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Ferromagnetic spin polaron on complex lattices
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We present a simpler derivation of the exact solution of a spin polaron in a ferromagnet and generalize it to
complex lattices and/or longer-range exchange interactions. As a specific example, we analyze a two-
dimensional MnO,-like lattice (as in the ferromagnetic layers in LaMnOs) and discuss the properties of the
resulting spin polaron in various regimes. At strong couplings the solution is reminiscent of the Zhang-Rice
singlet, however the electronic wave function involved in the singlet is dependent on the momentum of the

singlet, and multiple bands may appear.
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I. INTRODUCTION

The motion of a charged particle in a magnetically or-
dered background is one of the central basic problems en-
countered in doped, magnetically ordered insulators. Well-
known examples are hole- or electron-doped ferromagnetic
(FM) insulators such as EuO,' hole-doped parent compounds
of the colossal magnetoresistance materials,? and hole- and
electron-doped parent compounds of high-temperature
superconductors.>*

The exact solution of the problem in a two-dimensional
(2D) antiferromagnetic (AFM) lattice as represented by the
cuprates still eludes us. Diagrammatic quantum Monte Carlo
calculations on an assumed Néel-ordered lattice and in a
single band tJ-like model provide an exact numerical solu-
tion to this approximated system.’ In the real system, how-
ever, the hole propagates in an O 2p band while the spins are
a result of a half-filled Cu d,2_,» band with a large Hubbard
U.

The other examples such as EuO or LaMnO; are either
ferromagnetic or, as in the case of LaMnOs, have ferromag-
netic 2D layers. As we show here, for these systems there is
an exact solution available for a hole or an electron propa-
gating in either the same, or a different band from that of the
spin background, and for any sign and magnitude of the cou-
pling. Exact solutions of this kind provide important infor-
mation on the existence range of bound spin-polaron states
as envisioned, for example, for Zhang-Rice (ZR) singlets® in
which the hole propagates in an O sublattice and the local
spins are on a transition-metal (TM) sublattice. It is impor-
tant to note that aside from cuprates, there is evidence that
doped holes in manganites LaMnOj; and cobaltates Na,CoO,
also propagate on the O sublattice but are strongly coupled to
the TM.

Indeed, it has been known for a long time that an exact
solution can be found for the Green’s function of a particle
(electron or hole) moving in a lattice of ferromagnetically
ordered spins at zero temperature. If the spin of the particle is
parallel to the FM order, the solution is trivial: its energy is
simply shifted by its exchange coupling to the FM spins.
However, if the particle spin is antiparallel to the FM order,
it can scatter and spin flip by creating a magnon. Depending
on the values of the various parameters and the total energy,
this can result in a finite lifetime (incoherent scattering lead-
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ing to a broad spectral weight) or in an infinitely lived
quasiparticle—the spin polaron—comprising the bound state
of the particle and the magnon. In the latter case, the disper-
sion of the spin polaron can be significantly renormalized
compared to that of the free particle.

Similar physics is found in a seemingly more complex
Kondo-Anderson model that also admits an exact solution.'3
This is not surprising because the restriction placed there on
the allowed occupation numbers of the d orbitals essentially
maps it back to an electron interacting with FM-ordered
spins. Effort has also been focused on trying to extend this
type of solution to finite-temperature (i.e., presence of mul-
tiple magnons) to finite particle concentrations, etc. While, to
our knowledge, no other exact solutions have been found,
such work has resulted in various approximations for the
self-energy.'*

One common aspect of all these exact solutions is the
assumptions (1) that the particle moves on the same lattice
that hosts the FM spins (usually a simple cubiclike lattice in
d dimensions, although generalizations to other cases are
trivial) and (2) that the particle-spin exchange is local, i.e.,
purely on-site.

In this paper we show that the 7=0 exact solution can be
generalized to systems where these restrictions are lifted: in
other words, to cases where the particle moves on the same
lattice that hosts the FM spins but the exchange is longer
range, as well as to cases where the particle moves on a
different sublattice than the one hosting the FM spins so that
the exchange is necessarily not on-site. We focus on a spe-
cific problem of the latter type and briefly comment on other
possible generalizations later on. While our formalism is
similar in spirit to that used in Refs. 7-12, it is in practice
much simpler to use and more transparent. This is essential
to allow us to find these generalized exact solutions.

Such calculations are necessary in order to understand
quantitatively direct/inverse angle-resolved photoemission
spectroscopy (ARPES) (when the particle is a hole/electron)
in insulators which order ferromagnetically, for instance, ox-
ides such as EuO, CuCr,S,, CuCr,Se,, and MgFe,0,. They
may also be relevant to some extent for itinerant ferromag-
nets given that spin-polarized electron loss spectroscopy on
thin Co films' reveals good fits of the measured spin-wave
spectrum to effective Heisenberg models; however, more
work needs to be done to understand how to properly extend
it in this direction.
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FIG. 1. (Color online) Sketch of the lattice and the indices of
sites in the unit cell. The bottom-right cell shows the signs of the
p-orbital lobes, which define the signs of the hopping integrals #;
and 1,.

Our results suggest possible spintronic uses for these ma-
terials, in terms of transport of spin-polarized currents, since
we prove that charge carriers with spin-polarization antipar-
allel to that of the FM background can propagate coherently;
in other words, scattering on magnons does not necessarily
lead to a finite lifetime. Equally important, the results also
give some useful insights on ways to improve our under-
standing of the propagation of electrons or holes in antifer-
romagnetic backgrounds. These issues are discussed in more
detail below.

The paper is organized as follows: in Sec. II we introduce
the specific model to be solved. In Sec. III we give its exact
solution and comment on various possible generalizations. In
Sec. IV we present and analyze a selection of interesting
results. Section V contains our summary and conclusions.

II. MODEL

We study the 2D model of Fig. 1. It consists of two sub-
lattices: the one hosting the FM-ordered spins is a simple
square lattice of lattice constant a, whose sites are marked by
black squares (the analogs of the Mn sites in a MnO, lattice).
The charge carrier is moving on the other sublattice, which
includes all the sites marked by circles (the analogs of O
sites in a MnO, lattice). The spin of the charge carrier is
coupled through exchange to the spins on its two nearest-
neighbor sites.

Such a model would describe, for example, a MnO, layer
of the parent compound LaMnOj if it was modeled as a
charge-transfer insulator.'® The Mn ions are in the 3d*(S
=2) configuration and have ferromagnetic order in each
layer. In a charge-transfer insulator, doping would introduce
a hole in the O 2p orbitals instead of emptying an e, Mn 3d
orbital. The spin of the hole would be AFM coupled to the
neighboring Mn spins, with a Jy~|r, ,|*/AE, where 1,4
would measure the hybridization of the orbitals, and AE
would be the overall energetic cost to move the hole to a Mn
site.

This model is also reminiscent of the CuO, layers of cu-
prate parent compounds, which are charge-transfer materials
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with holes going into O 2p orbitals. In this case, S=1/2 for
the 3d° configuration of the Cu in the insulator; however, of
course these spins order antiferromagnetically, not FM as
assumed to be the case here.

In any event, our primary motivation here is to exemplify
the general solution for these types of problems, and we
chose this model Hamiltonian because it is complex enough
to demonstrate the full power of our solution yet simple
enough not to make the notations too cumbersome. It also
unveils some very interesting physics. The solution can be
directly generalized to a much wider class of similar prob-
lems, as discussed below, and can therefore be used to de-
scribe realistic systems.

We assume a total of N unit cells, with periodic boundary
conditions. In all our results we let N—cc. Each unit cell is
indexed by a pair of integers (i, /) and contains three sites: a

spin site located at R;j=iaX+jay and two inequivalent elec-
tron sites, denoted as 1 (for the site on the x rung; location

13,-]-;1=I$,-j+§)2) and 2 (site on the y rung; location R;;,
=R;j+35Y).

The hopping between the various electron sites is also
indicated in Fig. 1. For simplicity we limit ourselves to
nearest-neighbor hopping—generalizations are straightfor-
ward. If the orbitals occupied by the charge carrier are p
orbitals (as drawn), then one must take 7, =—1,=t, whereas if
they are s-type orbitals (not shown), one should choose f,
=t,=t. In any event, we will use general #; and #, values for
the derivation. The difference between a hole vs an electron
charge carrier is the sign of #: >0 for electrons, and <0 for
holes. At first sight one would think that the sign of 7 is
irrelevant since the model is particle-hole symmetric. In fact,
while the energetics is the same, the sign is important for the
wave functions and therefore has interesting consequences.

In the following, we assume that the charge carrier is an
electron, and we will comment on the differences for holes
where appropriate. We introduce the Fourier-transformed op-
erators

. 1 == ,
i kR \ T
Cine = ?2 e"NUNC o (1)
VN i j

where cj}gw creates an electron with spin o at site A=1 and
2 of the (i, ) unit cell. In terms of these, the nearest-neighbor

hopping of the electron is written simply as
T= Z 512(072,1,0%2,0 +h.c.), (2)
k.o

where the sum is over the allowed values of k in the first
Brillouin zone (BZ) (=%, 2]X (-7, 7], and

k.—k, k.+k
€=—21, cos(x—‘)—a—th COS(X_V)_“_
2

3)

The hopping Hamiltonian is diagonalized trivially by using
the new operators,

1
Ci+ o= T (Ci10 % Cire) (4)
V2

in terms of which the hopping Hamiltonian is
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T=2 €(cf, ,Ciro=Cf_ oCino)- (5)
k.o
As expected for this two-site unit cell, there are two bands
for the free electron (they happen to touch; there is no gap
between them). If 1,=¢, (s orbitals), the ground state (GS) is
at the I' point k,=k,=0. If #;=—1, (p orbitals), the ground
state is moved to k,=k,=7/a or equivalent points at the
corners of the Brillouin zone. In fact, the whole dispersion is
just translated by ;—7(1, 1) inside the Brillouin zone; hence,
the resulting physics is exactly the same in both cases. Dif-
ferences between s and p orbitals (besides this overall shift)
are only apparent if there is longer-range hopping. Since we
do not consider longer-range hopping here, in the following
we will report results for the s-orbital case #,=1,.
To the hopping term, we add the FM Heisenberg ex-
change between the spins of magnitude S,

Hpins == 2 [S:Si jo1 + Si.Siarj = 2871, (6)
i,j

where the sum runs over all units cells (we limit ourselves to
nearest-neighbor exchange since generalizations to longer-
range exchange are trivial, so long as there is no frustration)
and the electron-spin exchange,

Hexe = JOE [Eij,l (Sij+ Sin1 ) + §ij,2 (S + Si,j+1)], (7)

ij

where ij’)\=2aﬁc;’>\)aa—§£c;)\’ g 1s the spin of the electron at
site A=1 and 2 of the (ij) unit cell.

The total Hamiltonian is the sum of the three terms of
Eqgs. (5)—(7). For later convenience, we divide it in two parts
as follows:

H=H0+V, (8)

where

25%] 9)

Ho=T- JZ (S5 /S5 je1 + S0 Sh1 =
i.j
includes the hopping and the diagonal (zz) part of the FM
Heisenberg interaction between the spins. V includes the re-
maining terms, i.e., the xy part of the FM exchange between
spins, and the coupling of the electron spin to the spins lo-
cated on its two neighboring sites.

III. GREEN’S FUNCTION OF THE SPIN POLARON

We consider the case where a single electron is in the
system and T=0. Let [FM)=|+S,+S, ..., +S) be the ground
state of the spins in the absence of the electron. If the elec-
tron has spin-up the problem is trivially solved since the xy
parts of all exchanges have zero action in this subspace (no
spins can be flipped). We therefore only treat explicitly the
case of a spin-down electron.

We define
C];,l,(r
Vio= ( )
C];,2,0’

and introduce the 2 X 2 Green’s-function matrix as follows:

(10)
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G(k.0) = (PM[¥; | G(0) ¥} [FM), (11)

where the resolvent is é(w):l/(w—HHn), with >0 in-
finitesimally small, and we hereafter set Zi=1. This shorthand
notation means, for example, that the (1,2) element of this
matrix is

GI,Z(E’ (1)) = <FM|C]2,1,Lé((1))C;2’l|FM>,

etc., so that all four possible combinations are considered at
once. Using a Lehman representation,!” it is clear that

<FM|C];)\’L|M><M|C]E)\”l|FM>

s

Gy (k) =
)\’)\( ©) EM: w—E, +in

where H|u)=E,|u) are the single-electron eigenstates in the
sector of total z-axis spin NS— % In other words, the poles of
these quantities give all the eigenenergies and the residues
measure overlaps between the true eigenfunctions and the
appropriate free-electron state c,g}\’ L|FM>; A=1 and 2.

Our goal is to calculate exactly this Green’s-function ma-
trix. We do this by using repeatedly Dyson’s identity G(w)
=Gy(w)+G(w)VGy(w), where Gy(w)=1/(w—Hy+in) and
H, is defined in Eq. (9).

Rotating to the diagonal basis c;. | [see Eq. (4)] and
back, it is straightforward to show that

Go(@) W} [FM) =¥ [FM)Go(k, o). (12)
where we introduce the 2 X 2 matrix,
_ GYk,w) GS(K o)
Go(k,w)=< SR B (13)
GOk w) Gk w)

in terms of the known free-electron propagators,

) 1 1 1
Gg—)(k,w)r[ — } (14)
2l w—€+in ow+e€+in

Using Dyson’s identity once thus leads to the equation,
G(k. ) = [1+ (FM[¥7 G(w) VY] [FM)]Gy(k, o).

Since the objects appearing here are 2 X 2 matrices, the order
of multiplications in these equations is important.

The action of V on ‘lf;; i|FM> is easily estimated. The xy
exchange between spins has no contribution since all spins
are up. As a result, one finds contributions only due to the
electron-spin exchange, resulting in as follows:

Gk, w) = GO(E, ) + |:— JOSG(E, )

J — e = s
2 F(k,q,@g(q)} Go(kw). (1)
q
The first term in the square bracket comes from the diagonal
zz exchange and corresponds to a simple shift in the total
electron energy (see below). The second term comes from
the xy exchange, which allows one spin to be lowered by 1,
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while the electron spin is flipped to o=1. This leads to a new
2 X 2 Green’s-function matrix as follows:

Fi.g.w) =S ™MW Gl V] S;IEMD).
i.j

Finally, the diagonal matrix,

cosM 0
g(q) = Pk (16)
0 cosgzL

appears in Eq. (15) because the spin at site (ij) can be flipped
by exchange with an electron present at either of the (ij, 1),
(ij,2), (i-1,j,1), or (i,j—1,2) sites, which are displaced by
*ax/2 or ay/2 from it [see Eq. (1) for the definition of the
phases in the Fourier transforms].

Given the structure of the 50 matrix, it follows that

[Golk, )" +JoS=[Gy(k,w+JoS)]™", so we can further sim-
plify Eq. (15) to

. J, — .
Gk = | 1+ FEG0)g(q) |Gok 0+ 15S).
q
(17)
This shows that an equation for F is needed to solve the
problem. Using Dyson’s identity again, we find, after very

similar kinds of manipulations, that its equation of motion is

F(k,g, ) = 2J,SG(k,0)8(§)Go(k — ¢, @ — Q= JoS)

J _ - -
-2 Fk0.wz(0-9)

0
XGolk = G, w=Qz = JyS), (18)
where
Q= 4Js<sin2%a + sinzg;—a> (19)

is the one-magnon spectrum for this FM spin lattice.
Equations (17) and (18) can now be solved to find G(k, )

and F(k, ). Note that usually there is an infinite sequence of
equations of motion connected to one another. In this prob-
lem, the series is truncated to just two equations because of

symmetries: since §Z,wt (which includes all spins and the
electron) commutes with the Hamiltonian, the evolution is
always within the Hilbert sector with z-axis spin NS—1/2.
This only includes the states with all spin-ups and the elec-
tron with spin-down; or the electron has spin-up, and then
one spin is lowered by 1 (one magnon is created in the sys-
tem). This also explains why generalizations to finite 7' (mul-
tiple magnons) or finite electron concentrations are far from
trivial: in those cases, more and more equations of motion
are generated as the size of the relevant Hilbert subspace
increases substantially, and their solution becomes very dif-
ficult.
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Equations (17) and (18) can be solved analytically be-
cause of the simple structure of the g matrix, which contains
only trigonometric functions. In fact, if we also define

q.a

sin—— 0
gq)= Ll (20)
0 sinc—]L
2
then we can “factorize”
20-9 =307 +5 Qg (21)

since cosgg;z‘l)ﬂ = cos%“cosgzﬂ + sin%”singf.

We define the auxiliary quantities,

ik.0) =~ S FEG.0)F(0). 2
Q

which is the only quantity we need to compute G, see Eq.
(17), and

i.0) =3 FE.0.07(0) 3)
[

in terms of which we can rewrite Eq. (18) as

F(E‘j’ (1)) = ‘IO[_ f(lg’ w)g(é) _f(lg’ w)g(@
+28G(k, 0)Z(1Golk - G.w — Qz = JyS).
(24)

Substituting this in Egs. (22) and (23), we obtain two linear
(matrix) equations with unknowns f and f and inhomoge-
neous terms proportional to G,

f(];, (1)) = [_ ]ﬂf(lzv (l)) + 2JOSG(]€’ w)]gl l(lz’ (1))
~ Jof(k.0)g (k,w)
and
f(lg, 0)) = [_ Jﬂf(lg’ (l)) + 2"IOSG(E’ w)]g]Z(lg’ w)
— Jof (k. 0)gn(k, w),

where we introduced the known 2 X 2 matrices as follows:

R 1 -
ko) = ;,2 8@)Gok-q,0-Q;-J,SE(), (25)

q

- 1 - .
gk o) = ;,2 2@)Gok-g,0-Q;-JS)E(@), (26)

q

. 1 ~ .
Eulk,w) = X,E 8@Gok-g,0-Q;- 1Sz, (27)

q
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EME@=%E§@Gﬂ¥iw—QrL®ﬂ®-Q&
q

In fact, lots of these matrices’ elements are related to each
other by various symmetries, so fewer than 16 actually need
to be calculated. Letting N—, then each of these corre-
sponds to a two-dimensional integral over the Brillouin zone.
One integral can be performed analytically, and the second
we integrated numerically, therefore these matrices are easy
to calculate.

These coupled equations are easy to solve and the result-

ing expression of f can now be used in Eq. (17) to find the
Green’s function explicitly. The final result is

Gk,w) ={[Gy(k, 0+ JoS)]™" = 2875{1 = [M (K, )]},

(29)
where we introduced the matrix as follows:
M(k,w) =1 +J{g)1(k,w) - Jog 1,k »)
X[1+Jggnk o) gk )} (30)

Several comments are in order. First, the electron-spin
exchange J,, appears in three places in Eq. (29), namely, (i) in

the overall shift by —J,S of the energy argument of the C_}al
term (first term in the denominator); (ii) as an overall factor
for the “self-energy” (second term in the denominator); and

(iii) as a shift by +J,S in the energy argument of the G,
functions appearing in the definitions of g,;, etc., in the self-
energy. The first and third of these are due to the zz ex-
change, which simply shifts the energy of the electron by
*J,S depending on whether its spin is parallel or antiparallel
to the FM background. The second is due to the xy exchange,
which facilitates the spin flip of the electron. Therefore, the
generalization to an anisotropic interaction is straightfor-
ward, for instance, if J, ; =N\J, then the self-energy is mul-
tiplied by A. The exchange J between spins appears only in
the magnon dispersion (};, which enters only the gy, etc.,
functions appearing in the self-energy. This is not surprising
since that self-energy term is due to contributions from one-
magnon plus spin-up electron states. If the FM exchange
between spins is longer range, one simply has to replace the
magnon dispersion with the appropriate one.

Equation (29) thus reveals that the free spin-down elec-
tron state of bare energy e;—JS is mixed, through spin flip-
ping due to the xy term, with the continuum of one-magnon
plus spin-up electron states of bare energies €;_;+JoS+(;. It
follows that if we are interested in having an infinitely long-
lived quasiparticle state at low energies, then the electron-
spin exchange must be antiferromagnetic J,> 0 (this is easily
confirmed numerically). We will focus on this situation in the
following (the J,<O case is less interesting as the low-
energy dynamics is incoherent, with finite lifetime excita-
tions).

Let us now briefly comment on other generalizations. The
reason we have equations for 2 X2 matrices is that, in this
problem, the electron unit cell has a two-site basis. For a
basis with n different sites per unit cell one would have
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similar equations but for n X n matrices, where all the elec-
tron hopping information would be encoded in the corre-

sponding G, matrix. The dimensionality of the problem en-
ters only in the sums over the Brillouin zone, i.e. in the
number of integrals to be performed. Slightly more compli-
cated is the generalization of the electron-spin exchange to
longer range. This leads to the appearance of more auxiliary

functions such as f and f; i.e., one needs to solve a linear
system with more unknowns in order to find the self-energy.
The various auxiliary functions correspond to the different
possible phase shifts [analogs of the cos(q,,a/2) and
sin(g, ,a/2) appearing in the g and g matrices]. For example,
assume that for the same system discussed here, the electron
can visit all sites, including the spin sublattice. Also, assume
that there is on-site exchange between the electron and the
local spin if the electron is on the spin sublattice, besides the
exchange discussed here. In that case, one has to deal with
3 X 3 matrices (three-site basis) and there are three auxiliary
functions: two similar to the ones that appeared here and one
corresponding to zero phase shift for the on-site interaction
[because of the zero phase shift, there is no auxiliary func-
tion proportional to sin(0)].

We have checked explicitly that one can also include
more complicated terms, for example, electron hopping ac-
companied by a spin flip coupled to a spin lowering of a
nearby lattice spin, such as cfj!mc,-j,z, |S;; (such terms have
important consequences, as we discuss below). In fact, we
believe that essentially any problem from this class is solv-
able analytically, along these general lines.

IV. RESULTS

As already mentioned, we present results for the more
interesting case of an AFM electron-spin exchange, J,>0,
whose low-energy state is an infinitely lived spin polaron.
Also, the results are for r;=f,=¢ (s orbitals), and r will be
used as the energy unit. As discussed previously, for the
simple nearest-neighbor hopping used here, the only differ-
ence for p orbitals would be to shift the values of all mo-
menta by 7(1,1). For holes, ¢ changes sign with conse-
quences discussed where appropriate.

We begin by analyzing the dependence of the ground-
state energy Egg and quasiparticle weight on various param-
eters of the problems. In panel (a) of Fig. 2, the full lines
illustrate the dependence of Egg on the electron-spin ex-
change J,/t, as well as the spin value S, for a fixed spin-spin
exchange J/1=0.05. As expected, the GS energy is lowered
as both J, and S increase, mainly due to the favorable zz
exchange between the lattice of FM spins and the spin-down
electron.

The dashed lines in Fig. 2(a) show the asymptotic expres-
sions obtained by first-order perturbation in the hopping ¢ in
the strong-coupling limit Jy/¢t— . The agreement is very
reasonable even for rather small J,/t values; therefore, it is
useful to analyze this solution in some detail to understand
the nature of the spin polaron.

In the absence of hopping, =0, we can form two sets of
translationally invariant states of well-defined momentum &,
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FIG. 2. (Color online) (a) Spin-polaron ground-state energy, in
units of 7, as a function of J,/¢ for S=%, 1, and % and J/t=0.05. The
full lines show the exact results, while the dashed lines give the
strong-coupling perturbational limit discussed in the text. (b) Spin-
polaron ground-state energy, in units of ¢, as a function of Jy/¢ for
S=% and J/t=0.05, 0.25, and 1.00. (c) Spectral weight Z;;
=|(FM|cz, |GS)|* as a function of Jy/t for three values of S and
J/t=0.05.

which are ground states of the electron-spin exchange H.,.,
namely,

R KRy, 1
k? 1> = 2 Z =
i; N 45+ 1

— 1 . -
X [ \"4SCZ;',1,1 - T,_chj’l’T(Sij + SHLJ.)} [FM),
\’

(31)
o e Nij2 1
k,2) = \/
) Ej N V4s+1
— 1 _ _
X [ VA4Sl | - —VTSCITJ.J’T(SU +8;, jﬂ)} [FM).
(32)

For all of these states (A=1,2),

Hexc 12, )\>

k) =—J, (S+l>
s = 0 )

The hopping T lifts this degeneracy. In fact, it is straight-

forward to show that (k,\ 7A"|l€’,7\>=0 while (k,1 YA"|I€’,2>
1
45+

= 5,;’,;,45—+?e,;. Thus, within this level of perturbation theory,

the eigenstates are

k1) * |k,2)) (33)

and their corresponding energy is found to be
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EY = * e

kx

4S+5  3JS 1(
—J0

1
+ S+—>. (34)
45+1 4S+1

2

The middle term is due to the spin-spin FM exchange energy
lost because part of the wave function has one spin in the
background lowered by 1.

It follows that the perturbational prediction for the
ground-state energy, shown in Fig. 2, is

45+%  3Js 1
—2 —J0<S+E>. (35)

EP)=— 41 +
GS 4S+1  4S+1

In the limit of large J,/¢ the agreement with the exact solu-
tion is very good. In the limit J,— 0, and ignoring the small
correction proportional to J (which is reasonable gilven the
45+5
small J/t value used), we see that E(G”S)H—4t4s—j>—4t,
whereas the true GS energy cannot go above —47 (this is the
free-electron GS energy). For large S the difference between
these two values becomes negligible, however for S =% the
difference is sizable, explaining the significant difference be-
tween the two curves in the low-J,, part of Fig. 2(a).

In Fig. 2(b) we show the exact GS energies for different
values of J/t and S=%. In the limit J,/t— 0 there is no in-
teraction between the electron and the FM background,
therefore the value of J is irrelevant. As expected from the
discussion above, at large Jy/t values the GS energy in-
creases linearly with increasing J. However, this is a small
contribution for reasonably small values of J. In the follow-
ing we fix J=0.05z.

In Fig. 2(c) we plot the quasiparticle (gp) weights in the
ground state, defined as:

Zy = [(FM[cio,0 1 |GS). (36)

Clearly, these quantities give the probability to find the elec-
tron with spin-down on the sublattice A=1,2, in the GS. As
expected by symmetry, Z,;=2Z,, therefore only one is shown
in Fig. 2(c), as a function of J,/7. One immediate observation
is that the gp weights saturate to finite values in the strong-
coupling limit Jy/t— o, instead of becoming exponentially
small, as is the case for typical polarons (where the electron
binds phonons in its vicinity, due to -electron-phonon
coupling).18 The reason, of course, is that here the electron
can bind a maximum of one magnon as opposed to an arbi-
trarily large number of phonons, as is the case with polarons
for increasing electron-phonon coupling.

By direct comparison of Egs. (31)—(33), (1), and (4), it is
clear that in the strong-coupling limit, the spin-down part of
the low-energy k,+) spin-polaron state is equal to
VAS/ (4S8 + l)czg . l|FM). In other words, for any momentum &
of the spin polaron, the probability to find the electron with
spin-down and the FM background undisturbed is 45/(4S
+1). By symmetry, it follows that Z;,=2Z,,=25/(4S+1) for
all spin-polaron momenta, including the GS. This is in rea-
sonable agreement with the values shown in Fig. 2(c), given
that even Jy/¢=7 is not that large, therefore corrections be-
yond first-order perturbation are not expected to be negli-
gible.
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The spin-flipped contribution to the k,+) low-energy
spin-polaron state also reveals very interesting physics. Fo-
cusing on the case S=1/2, we can rewrite the spin-polaron
eigenstates in the strong-coupling limit as

1 EE e o -
\"'EVZ elk.R"j[X,"j,l(k) - Sinij,T(k)]|FM>- (37)
‘ i

]E)7+> =

The operator in the bracket is recognized as creating a singlet
between the spin located at site ij and the electron occupying
a state centered at site ij. This singlet propagates with mo-
mentum & through the FM background. The electron state
that forms the singlet with the spin is found to be ij’(r(lg)
=elkxalzcj'—j,l,0'+ elk-"a/zc:'},z,u"' e_lkxalzc;——l,j,l,a-'- e_lkya/zci,j—l,Z,o"
i.e. a superposition of the four electronic sites surrounding
the spin located at ij (site labeling is shown in Fig. 1). For
larger S the solution is analogous, except one cannot speak of
a “singlet” between a spin-% and a spin S>%. However, it
can be shown that the entangled electron-spin state corre-
sponds to a total spin S—1/2 (not surprising, since this is
total spin that minimizes the AFM exchange energy).

In the ground state, the coefficients are determined by the
orbitals participating in the hopping. For our model we find
for k=0 that X;‘g=c;}'jsl,a+ CZ},2,0+ c;"_l’j‘]g+ C;;_/—l,z,w while for
p-orbitals a similar calculation (or see k=7(1,1) case) leads
to X,‘Tj,a:—C,Tj,1,o—ClTj,2,g+C,T-1,j,1,a+czj-1,2,a- In other words,
the signs mirror the sign of the lob pointing towards the
central spin site.

If the charge carrier was a hole instead of an electron,
because t——r the low-energy spin-polaron eigenstate is
k,-) (since now €;>0). The eigenenergy is the same, but
the orbital involved in the singlet is )(jj,(,(lg)ze"kxa/ ZC;J,”
-t 2l ekl L —en ] As a result, for
s-o_{bltals t?e GS orbital becomes xj; ,=Ci 1 ;=Ciin o
+Ci_y j1,0~Cij12,0 l-€ it has d-like symmetry. For p-orbitals
it has p-like symmetry again, but is orthogonal to the one
listed above for the electron.

In conclusion, the particular linear combination selected
for forming the GS singlet (more generally, S —% state) with
the central spin is determined both by the particular orbitals
involved, and by the nature—hole or electron—of the charge
carrier.

This solution is clearly analogous to the Zhang-Rice (ZR)
singlet® but with some differences. For one, the singlet de-
fining the spin polaron is here propagating in a FM, not AFM
background. Second, while the ZR singlet involves a d-wave
like linear combination of electronic orbitals, here the com-
bination depends on the details of the model considered, as
just discussed.

The bigger difference, of course, is that here we have
spins at the Mn-like sites. Of course, spins arise from having
some atomic orbital partially filled, and one can talk about a
well-defined spin when the number of electrons (holes) in
this shell cannot change. As noted above, we can easily gen-
eralize our model to allow the extra electron (hole) to hop
onto the Mn-like sites, adding a Hubbard-U penalty and/or
Hundt’s exchange as well, if desired. What we cannot do, at
least so far, is solve exactly the more general model where

i,j-1,2,0°
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electrons (holes) that are currently locked onto the Mn-like
sites and constitute their spins, are allowed to hop to the
other sublattice, so that a spin less than S is left behind. The
difficulty is simple to see: even if one adds a charge-gap A,
i.e. an energy penalty to move electrons (holes) from the
Mn-like sites to the O-like sites, in any eigenstate there will
be some finite probability to find any number of O-like sites
occupied and the wave functions become too complicated.
To be more precise, one can still find easily the equivalent of
the FM-background state in this case, i.e. the ground state in
the Hilbert sector of z-axis spin NS. The case of spin NS
+n%, when any number n of electrons (holes) with spin par-
allel to the background have been added in, is also trivially
solved (because Hubbard on-site repulsion does not act be-
tween parallel spins, therefore both cases are essentially
without interactions). However the problem corresponding to
NS—1/2, i.e. for adding a spin-down electron (hole) to the
FM “background,” in other words the equivalent of the sim-
pler problem investigated here, has proved too complicated
for us so far.

However, even the asymptotic limit of our simplified
model still provides a very important insight, namely that the
phases of the electronic orbitals locked in the singlet with the
central spin vary inside the Brillouin zone. In the ZR model®
these phases are assumed to be locked to their GS, d-wave
symmetry values irrespective of the momentum of the ZR
singlet. As is well known, that leads to problems with nor-
malization of the resulting states in some regions of the BZ.
What our simpler but exact solution reveals is that this is not
correct: the phases of the orbitals involved in the singlet vary
at different k-points. This insight might help improve the
description of the ZR singlet away from the k=0 region.

In terms of k-dependent properties, of course we can ex-
tract not only the GS state, but the entire dispersion of the
spin polaron, by focusing on the lowest (discrete) eigenstate
of momentum k. In standard polaron physics, the polaron
bandwidth is expected to become smaller (corresponding to
larger effective polaron mass) as the electron-phonon cou-
pling increases and more phonons are tied into the polaron
cloud.'® Here we do not expect to have this problem since a
maximum of one magnon can be bound to the electron, as
already discussed. In fact, Eq. (34) reveals that the spin-
polaron mass becomes, in the strong-coupling asymptotic
limit:

. (38)

where m is the bare electron mass. This is interesting as it is
determined only by the value S of the spins in the FM back-
ground, and independent of the coupling. The largest in-
crease of 6/5=1.2 is for spins S=1/2, showing that the spin
polaron remains very light. This is not surprising, given its
propagation in an FM background.

In Fig. 3 we plot the spin-polaron dispersion (lowest
eigenstate of momentum k) along lines of high symmetry
inside the BZ. The full lines show the strong-coupling pre-
diction E,(gp i of Eq. (34) — again, we assume s-orbitals and an
electron as the charge carrier. The agreement is very good for
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FIG. 3. (Color online) Spin-polaron dispersion along lines of
high symmetry in the Brillouin zone. The results (symbols) corre-
spond to S=% and J/1=0.05 and, from top to bottom, Jy/t=1, 2, 3,
5, and 7. The top two cases have been plotted separately to avoid
overlaps. The lines show the strong-coupling prediction E%p i of
Eq. (34).

larger J,/t values, suggesting that the paradigm of the spin
polaron as a mobile singlet of the electron in a special state
and the spin at its center, must be a good description even for
moderate values of J,/t. Even for J,/t=1 the agreement is
quite reasonable near the center of the BZ, but not at high k
values. This discrepancy can be understood easily as well. As
discussed, the spin-polaron states come from hybridizing the
noninteracting spin-down electron states of energy e€;—JyS
with the spin-up electron+one magnon continuum of ener-
gies €;_;+JoS+();. The hybridization will push the discrete
state to lower energies, giving rise to the spin-polaron band,
however it cannot change the location of the continuum. If
we ignore the Q(; term, given the small J/¢, then we find that
this continuum must start at —4z+.J,S (inclusion of {); adds a

small, lg—dependent correction to this value of the continuum
band-edge, see results below). The spin-polaron discrete
state cannot overlap with the continuum, therefore when J, is
small, one expects the polaron dispersion to flatten out just
below the continuum band-edge, which is precisely what we
see for Jy/t=1. As Jy/t increases the continuum moves to
higher energies while the spin-polaron band moves to lower
energies and becomes fully visible.

The flattening-out of the polaron dispersion just under the
continuum is typical polaron physics at weak coupling.'® Of
course, for conventional polarons the continuum starts at ()
above the polaron ground state, where () is the energy of the
Einstein phonons. This limits the polaron bandwidth, at weak
coupling, to be precisely ). For the spin polaron studied
here, the bandwidth has little to do with the magnon energy
(the FM magnons are, in fact, gapless). Instead, the relevant
energy scale comes from the zz component of the exchange
energy between the electron and the FM background, J,,S.

Another typical expectation for polaron physics at weak
couplings is that of very small spectral weight in the BZ
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FIG. 4. Top panel: contour plot of Aj(k,.k,,w) along the k,
=k, cut in the Brillouin zone. Only the spin—polafon state is visible
on this scale. Bottom panel: same as above but plotted as
tanh[A;(k,.k,,®)/0.3] so as to make low-weight features visible.
The dashed line shows the expected location of the lower edge of
the continuum. Parameters are Jy=t=1, J=0.05, $=0.5, and 7
=0.02.

regions where the polaron dispersion lies just below the con-
tinuum. This is because here the largest contribution to the
polaron comes from continuum states where the electron is
spin-up. Consequently, the probability to find a spin-down
electron, measured by the gp weights, becomes very small.
This is indeed confirmed in Fig. 4, where we show the spec-
tral weight

- 1 -
Ak, w) =- ;Im G (k,w) (39)

along the k,=k, cut in the BZ. Again, by symmetry we ex-
pect A =A,,. The top panel shows the spectral weight on a
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FIG. 5. Contour plot of A;(k,,k,,w) along several cuts in the
Brillouin zone. The dashed line shows the expected location of the
lower edge of the continuum. Parameters are r=1, Jy=5, J=0.05,

$=0.5, and 7=0.1.

linear scale. The low-k part of the spin-polaron band is
clearly visible, however the region where it flattens just un-
der the continuum has very little weight, and is not visible on
this scale. In order to make low-weight features near the
continuum more visible, instead of A,;(k,w), in the bottom
panel we plot tanh[A;(k,®)/0.3]. As a result, all regions
with weight A;;>0.7 are mapped into black, whereas
weights below this follow a fairly linear scale down to white.
This explains why the spin-polaron peak seems so wide now,
although in reality it is a Lorentzian of width 7—0. The
dashed line shows the continuum band-edge, mine;_;
+JoS+2;]. As expected, the spin-polaron dispersion flattens
out just underneath it. Because its weight decreases so fast as
k increases, it is impossible to see it even on this scale for
larger k. The continuum above is also more clearly seen for
smaller values of k, with most weight around e€;—J,S where
the free spin-down electron would have its bare energy. The
little weight that seems to “seep” below the dashed line at
low-k is due to the finite 7 used, we have checked that in-
deed the continuum appears at the expected value.

As J, increases and the spin-polaron band moves well
below the continuum, we expect to see large gp weight for
the spin polaron at all k since the strong-coupling limit pre-
dicts a lg-independent gp weight. This is indeed the case, as
shown in Fig. 5 for J,/t=5. Note that the spectral weight is
now shown on a linear scale. The low-energy polaron band
has the same dispersion as shown in Fig. 3, and indeed it has
a fairly constant gp weight. One initial surprise is to see
another coherent, infinite lifetime state just above it (and in
fact degenerate with it along the (7, 7)—(7,0) cut, leading
to a doubled gp weight there), however this is to be ex-
pected. The spin polaron also lives on a lattice with a two-
site basis, so one expects to see two bands for it, if both
happen to fit below the continuum, as is the case here and for
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FIG. 6. (Color online) (a) Spectral weight A;(5,7,®) as a
function of energy, for 7=0.01 (dashed line) and %=0.02 (full line).
(b) Ayy(7, 7, w) (full line) and A;(F, 7, ) (dashed line) vs o, for
7=0.02. In both cases the vertical lines show the expected location
of the lower band edge of the continuum. The insets show the same
quantities but with the focus on the lower band edge of the con-
tinuum. The parameters are r=1, Jy=5, J=0.05, and S=%.

larger J values. This is also in agreement with the strong-
coupling limit which also predicts the two bands, see Eq.
(34). From there, we see that this higher-energy spin-polaron
state can also be thought of as a propagating singlet, where
the singlet again involves the electron in a particular wave
function and the spin at its center. The wave function in-
volves the four sites surrounding the spin, but with different
lg-dependent phases (or symmetry) than for the low-energy
branch.

Besides these two spin-polaron bands, Fig. 5 reveals an-
other dispersing feature at much higher energies of order —2¢.
That this is also a discrete (infinitely lived) state is demon-
strated in Fig. 6(a), where we verify its scaling with 7: dou-
bling 7 halves the height of the peak and doubles its width.
Thus, this is a Lorentzian of width # and becomes a delta
function as 7— 0. Note that the continuum is independent of
7 and begins at the expected value, indicated by the vertical
line (the inset focuses on this feature and demonstrates this
agreement more clearly). The continuum has very low
weight, explaining why it is mostly invisible on the scale of
Fig. 5.

Interestingly, we only see this higher-energy discrete state
in some regions of the BZ; for example, it is absent along the
(0,0)—(0, 7) line (to be more precise, we have searched with
an 7 as low as 107 and did not see any features just below
the gap. Of course, this does not rule out a state with an
extremely low gp weight). The apparent “disappearance”
near (77, 77) is due to vanishing gp weight, but the state exists
in that region. Another interesting feature is demonstrated by
Fig. 6(b), which shows A (k,®) at two points that one
would normally consider equivalent, namely, (7, g) and
(3, 7). While the former shows a big gp peak just above —21,
the later shows no weight at this energy. The explanation is
that by symmetry one needs to have Ay (k.,k,, )
=Axp(k, ke, w) since “1” and “2” refer to states on the, re-
spectively, x and y rungs. However, for k, #k,, there is no
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FIG. 7. (a) Illustration of exchange between the charge carrier
and the impurity spin (depicted as a box), arising from virtual hop-
ping of the charge carrier to the spin site and back. (b) The same
type of process can result in charge carrier hopping with spin flip if
the charge carrier moves to another site.

requirement that Ay(k,,k,, ) =A;,(k,,k,, »), and indeed we
see that this is not the case. Flgure 6(b) thus suggests that the
disappearance of this gp state along some directions is due to
symmetries, which result in orthogonality between the spin-
down free-electron state and the true eigenstate. Polarization-
dependent spectroscopies should be able to detect these
variations between A;; and A,,.

Regarding the origin of this high-energy gp state, this
seems to be standard polaron physics. Holstein polarons at
strong couplings are also known to have a so-called “second
bound state.”!8 It is essentially an internal excited state of the
polaron, possible if the interaction, as well as the binding
energy with its cloud, is strong enough.

These two examples, together, are enough to give us in-
tuition about the evolution of the spectral weight in such
models as J, increases. For small values only the lowest
spin-polaron band is visible in regions where it is well below
the continuum. In the regions where the continuum forces it
to flatten, the gp weight is extremely small. As J increases,
more and more of the low-energy spin-polaron band emerges
below the continuum. Then the upper spin-polaron band
starts to emerge as well and the part that is below the con-
tinuum is clearly visible; the rest is flattened and has low gp
weight. This is the case, e.g., for Jy=3 (not shown) where the
entire lower band and about one-third of the upper band are
visible below the continuum. For even larger J,, both spin-
polaron bands are visible, and at yet higher values, more
bound states can split off from the continuum. The number of
gp bands and their weights is therefore very sensitive to
strength of the coupling.

Before concluding, we must make one more important
comment. In the model considered here we assumed that the
charge carrier interacts with the spins only through ex-
change. This exchange comes from virtual hopping of the
charge carrier to the spin site and back. Figure 7(a) illustrates
one such possible scenario, leading to AFM exchange if a
single half-filled orbital gives rise to the impurity spin. How-
ever, the charge carrier could hop off to any of the nearest-
neighbor sites of the impurity spin since it does not neces-
sarily have to return to the original site. Such processes are
illustrated in Fig. 7(b) and result in effective charge carrier
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hopping with possible spin flip correlated with a spin flip of
the impurity spin. The energy scale for such processes is the
same as for the AFM exchange; however, their sign can be
either negative or positive, depending on whether the hop-
ping integrals along the relevant links have the same or op-
posite signs. This, of course, depends on the orbitals in-
volved both at the charge carrier and the spin site.

Such hopping+spin-flip processes can be treated exactly
in our approach, as already stated. They can have dramatic
effects, as we illustrate now with a simple example. Consider
the spin S at site (ij) and its four neighboring charge sites,
which we label anticlockwise as 1=(ij,1), 2=(ij,2), 3
=(i-1,j,1), and 4=(i,j—1,2). Four symmetric linear com-
binations can be built from these, namely, Xm=l(c10+c2(,
+C3U'+c40'); Xd0'=%(clo'_620'+c30'_c4o-); Xplo’=§(clzr+c2(r
—C35—C4p); and )(,,2(,:%(cl,,—cz(,—c3(,+c4(,). Consider the
impurity spin lowering part of the Hamiltonian we have
worked with so far, J,S~ (Cchll+CzTc2l+C3TC3L+C4TC4L)
=105~ (X[ xs L+XdTXdL"'X,L]TXpU"'XpZTXpZ 1); ie., all these
symmetrized orbitals interact equally strongly w1th the im-
purity, and could participate in the “singlet.” Which happens
to be the GS is chosen by the signs of the hoppings and
charge carrier, as discussed. If hopping+spin flip processes
are included, the results are very different. Assume, for ex-
ample, that all hopping integrals between the four sites and
the impurity site have the same sign. In this case,
JOS‘CTTCHHJOS‘(CTT+c§T+c§T+cZT)cU since, as illustrated
in Fig. 7(b), the charge carrier removed from site 1 can
emerge at any of the spin’s neighbor sites. The same is true
for all other terms, and adding them together, we obtain a
total equal to 4,5 XYT Xs,- In other words, in this case only
the s-symmetry orbital can participate in the singlet (which
state is selected depends, obviously, on the relative signs for
the hopping between charge sites and the impurity site). As a
result, we expect to see a single spin-polaron state at k=0,
corresponding to a “singlet” involving this allowed orbital,
and the other spin-polaron states discussed for the simple
model will vanish from the spectrum.

V. SUMMARY AND CONCLUSIONS

To summarize, we claim that essentially any problem that
involves a charge carrier interacting with a fully polarized
FM background can be solved exactly, irrespective of the
complexity of the sublattices involved or the range of the
exchanges or other complications. Of course, calculations
become more complex as one makes the model more com-
plicated, but the exact solution following the approach sug-
gested here should always be possible.

We exemplified it on a relatively simple yet interesting
two-dimensional case which we believe illustrates most of
the physics that can be expected in such systems. It allows us
to elucidate the nature of the spin-polaron quasiparticle,
which at strong coupling is a singlet (more generally, the
maximally polarized state with spin S—%) similar to the
Zhang-Rice solution. However, we show that the orbitals
participating to the electronic wave function that locks into
the singlet with the lattice spin have phases that vary as a
function of the singlet’s momentum. In the ground state they
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have the signs consistent with the symmetry of the orbitals
involved and also determined by the type of charge carrier.
Moreover, since on complex lattices one can form multiple
such linear combinations which can participate in the singlet,
it is possible to see more than one spin-polaron band below
the continuum. If however hopping+spin-flip terms are in-
cluded, some of these spin-polaron bands will be removed
because of symmetry considerations.

We hope that these insights may help solve some of the
known issues regarding the normalization of the ZR singlet,
which is an essential ingredient in the cuprate physics. Ex-
tensions of the solution to AFM backgrounds are very desir-
able although clearly much more complicated. We plan to
investigate such problems next.

As far as uses of doped FM insulators for spintronics
applications are concerned, this work suggests that materials
with an AFM exchange J, between the charge carriers and
the local spins could be very interesting. For instance, con-
sider a pulse of unpolarized charge carriers created in such a
medium, for instance, by optical means. If they are placed in
an electric field, the charge carriers with spin parallel to the
FM background will propagate with a different speed than
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the charge carriers with spin antiparallel to the FM back-
ground since the latter are dressed by magnons and become
heavier spin polarons while the former propagate as bare
particles. Both types propagate coherently (at least at T=0)
so this suggests that in time a pulse of unpolarized carriers
will separate spatially into two spin-polarized pulses travel-
ing at different speeds. Ingenious use of such difference be-
tween the two spin polarizations may open the way towards
using such materials as sources or detectors of spin-polarized
currents, which are essential components for spintronic de-
vices. Of course, issues such as the effect of finite-7" and
finite charge carrier concentrations need to be understood
first; however, this seems to be a promising line of investi-
gation.
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