dif-
ferent for triplet states �they have opposite sign in most, but
not all cases�. Other than this �and the nonexistence of an
triplet onsite bipolaron, as already discussed�, essentially ev-
erything else is the same in the calculation for triplet states.

Different effective hopping integrals appear when the
electrons are closer together. For nearest-neighbor hopping,
there are four such special cases. The first corresponds to
hopping from third-nearest-neighbor to nearest-neighbor bi-
polaron. A straightforward calculation of the overlap of the
corresponding polarization clouds leads to an effective hop-
ping

t3

t
= �i,i + e�x�i,i + 2e�x�

= �cos ��cos2 � + sin2 � sin2 ��	4

� �cos � cos � + sin � sin �� cos �

�2
+

sin �

2 
�4

.

The various angles were defined in the previous subsection.
The matrix elements for such processes are

�k�,2e�x�T̂�k�,e�x� = − 2t3 cos
kxa

2
,

�k�,2e�y�T̂�k�,e�y� = − 2t3 cos
kya

2
, �B8�

in other words like the general matrix elements of Eq. �B7�,
except with the appropriate value of the effective hopping
integral.

The second special case involves hopping between
second- and fourth-nn bipolarons. In this case, the overlap
between the corresponding polarization clouds leads to

t4

t
= �i,i + e�x + e�y�i,i + e�x + 2e�y�

= cos6 ��cos2 � + sin2 � cos2 �	4

� �cos � cos � + sin � sin � cos �	2 �B9�

and the matrix elements

�k�,2e�x 	 e�y�T̂�k�,e�x 	 e�y� = − 2t4 cos
kxa

2
,

�k�,e�x 	 2e�y�T̂�k�,e�x 	 e�y� = − 2t4 cos
kya

2
. �B10�

The third special case involves hopping between second-
and first nearest-neighbor bipolarons. This leads to a renor-
malized hopping
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t2

t
= �i,i + e�x�i,i + e�x + e�y�

= cos6 � � �cos2 � + sin2 � cos2 �	2

��cos � cos � +
sin � sin �

�2
�2

� �cos � cos � + sin � sin �� cos �

�2
+

sin �

2 
�2

and the matrix elements

�k�,e�x 	 e�y�T̂�k�,e�y� = − 2t2 cos
kxa

2
,

�k�,e�x 	 e�y�T̂�k�,e�x� = − 2t2 cos
kya

2
. �B11�

Finally, for the hopping between on-site and nearest-
neighbor bipolaron, the effective hopping is found to be

t1

t
= �i,i�i,i + e�x�

= cos4 � cos4�� − ��

� �cos � cos � + sin � sin �� cos �

�2
+

sin �

2 
�4

,

and the matrix elements are

�k�,e�x�T̂�k�,0� = − 2�2t1 cos
kxa

2
,

�k�,e�y�T̂�k�,0� = − 2�2t1 cos
kya

2
. �B12�

The extra factor of �2 is because of the on-site singlet nor-
malization. Of course, for triplet states t1=0 since there is no
on-site triplet.

In Fig. 13�a� we plot the values of t1 / t, t2 / t, t3 / t and t4 / t
vs. � for �P=10 Å3. These should be compared with teff / t
shown in Fig. 6. The overall changes are relatively small.

The situation for second-nearest-neighbor hopping is
similar. If �� is large enough, then the cloud overlap is the
same as for individual polarons and the renormalized hop-
ping is teff� , giving the matrix elements

�k�,�� + e�x 	 e�y�T̂��k�,��� = − 2teff� cos
�kx 	 ky�a

2
. �B13�

Again, special care must be used for values of �� near the
edges of its area of allowed values so that the periodic
boundary conditions are properly accounted for. This is done
in a manner totally analogous to that explained for nearest-
neighbor hopping.

There are again four special cases of different renormal-
ization of t�. One involves the hopping between the two

possible nearest-neighbor bipolaron states, which has the
matrix element

�k�,e�x�T̂��k�,e�y� = − 2t2��cos
�kx + ky�a

2
+ cos

�kx − ky�a
2

� ,

where

t2�/t� = �i,i + x�i,i + y�

= �cos2 � +
1

2
sin2 ��2

� cos8 ��cos � cos �

+ sin � sin �� cos �

�2
+

sin �

2 
�4

.

The second involves the hopping between second- and
third-nn bipolarons, as well as hopping away from a
second-nn bipolaron, with the matrix elements

�k�,2e�x 	 2e�y�T̂��k�,e�x 	 e�y� = − 2t3� cos
�kx 	 ky�a

2
,

�k�,2e�x�T̂��k�,e�x 	 e�y� = − 2t3� cos
�kx � ky�a

2
,

�k�,2e�y�T̂��k�,e�x 	 e�y� = − 2t3� cos
�kx � ky�a

2
,

where t3�= t��i , i+x+y � i , i+2x+2y�= t��i+x+y � i+2x� is
found to be

t3� = t��cos �	10�cos � cos � + sin � sin � cos �	2

� �cos2 � + + sin2 � cos�2��	2.

The third case involves hopping between first- and
fourth-nn bipolarons, with matrix elements
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FIG. 13. �Color online� Effective hoppings for closely spaced
bipolarons. For these parameters, the t2 and t3 curves are essentially
superimposed, therefore we only show t2 / t.
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�k�,2e�x 	 e�y�T̂��k�,e�x� = − 2t4� cos
�kx 	 ky�a

2
,

�k�,e�x 	 2e�y�T̂��k�,e�y� = − 2t4� cos
�kx 	 ky�a

2
,

where t4�= t��i+x � i+2x+y� equals

t4� = t��cos �	8�cos2 � + sin2 � cos�2��	2

� �cos � cos � + sin � sin �� cos �

�2
+

sin �

2 
�4

.

Finally, the hopping between an on-site and a second-
nearest-neighbor bipolaron �possible only for singlet states�
leads to

�k�,e�x 	 e�y�T̂��k�,0� = − 2�2t1� cos
�kx 	 ky�a

2
,

where

t1� = t��i,i�i,i + x + y� = t��cos � cos�� − ��	6�cos�� − ��	2.

The renormalized values t1�, t2�, t3�, and t4� are shown, in units
of t�, in Fig. 13�b�.

APPENDIX C: ESTIMATES FOR THE ACCURACY
OF VARIOUS APPROXIMATIONS

In the previous sections we argued that first-order pertur-
bation theory is reasonably accurate for our Hamiltonian,
given the values of the various parameters relevant for the
Fe-based superconductors. However, the Hamiltonian itself
already embodies two approximations, namely �i� that only
As atoms nn to a doping charge become polarized, and �ii�
that dipole-dipole interactions between the various polarized
As atoms are ignored. We provide here estimates for the
accuracy of these approximations. We begin by discussing
the single polaron.

Assume that interactions with the eight As atoms which
are second nn to a charge are also included. This supplemen-
tary interaction would be described by a Hamiltonian similar
to Hint of Eq. �4�, except it would have a new energy scale g�
and new angles describing the orientations of these Fe-As
bonds.

From the definition of the interaction energy, Eq. �A4�, we
have

g�

g
=

R2

R�2 ,

where R�=�11a /2 is the distance from an Fe to a second-nn
As atom. This comes about because the only difference is in
the electric fields created at the two sites, and these are in-
versely proportional to the square of the distances.

It then follows immediately that the contribution to the
static polaron energy of these eight clouds would be

Ecorr = 8�� − ��2 + 4g�2� , �C1�

which for our typical parameters is Ecorr=−1.2 eV. Of
course, considering the polarization of even more distant As
atoms would lower this energy even more.

However, this decrease is more than compensated for by
consideration of dipole-dipole interactions. To estimate these
energies, let us consider only the six pair interactions be-
tween the four largest dipole moments on the nn As sites.
Consider a pair of two such dipoles, with moments p�1 and
p�2. Their magnitude is given by Eq. �A10� and their orienta-
tions are straightforward to determine, as is the distance d�
between them. Using these values, we find for any such pair
that

Ed-d =
p�1 · p�2

d3 − 3
�p�1 · d���p�2 · d��

d5 =
10�p�

3�2a3

g2

�2 + 4g2 .

For our typical parameters, Ed-d=0.66 eV and therefore the
total for the six pair interactions is �4 eV. Inclusion of con-
tributions from interactions with the dipoles on the second nn
As atoms will decrease this because nn and second-nn di-
poles closest to each other are now roughly parallel, not an-
tiparallel, to each other.

Taken together and without further corrections, these two
energies would renormalize EP,GS to about half the value
predicted in their absence. If we keep adding further rows of
neighbors into the calculation, the polaron energy saturates
�slowly� to around −1.6 eV �of course, one expects the long-
range dependence of the electric field to be screened away
from a 1 /R2 dependence. The precise result will depend on
how this screening occurs�. Having extended clouds would
also lower the effective hoppings somewhat more, although
we expect this to be a much smaller effect: clouds which are
far from the electronic charge are not changed much if the
charge moves by one site. As a result, their contribution to
the total overlap should be very close to 1.

Although the renormalization of the static part of the po-
laron energy is quite substantial, these corrections do not
have nearly as large an effect on the bipolaron interaction
energies U0, U1, and U2. The reason is that these are differ-
ences between the true bipolaron energy and the energy of
two free polarons, and therefore many contributions from
both the extended clouds and the dipole-dipole interactions
cancel each other out.

For example, consider the effects of these corrections on
U1, which is the most interesting energy. For two polarons at
an infinite distance from each other, the dipole-dipole correc-
tion is 12 Ed-d and there are a total of 16 second-nn extra
clouds. For a nn bipolaron, the dipole-dipole energy is
roughly 11 Ed-d because the two As tetrahedra share one side
�of course, the two central As atoms have somewhat different
dipole moments pointing in somewhat different directions,
and also there are smaller contributions from interactions be-
tween the noncentral As atoms belonging to different Fe, but
11 Ed-d should be a reasonable guess�. This configuration
would only have 12 second-nn extra clouds. Subtracting
these corrections leads to an overall correction of U1 roughly
equal to − 1

2Ecorr−Ed-d�0. In reality, the energy is lowered
because the close location of the two charges implies larger
electric fields at all sites for the nn bipolaron, therefore larger
clouds. We find that as we increase the number of As neigh-
bors included in the cloud, U1 is lowered from �−1 eV
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�the value we find when the approximations are made� to
−2.87 eV if we include second-nn and dipole-dipole interac-
tions, to −4 eV if more and more neighbors are added.
Again, one expects that the electric fields will be screened

over some finite distance which will decide the precise value.
The point, though, is that relaxing the approximations in-
creases this attraction energy, in other words the physics we
discuss here becomes more relevant, not less so.
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